1
|
Vieira L, Silva PE, de Melo PF, Maldaner V, Durigan JQ, Marqueti RDC, Nobrega O, Mathur S, Burtin C, Barin F, Machado-Silva W, Ramalho S, Chiappa GR, Gomes NO, Carvalho CRF, Cipriano GFB, Cipriano G. Early Neuromuscular Electrical Stimulation Preserves Muscle Size and Quality and Maintains Systemic Levels of Signaling Mediators of Muscle Growth and Inflammation in Patients with Traumatic Brain Injury: A Randomized Clinical Trial. Crit Care Res Pract 2023; 2023:9335379. [PMID: 37547450 PMCID: PMC10397495 DOI: 10.1155/2023/9335379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/15/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To investigate the effects of an early neuromuscular electrical stimulation (NMES) protocol on muscle quality and size as well as signaling mediators of muscle growth and systemic inflammation in patients with traumatic brain injury (TBI). Design Two-arm, single-blinded, parallel-group, randomized, controlled trial with a blinded assessment. Setting. Trauma intensive care unit at a university hospital. Participants. Forty consecutive patients on mechanical ventilation (MV) secondary to TBI were prospectively recruited within the first 24 hours following admission. Interventions. The intervention group (NMES; n = 20) received a daily session of NMES on the rectus femoris muscle for five consecutive days (55 min/each session). The control group (n = 20) received usual care. Main Outcome Measures. Muscle echogenicity and thickness were evaluated by ultrasonography. A daily blood sample was collected to assess circulating levels of insulin-like growth factor I (IGF-I), inflammatory cytokines, and matrix metalloproteinases (MMP). Results Both groups were similar at baseline. A smaller change in muscle echogenicity and thickness (difference between Day 1 and Day 7) was found in the control group compared to the NMES group (29.9 ± 2.1 vs. 3.0 ± 1.2, p < 0.001; -0.79 ± 0.12 vs. -0.01 ± 0.06, p < 0.001, respectively). Circulating levels of IGF-I, pro-inflammatory cytokines (IFN-y), and MMP were similar between groups. Conclusion An early NMES protocol can preserve muscle size and quality and maintain systemic levels of signaling mediators of muscle growth and inflammation in patients with TBI. This trial is registered with https://www.ensaiosclinicos.gov.br under number RBR-2db.
Collapse
Affiliation(s)
- Luciana Vieira
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Paulo Eugênio Silva
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Priscilla Flavia de Melo
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Vinicius Maldaner
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Joao Q. Durigan
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Rita de Cassia Marqueti
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Otavio Nobrega
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Medical Sciences Graduate Program (PPGCM), University of Brasilia (UnB), Brasília, DF, Brazil
| | - Sunita Mathur
- School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Chris Burtin
- Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Fabrício Barin
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Wilcelly Machado-Silva
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Sergio Ramalho
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Gaspar R. Chiappa
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
| | | | | | - Graziella F. B. Cipriano
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Gerson Cipriano
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| |
Collapse
|
2
|
Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, Vira S, Al Tamimi M, Bagley CA, Aoun SG. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg 2021; 155:e418-e438. [PMID: 34438102 DOI: 10.1016/j.wneu.2021.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. METHODS A literature search of the PubMed/Medline electronic database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We excluded systematic reviews and meta-analyses that did not provide novel data. The American College of Cardiology/American Heart Association criteria were used to assess levels of evidence. RESULTS An initial 1463 studies were identified. In total, 115 full-text articles reporting on 94 distinct biomarkers met the inclusion criteria. Glasgow Coma Scale scores, computed tomography/magnetic resonance imaging abnormalities, and injury severity scores were the most used clinical diagnostic variables. Glasgow Outcome Scores and 1-, 3-, and 6-month mortality were the most used clinical prognostic variables. Several biomarkers significantly correlated with these variables and had statistically significant different levels in TBI subjects when compared with healthy, orthopedic, and polytrauma controls. The biomarkers also displayed significant variability across mild, moderate, and severe TBI categories, as well as in concussion cases. CONCLUSIONS This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
