1
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
3
|
Yang L, Yuan TJ, Wan Y, Li WW, Liu C, Jiang S, Duan JA. Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host. Future Microbiol 2022; 17:293-309. [PMID: 35164528 DOI: 10.2217/fmb-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Tian-Jie Yuan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| |
Collapse
|
4
|
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:839. [PMID: 34441045 PMCID: PMC8401077 DOI: 10.3390/medicina57080839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Amira Abubakar Mohamed
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Etel Faradjeva
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Lee Si Jie
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chin Hooi Sze
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Akasha Arif
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Emmanuel Norbert Michael
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chua Yeok Mun
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Ng Xiao Qi
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Suresh S. Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600 073, Tamil Nadu, India
| |
Collapse
|
5
|
Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8638103. [PMID: 32596389 PMCID: PMC7273434 DOI: 10.1155/2020/8638103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) has emerged as a research hotspot in microbiology and medicine. QS is a regulatory cell communication system used by bacterial flora to signal to the external environment. QS influences bacterial growth, proliferation, biofilm formation, virulence factor production, antibiotic synthesis, and environmental adaptation. Through the QS system, natural products can regulate the growth of harmful bacteria and enhance the growth of beneficial bacteria, thereby improving human health. Herein, we review advances in the discovery of natural products that regulate bacterial QS systems.
Collapse
|
6
|
Cao Q, Ma K, Nie M, Dong Y, Lu C, Liu Y. Role of luxS in immune evasion and pathogenicity of piscine Streptococcus agalactiae is not dependent on autoinducer-2. FISH & SHELLFISH IMMUNOLOGY 2020; 99:274-283. [PMID: 32058098 DOI: 10.1016/j.fsi.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
luxS-mediated autoinducer 2 (AI-2)-dependent quorum sensing (QS) has been demonstrated to affect many bacterial phenotypes, including virulence. Streptococcus agalactiae harbors a functional luxS gene required for the biosynthesis of AI-2. In this study, we investigated the regulation effect and mechanism of the luxS/AI-2 QS system in the pathogenicity of the piscine S. agalactiae strain GD201008-001. We found that inactivation of luxS caused a marked decrease in biofilm formation, hemolytic activity, antiphagocytosis and intracellular survival of S. agalactiae. Except for hemolytic activity, the altered phenotypes due to the luxS deletion were AI-2-independent. Further investigation indicated that high levels of the proinflammatory cytokines IL-1β and IL-6 could be induced in macrophages co-incubated with the luxS deletion mutant and synthetic AI-2, single or combined. Also, the results of tilapia infection showed that inactivation of luxS significantly decreased the virulence of S. agalactiae but upregulated the expression of cytokines in spleens and brains. Increased proinflammatory effects of the luxS mutant were restored in the luxS complemented strain but could not be restored by AI-2 addition. All the findings suggest that luxS is involved in virulence-associated phenotypes and immunological evasion of S. agalactiae, and furthermore, this involvement is mostly AI-2-independent. This study will provide valuable insights into our understanding of the role of the LuxS/AI-2 QS system in the pathogenesis of S. agalactiae.
Collapse
Affiliation(s)
- Qing Cao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng Nie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Wu J, Wang Y, Jiang Z. Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages. Expert Rev Proteomics 2020; 17:175-185. [PMID: 32125181 DOI: 10.1080/14789450.2020.1738223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiao Wu
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Yunpeng Wang
- Departments of Cardiovascular, Zigong First People’s Hospital, Sichuan, China
| | - Zheng Jiang
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| |
Collapse
|
8
|
McKay R, Ghodasra M, Schardt J, Quan D, Pottash AE, Shang W, Jay SM, Payne GF, Chang MW, March JC, Bentley WE. A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: Toward applications for Crohn's disease. Bioeng Transl Med 2018; 3:209-221. [PMID: 30377661 PMCID: PMC6195910 DOI: 10.1002/btm2.10113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
For therapies targeting diseases of the gastrointestinal tract, we and others envision probiotic bacteria that synthesize and excrete biotherapeutics at disease sites. Toward this goal, we have engineered commensal E. coli that selectively synthesize and secrete a model biotherapeutic in the presence of nitric oxide (NO), an intestinal biomarker for Crohn's disease (CD). This is accomplished by co‐expressing the pore forming protein TolAIII with the biologic, granulocyte macrophage‐colony stimulating factor (GM‐CSF). We have additionally engineered these bacteria to accumulate at sites of elevated NO by engineering their motility circuits and controlling pseudotaxis. Importantly, because we have focused on in vitro test beds, motility and biotherapeutics production are spatiotemporally characterized. Together, the targeted recognition, synthesis, and biomolecule delivery comprises a “smart” probiotics platform that may have utility in the treatment of CD. Further, this platform could be modified to accommodate other pursuits by swapping the promoter and therapeutic gene to reflect other disease biomarkers and treatments, respectively.
