1
|
Sinha N, Zahra T, Gahane AY, Rout B, Bhattacharya A, Basu S, Chakrabarti A, Thakur AK. Protein reservoirs of seeds are amyloid composites employed differentially for germination and seedling emergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:329-346. [PMID: 37675599 DOI: 10.1111/tpj.16429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.
Collapse
Affiliation(s)
- Nabodita Sinha
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Talat Zahra
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Avinash Yashwant Gahane
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Bandita Rout
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | | | | | | | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
2
|
dos Santos-Donado PR, Donado-Pestana CM, Kawahara R, Rosa-Fernandes L, Palmisano G, Finardi-Filho F. Comparative analysis of the protein profile from biofortified cultivars of quality protein maize and conventional maize by gel-based and gel-free proteomic approaches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Xue C, Matros A, Mock HP, Mühling KH. Protein Composition and Baking Quality of Wheat Flour as Affected by Split Nitrogen Application. FRONTIERS IN PLANT SCIENCE 2019; 10:642. [PMID: 31156690 PMCID: PMC6530357 DOI: 10.3389/fpls.2019.00642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 05/23/2023]
Abstract
Baking quality of wheat flour is determined by grain protein concentration (GPC) and its composition and is highly influenced by environmental factors such as nitrogen (N) fertilization management. This study investigated the effect of split N application on grain protein composition and baking quality of two winter wheat cultivars, Tobak and JB Asano, belonging to different baking quality classes. Bread loaf volumes in both cultivars were enhanced by split N application. In contrast, GPC was only significantly increased in JB Asano. Comparative 2-DE revealed that the relative volumes of 21 and 28 unique protein spots were significantly changed by split N application in Tobak and JB Asano, respectively. Specifically, the alterations in relative abundance of certain proteins, i.e., globulins, LMW-GS, α-, and γ-gliadins as well as α-amylase/trypsin inhibitors were more sensitive to split N application. Furthermore, certain proteins identified as globulins and alpha-amylase inhibitors were changed in both wheat cultivars under split N application. These results implied that the functions of these unique proteins might have played important roles in affecting baking quality of wheat flour, especially for cultivars (i.e., Tobak in the present study) the baking quality of which is less dependent on GPC.
Collapse
Affiliation(s)
- Cheng Xue
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, China
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Andrea Matros
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Karl-Hermann Mühling
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS. Proteomes 2018; 6:proteomes6010003. [PMID: 29342075 PMCID: PMC5874762 DOI: 10.3390/proteomes6010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023] Open
Abstract
Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc binding proteins in different grain tissues, we microdissected barley grains into (1) seed coats; (2) aleurone/subaleurone; (3) embryo; and (4) endosperm. Initial screening for putative zinc binding proteins from the different tissue types was performed by fractionating proteins according to solubility (Osborne fractionation), and resolving those via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) followed by polyvinylidene fluoride (PVDF) membrane blotting and dithizone staining. Selected protein fractions were subjected to Zn2+-immobilized metal ion affinity chromatography, and the captured proteins were identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS). Results: In the endosperm, the most abundant zinc binding proteins were the storage protein B-hordeins, gamma-, and D-hordeins, while in the embryo, 7S globulins storage proteins exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have been captured by Zn-IMAC, and their zinc binding properties in relationship to the possibility of zinc storage is discussed.
Collapse
|
5
|
Guo B, Luan H, Lin S, Lv C, Zhang X, Xu R. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content. FRONTIERS IN PLANT SCIENCE 2016; 7:542. [PMID: 27200019 PMCID: PMC4843811 DOI: 10.3389/fpls.2016.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 05/24/2023]
Abstract
Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4-7 and 6-11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns.
Collapse
Affiliation(s)
- Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
- JiangSu Coastal Area Institute of Agricultural SciencesYancheng, China
| | - Shen Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Xinzhong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| |
Collapse
|
6
|
Collado-Romero M, Alós E, Prieto P. Effect of 7H(ch) Hordeum chilense chromosome introgressions on the wheat endosperm proteomic profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3793-3802. [PMID: 25824108 DOI: 10.1021/jf5055672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hordeum chilense is an excellent genetic resource for wheat breeding due to its potential to improve breadmaking quality and nutritional value and provide resistance to some biotic and abiotic stresses. Hexaploid wheat lines carrying chromosome 7H(ch) introgressions, namely, chromosome additions of the whole chromosome 7H(ch) or the 7H(ch)α or the 7H(ch)β chromosome arms, and chromosome substitutions of the homeologous chromosomes 7A, 7B, or 7D by chromosome 7H(ch) were compared by 2D-PAGE analysis to study the effect of these alien introgressions on the wheat endosperm proteome. The addition of the 7H(ch)α chromosome arm did not alter the profile of most glutenins and gliadins, but showed higher quantities of puroindolines and lower xylanase inhibitors, which might improve also resistance to plant pathogens. On the other hand, (7A)7H(ch) or (7D)7H(ch) substitution lines showed enhanced avenin-like b proteins and triticin levels but reduced puroindolines, which could be desirable to improve dough properties and nutritional value and increase kernel hardness in wheat.
Collapse
Affiliation(s)
- Melania Collado-Romero
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Enriqueta Alós
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| |
Collapse
|
7
|
Hasniza M. Z. N, Copeland L, Wilkes MA. Globulin Expression in Grain of Australian Hard Wheat Cultivars Is Affected by Growth Environment. Cereal Chem 2014. [DOI: 10.1094/cchem-05-13-0108-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Noor Hasniza M. Z.
- Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia
- Kulliyyah of Science, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Les Copeland
- Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia
- Corresponding author. Phone: +61 2 8627 1017. Fax: +61 2 8627 1099. E-mail:
| | - Meredith A. Wilkes
- Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia
| |
Collapse
|