Collapse
Affiliation(s)
- Nadeem Al-Adli
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Omar S Akbik
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Rail
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Montgomery
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christie Caldwell
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Umaru Barrie
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shaleen Vira
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mazin Al Tamimi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Turunen A, Kuuliala K, Kuuliala A, Tervahartiala T, Mustonen H, Puolakkainen P, Kylänpää L, Sorsa T. Activated matrix metalloproteinase 8 in serum predicts severity of acute pancreatitis. Pancreatology 2021; 21:862-869. [PMID: 33846092 DOI: 10.1016/j.pan.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Severe acute pancreatitis (SAP) has high morbidity and mortality but there are no widely accepted predictive biomarkers in clinical use. Matrix metalloproteinases (MMPs) are active in tissue destruction and inflammatory responses. We studied whether serum levels of activated MMP-8 (aMMP-8), MMP-9 and their regulators tissue inhibitor of matrix metalloproteinases (TIMP)-1, myeloperoxidase (MPO) and human neutrophil elastase (HNE) could predict the development of SAP. METHODS The study comprised 214 AP patients (revised Atlanta classification: 142 mild, MAP; 54 moderately severe, MSAP; 18 SAP) referred to Helsinki University Hospital. A venous blood sample was taken within 72 h from the onset of symptoms. Serum levels of aMMP-8 were determined using immunofluorometric assay, and those of MMP-9, TIMP-1, MPO and HNE using enzyme-linked immunosorbent assay. AP groups were compared using Jonckheere-Terpstra test and predictive value for SAP was analyzed using receiver operating characteristics (ROC) analysis. RESULTS Serum aMMP-8 levels were higher in SAP (median 657 ng/ml, interquartile range 542-738 ng/ml) compared to MSAP (358 ng/ml, 175-564 ng/ml; p < 0.001) and MAP (231 ng/ml, 128-507 ng/ml; p < 0.001). Similar trend was seen with TIMP-1 and MPO. In ROC analysis aMMP-8, MPO and TIMP-1 emerged as potential markers for the development of SAP (areas under ROC curves 0.83, 0.71 and 0.69, respectively). CONCLUSIONS Serum aMMP-8 measured early in the course of AP (within 72 h of symptom onset) predicted the development of SAP.
Collapse
Affiliation(s)
- A Turunen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - K Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - A Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - T Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - H Mustonen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - P Puolakkainen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - L Kylänpää
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - T Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
5
|
Slavoaca D, Muresanu D, Birle C, Rosu OV, Chirila I, Dobra I, Jemna N, Strilciuc S, Vos P. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41:2033-2044. [PMID: 32157587 DOI: 10.1007/s10072-019-04238-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury is a multifaceted condition that encompasses a spectrum of injuries: contusions, axonal injuries in specific brain regions, edema, and hemorrhage. Brain injury determines a broad clinical and disability spectrum due to the implication of various cellular pathways, genetic phenotypes, and environmental factors. It is challenging to predict patient outcomes, to appropriately evaluate the patients, to determine a suitable treatment strategy and rehabilitation program, and to communicate with patient relatives. Biomarkers detected from body fluids are potential evaluation tools for traumatic brain injury patients. These may serve as internal indicators of cerebral damage, delivering valuable information about the dynamic cellular, biochemical, and molecular environments. The diagnostic and prognostic value of biomarkers tested both in animal models of traumatic brain injury is still under question, despite a considerable scientific literature. Recent publications emphasize that a more realistic approach involves combining multiple types of biomarkers with other investigative tools (imaging, outcome scales, and genetic polymorphisms). Additionally, there is increasing interest in the use of biomarkers as tools for treatment monitoring and as surrogate outcome variables to facilitate the design of distinct randomized controlled trials. This review highlights the latest available evidence regarding biomarkers in adults after traumatic brain injury and discusses new approaches in the evaluation of this patient group.