Collapse
Affiliation(s)
- Ryan McKay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Monil Ghodasra
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - John Schardt
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD
| | - David Quan
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Alex Eli Pottash
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - Wu Shang
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Steven M Jay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD.,Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine Baltimore MD.,Program in Molecular and Cellular Biology University of Maryland College Park MD
| | - Gregory F Payne
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Matthew Wook Chang
- Dept. of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute National University of Singapore Singapore
| | - John C March
- Dept. of Biological and Environmental Engineering Cornell University Ithaca NY
| | - William E Bentley
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| |
Collapse
|
9
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. MICROBIOLOGY-SGM 2018; 164:1327-1344. [PMID: 30136920 DOI: 10.1099/mic.0.000709] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Global Salmonella infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of Salmonella, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and in vitro investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against Salmonella and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in Salmonella infections. This review discusses Salmonella infections and treatment using antibiotics and probiotics.
Collapse
Affiliation(s)
- Abraham Majak Gut
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- 2Institute for Sustainable Industries and Livable Cities, College of Engineering and Science, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
10
|
Singh A, Vishwakarma V, Singhal B. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities—Metabiotics: Probiotics Effector Molecules. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/abb.2018.94012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell MDLÁ, Urdaci MC. Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance. Front Immunol 2017; 8:88. [PMID: 28239378 PMCID: PMC5300979 DOI: 10.3389/fimmu.2017.00088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-α/IL-10 and IL-1β/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1β, IFN-γ, and CXCL1 gene expression significantly decreased on day 21 in Peyer’s patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1β, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory properties. This strain also modulates gut microbiota increasing Faecalibacterium prausnitzii, a functionally important bacterium. Thus, E. durans EP1 is not only a good candidate to increases F. prausnitzii in some cases of dysbiosis but can also be interesting in gut inflammatory disorders therapy.
Collapse
Affiliation(s)
- Paula Carasi
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux, Gradignan, France; Cátedra de Microbiología, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; CCT-La Plata, CONICET, La Plata, Argentina
| | - Silvia María Racedo
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - Claudine Jacquot
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - Anne Marie Elie
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; CCT-La Plata, CONICET, La Plata, Argentina
| | - María C Urdaci
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| |
Collapse
|
12
|
Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 2017; 13:11-25. [PMID: 27616451 DOI: 10.1038/nrendo.2016.150] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Nutrition, Gut &Brain Laboratory, Inserm UMR 1073, University of Rouen Normandy, 22 Boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
13
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
14
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
15
|
Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 2014; 1:28-40. [PMID: 25729763 PMCID: PMC4339954 DOI: 10.1016/j.jcmgh.2014.11.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a "healthy" microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
- Correspondence Address correspondence to: Christian Jobin, PhD, Department of Medicine, University of Florida, 2033 Mowry Road, Office 461, Gainesville, Florida 32610. fax: (352) 392-3944.
| |
Collapse
|
16
|
Yoon MY, Yoon MY, Lee K, Yoon SS. Protective role of gut commensal microbes against intestinal infections. J Microbiol 2014; 52:983-9. [PMID: 25467115 DOI: 10.1007/s12275-014-4655-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023]
Abstract
The human gastrointestinal tract is colonized by multitudes of microorganisms that exert beneficial effects on human health. Mounting evidence suggests that intestinal microbiota contributes to host resistance against enteropathogenic bacterial infection. However, molecular details that account for such an important role has just begun to be understood. The commensal microbes in the intestine regulate gut homeostasis through activating the development of host innate immunity and producing molecules with antimicrobial activities that directly inhibit propagation of pathogenic bacteria. Understanding the protective roles of gut microbiota will provide a better insight into the molecular basis that underlies complicated interaction among host-pathogen-symbiont. In this review, we highlighted recent findings that help us broaden our knowledge of the intestinal ecosystem and thereby come up with a better strategy for combating enteropathogenic infection.
Collapse
Affiliation(s)
- Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | - My Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | | | | |
Collapse
|
17
|
Cassidy L, Tholey A. Model organism proteomics as a tool for the study of host-microbiome interactions. Proteomics Clin Appl 2014; 8:665-76. [DOI: 10.1002/prca.201300083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/25/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Liam Cassidy
- Institut für Experimentelle Medizin - AG Systematische Proteomforschung; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin - AG Systematische Proteomforschung; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
18
|
Bellezza I, Peirce MJ, Minelli A. Cyclic dipeptides: from bugs to brain. Trends Mol Med 2014; 20:551-8. [PMID: 25217340 DOI: 10.1016/j.molmed.2014.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Cyclic dipeptides (CDPs) are a group of hormone-like molecules that are evolutionarily conserved from bacteria to humans. In bacteria, CDPs are used in quorum sensing (QS) to communicate information about population size and to regulate a behavioural switch from symbiosis with their host to virulence. In mammals, CDPs have been shown to act on glial cells (macrophage-like cells) to control a conceptually homologous behavioural switch between homeostatic and inflammatory modes, with implications for the control of neurodegenerative disease. Here we argue that, because of their capacity to regulate inflammation via glial cells and induce a protective response in neuronal cells, CDPs have potential therapeutic utility in an array of inflammatory diseases.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Matthew J Peirce
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Alba Minelli
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy.