Collapse
Affiliation(s)
- Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.
| | - Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Ioana Chirila
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Iulia Dobra
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| |
Collapse
|
6
|
Jordakieva G, Budge-Wolfram RM, Budinsky AC, Nikfardjam M, Delle-Karth G, Girard A, Godnic-Cvar J, Crevenna R, Heinz G. Plasma MMP-9 and TIMP-1 levels on ICU admission are associated with 30-day survival. Wien Klin Wochenschr 2020; 133:86-95. [PMID: 31932967 PMCID: PMC7875947 DOI: 10.1007/s00508-019-01592-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Background Matrix metalloproteinases (MMPs) are involved in systemic inflammatory responses and organ failure. The aim of this study was to evaluate early circulating plasma levels of MMP‑2, MMP‑9 and their inhibitors TIMP‑1 and TIMP‑2 and their prognostic significance in critically ill patients on admission to the intensive care unit (ICU). Methods In a single center prospective study 120 consecutive patients (72.5% male, mean age 66.8 ± 13.3 years, mean simplified acute physiology score [SAPS II] score 52.9 ± 21.9) were enrolled on transfer to the ICU of a cardiology department. The most common underlying conditions were cardiac diseases (n = 42.5%), respiratory failure (n = 10.8%) and sepsis (n = 6.7%). Blood samples were taken within 12 h of ICU admission. The MMP‑2, MMP‑9, TIMP‑1 and TIMP‑2 levels in plasma were evaluated in terms of 30-day survival, underlying condition and clinical score. Results On ICU admission 30-day survivors had significantly lower plasma MMP‑9 (odds ratio, OR 1.67 per 1 SD; 95% confidence interval, CI 1.10−2.53; p = 0.016) and TIMP‑1 (OR 2.15 per 1 SD; 95% CI 1.27−3.64; p = 0.004) levels than non-survivors; furthermore, MMP‑9 and TIMP‑1 correlated well with SAPS II (both p < 0.01). In patients with underlying cardiac diseases, MMP‑9 (p = 0.002) and TIMP‑1 (p = 0.01) were independent predictors of survival (Cox regression). No significant correlation was found between MMP‑2 and TIMP‑2 levels, MMP/TIMP ratios and 30-day mortality. Conclusion The MMP‑9 and TIMP‑1 levels are significantly elevated in acute critical care settings with increased short-term mortality risk, especially in patients with underlying heart disease. These findings support the value of MMPs and TIMPs as prognostic markers and potential therapeutic targets in conditions leading to systemic inflammation and acute organ failure.
Collapse
Affiliation(s)
- Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Roswitha M Budge-Wolfram
- Division of Angiology; Department of Internal Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- International Hospital Development & Hospital Management, Abu Dhabi, United Arab Emirates.
| | - Alexandra C Budinsky
- Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Mariam Nikfardjam
- Department of Cardiology and Intensive Care, Wilhelminen Hospital Vienna, Vienna, Austria
| | | | - Angelika Girard
- Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jasminka Godnic-Cvar
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gottfried Heinz
- Division of Cardiology/Intensive Care Unit 13H3; Department of Internal Medicine II Medical, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
7
|
Shibahashi K, Nishimura S, Sugiyama K, Hoda H, Hamabe Y, Fujita H. Initial Results of Empirical Cryoprecipitate Transfusion in the Treatment of Isolated Severe Traumatic Brain Injury: Use of In-house-produced Cryoprecipitate. Neurol Med Chir (Tokyo) 2019; 59:371-378. [PMID: 31281170 PMCID: PMC6796062 DOI: 10.2176/nmc.oa.2019-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute coagulopathy is common after traumatic brain injury (TBI), particularly in severe cases of acute subdural hemorrhage (ASDH). Although acute coagulopathy is associated with poor outcomes, the optimal treatment strategy remains unknown. Here, we report the initial results of an empirical cryoprecipitate transfusion strategy that we developed as an early intervention for acute coagulopathy after TBI. We performed chart reviews of adult patients (aged ≥18 years) who received early cryoprecipitate transfusion after admission to our institution with a diagnosis of severe TBI (Glasgow Coma Scale ≤8) and ASDH from March 2013 to December 2016. We compared the outcomes of these patients with those who were treated before the implementation of the cryoprecipitate transfusion strategy (January 2011-February 2013). During the study period, 33 patients received early cryoprecipitate transfusion and no acute transfusion-related adverse event was reported. The rate of coagulopathy development within 24 h after admission was lower in these patients (23%) than in the controls (49%), but the difference was not significant (P = 0.062). The in-hospital mortality rate was 36% in patients receiving early cryoprecipitate transfusion and 52% in controls. After adjusting for confounding factors, the in-hospital mortality rate was significantly lower in the intervention period [adjusted odds ratio: 0.25, 95% confidence interval (CI): 0.08-0.78, P = 0.017]. In summary, we analyzed initial results of a cryoprecipitate transfusion strategy in patients with severe isolated TBI and ASDH. No acute transfusion-related adverse event was observed, and early transfusion of the in-house-produced cryoprecipitate may have reduced rates of coagulopathy development and in-hospital mortality.