| |
Collapse
|
19
|
Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn's disease. Inflamm Bowel Dis 2014; 20:978-86. [PMID: 24788220 DOI: 10.1097/mib.0000000000000036] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Crohn's disease (CD)-associated dysbiosis could predispose patients to relapse. Gut microbiota composition of patients from the prospective cohort study designed to identify predictive factors of clinical relapse after infliximab discontinuation (STORI Study) was investigated to determine the impact of dysbiosis in CD relapse. METHODS Fecal samples from 33 patients with CD in this cohort were collected at baseline, 2 months, 6 months, and at the end of the follow-up period (19 relapsers and 14 nonrelapsers). Healthy volunteers subjects (n = 29) were used as a control group. The fecal microbiota composition was assessed using quantitative PCR, and comparisons between the patient groups were made at different time points using the Wilcoxon test. The analysis of the time-to-relapse was performed according to the baseline median level of each bacterial signal. RESULTS Dysbiosis was observed in patients with CD compared with healthy subjects, and it was characterized by low mean counts of Firmicutes (Clostridium coccoides [P = 0.0003], C. leptum [P < 0.0001], and Faecalibacterium prausnitzii [P = 0.003]). Lower rates of Firmicutes were seen in relapsers compared with nonrelapsers. Moreover, a low rate of F. prausnitzii (P = 0.014) and a low rate of Bacteroides (P = 0.030) predicted relapse independently from high C reactive protein level (P = 0.0001). CONCLUSIONS In this work, we report that CD-associated dysbiosis, characterized by a decrease in Firmicutes, correlates with the time-to-relapse after infliximab withdrawal. A deficit in some bacterial groups or species, such as F. prausnitzii, may represent a predictive factor for relapse. Restoring normobiosis in CD could be a new goal for optimal CD management.
Collapse
|
20
|
Carasi P, Díaz M, Racedo SM, De Antoni G, Urdaci MC, Serradell MDLA. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri. BIOMED RESEARCH INTERNATIONAL 2014; 2014:208974. [PMID: 24955346 PMCID: PMC4052788 DOI: 10.1155/2014/208974] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 01/18/2023]
Abstract
Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or β-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(-) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 10(8) CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.
Collapse
Affiliation(s)
- Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, de La Plata, 47 y 115 s/n, CP, 1900 La Plata, Argentina
| | - Mariángeles Díaz
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, de La Plata, 47 y 115 s/n, CP, 1900 La Plata, Argentina
| | - Silvia M. Racedo
- Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Université de Bordeaux, UMR 5248, Bordeaux Sciences Agro, 1 Cours du Général de Gaulle, 33175 Gradignan, France
| | - Graciela De Antoni
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, de La Plata, 47 y 115 s/n, CP, 1900 La Plata, Argentina
| | - María C. Urdaci
- Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Université de Bordeaux, UMR 5248, Bordeaux Sciences Agro, 1 Cours du Général de Gaulle, 33175 Gradignan, France
| | | |
Collapse
|
21
|
Kupz A, Fischer A, Nies DH, Grass G, Göbel UB, Bereswill S, Heimesaat MM. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract. Eur J Microbiol Immunol (Bp) 2013; 3:229-35. [PMID: 24265943 DOI: 10.1556/eujmi.3.2013.3.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Recent advances in molecular techniques have enabled a deep view into the structure and function of the host's immune system and the stably associated commensal intestinal flora. This review outlines selected aspects of the interplay of innate immune recognition and effectors that shape the ecological niches for the intestinal microbiota. RECENT FINDINGS Several studies have demonstrated a pivotal role of innate immune receptor pathways (NOD-like receptors and Toll-like receptors) for the maintenance of microbial communities in the gut. Genetic deficiencies in these pathways have been associated with increased susceptibility to inflammation that in animal models can be transmitted via direct contact or by stool transplantation in the absence of abundant pathogens. SUMMARY The genetic architecture of the human host shapes the diversity and function of its stably associated intestinal microflora. Innate immune receptors such as NOD2 or the inflammasome component NOD-like receptor, pyrin-domain containing 6 play a major role in licensing the microbiota under physiological conditions. Understanding the symbiotic interplay in the intestinal tract should help develop procedures and therapeutic interventions aiming at the identification and restoration of disturbed microbiota states. Indeed, these states may be the missing trigger factor for the manifestation of a multitude of civilization disorders including inflammatory bowel disease and gastrointestinal cancer.
Collapse
|