Collapse
Affiliation(s)
- Keita Shibahashi
- Tertiary Emergency Medical Center, Tokyo Metropolitan Bokutoh Hospital
| | - Shigeko Nishimura
- Department of Transfusion Medicine, Tokyo Metropolitan Bokutoh Hospital
| | - Kazuhiro Sugiyama
- Tertiary Emergency Medical Center, Tokyo Metropolitan Bokutoh Hospital
| | - Hidenori Hoda
- Tertiary Emergency Medical Center, Tokyo Metropolitan Bokutoh Hospital
| | - Yuichi Hamabe
- Tertiary Emergency Medical Center, Tokyo Metropolitan Bokutoh Hospital
| | - Hiroshi Fujita
- Department of Transfusion Medicine, Tokyo Metropolitan Bokutoh Hospital
| |
Collapse
|
8
|
Mrozek S, Delamarre L, Capilla F, Al-Saati T, Fourcade O, Constantin JM, Geeraerts T. Cerebral Expression of Glial Fibrillary Acidic Protein, Ubiquitin Carboxy-Terminal Hydrolase-L1, and Matrix Metalloproteinase 9 After Traumatic Brain Injury and Secondary Brain Insults in Rats. Biomark Insights 2019; 14:1177271919851515. [PMID: 31210728 PMCID: PMC6552356 DOI: 10.1177/1177271919851515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), and matrix metalloproteinase 9 (MMP-9) are potential biomarkers of traumatic brain injury (TBI) but also of secondary insults to the brain. The aim of this study was to describe the cerebral distribution of GFAP, UCH-L1, and MMP-9 in a rat model of diffuse TBI associated with standardized hypoxia-hypotension (HH). Adult male Sprague-Dawley rats were allocated to Sham (n = 10), TBI (n = 10), HH (n = 10), and TBI+HH (n = 10) groups. After 4 hours, brains were rapidly removed and immunostaining of GFAP, UCH-L1, and MMP-9 was performed. Areas of interest that have been described as particularly sensitive to hypoxic insults were analyzed. For GFAP, in the neocortex, immunostaining revealed a significant decrease in strong staining for HH and TBI+HH groups compared with TBI group (P < .0001). For UCH-L1, the total immunostaining (6 regions of interest) reported a significant increase in strong staining (P < .0001) and decrease in weak staining (P < .0001) for the HH and TBI+HH groups compared with the Sham and TBI groups. For MMP-9, for the HH and TBI+HH groups, a significant increase in moderate (P < .0001) and weak staining (P < .0001) and a decrease in negative staining (P < .0001) compared with the Sham and TBI groups were observed. UCH-L1 and MMP-9 immunostainings increased after HH alone or HH combined with TBI compared with TBI alone. GFAP immunostaining decreased particularly in the neocortex after HH alone or HH combined with TBI compared with TBI alone. These three biomarkers could therefore be considered as potential biomarkers of HH insults independently of TBI.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Louis Delamarre
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Florence Capilla
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Talal Al-Saati
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Olivier Fourcade
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Constantin
- Department of Anesthesiology and Critical Care, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Thomas Geeraerts
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.,ToNIC (Toulouse NeuroImaging Center), University Toulouse 3-Paul Sabatier, Inserm-UPS, Toulouse, France
| |
Collapse
|
9
|
Sandsmark DK, Bogoslovsky T, Qu BX, Haber M, Cota MR, Davis C, Butman JA, Latour LL, Diaz-Arrastia R. Changes in Plasma von Willebrand Factor and Cellular Fibronectin in MRI-Defined Traumatic Microvascular Injury. Front Neurol 2019; 10:246. [PMID: 30972003 PMCID: PMC6445052 DOI: 10.3389/fneur.2019.00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
The neuropathology of traumatic brain injury (TB) is diverse, including primary injury to neurons, axons, glial cells, vascular structures, and secondary processes, such as edema and inflammation that vary between individual patients. Traumatic microvascular injury is an important endophenotype of TBI-related injury. We studied patients who sustained a TBI requiring ER evaluation and had an MRI performed within 48 h of injury. We classified patients into 3 groups based on their MRI findings: (1) those that had evidence of traumatic microvascular injury on susceptibility or diffusion weighted MRI sequences without frank hemorrhage [Traumatic Vascular Injury (TVI) group; 20 subjects]. (2) those who had evidence of intraparenchymal, subdural, epidural, or subarachnoid hemorrhage [Traumatic Hemorrhage (TH) group; 26 subjects], and (3) those who had no traumatic injuries detected by MRI [MRI-negative group; 30 subjects]. We then measured plasma protein biomarkers of vascular injury [von Willebrand Factor (vWF) or cellular fibronectin (cFn)] and axonal injury (phosphorylated neurofilament heavy chain; pNF-H). We found that the TVI group was characterized by decreased expression of plasma vWF (p < 0.05 compared to MRI-negative group; p < 0.00001 compared to TH group) ≤48 h after injury. cFN was no different between groups ≤48 h after injury, but was increased in the TVI group compared to the MRI-negative (p < 0.00001) and TH (p < 0.00001) groups when measured >48 h from injury. pNF-H was increased in both the TH and TVI groups compared to the MRI-negative group ≤48 h from injury. When we used the MRI grouping and molecular biomarkers in a model to predict Glasgow Outcome Scale-Extended (GOS-E) score at 30–90 days, we found that inclusion of the imaging data and biomarkers substantially improved the ability to predict a good outcome over clinical information alone. These data indicate that there is a distinct, vascular-predominant endophenotype in a subset of patients who sustain a TBI and that these injuries are characterized by a specific biomarker profile. Further work to will be needed to determine whether these biomarkers can be useful as predictive and pharmacodynamic biomarkers for vascular-directed therapies after TBI.
Collapse
Affiliation(s)
- Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Tanya Bogoslovsky
- Division of Clinical Neurosciences, Turku University Hospital, University of Turku, Turku, Finland
| | - Bao-Xi Qu
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin R Cota
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Cora Davis
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,National Institutes of Health, Radiology and Imaging Sciences, Bethesda, MD, United States
| | - Lawrence L Latour
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
[Influence of massive blood transfusion and traumatic brain injury on TIMP‑1 and MMP‑9 serum levels in polytraumatized patients]. Unfallchirurg 2019; 122:967-976. [PMID: 30806727 DOI: 10.1007/s00113-019-0623-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The morbidity and mortality of polytrauma patients are substantially influenced by the extent of the posttraumatic inflammatory reaction. Studies have shown that TIMP‑1 and MMP‑9 play a major role in posttraumatic immune disorder in genome-wide mRNA microarray analyses. Furthermore, both showed differential gene expression profiles depending on the clinical parameters massive blood transfusion and traumatic brain injury. OBJECTIVE The aim of this study was to evaluate TIMP‑1 and MMP‑9 serum concentrations in polytraumatized patients depending on the clinical parameters massive blood transfusion and traumatic brain injury in the early posttraumatic phase. MATERIAL AND METHODS Polytrauma patients (≥18 years) with an "Injury Severity Score" (ISS) ≥ 16 points were enrolled in this prospective study. Serum levels of TIMP‑1 and MMP‑9 were quantified (at 0 h, 6 h, 12 h, 24 h, 48 h and 72 h) using an enzyme-linked immunosorbent assay (ELISA). Groups were divided according to the clinical parameter massive blood transfusion (≥10 red blood cell units [RBC units] in the first 24-hour posttrauma) and traumatic brain injury (CCT postive [cranial computed tomography]). RESULTS Following massive blood transfusion (n = 21; 50 ± 15.7 years; ISS 39 ± 12.8 points) patients showed overall significantly increased TIMP‑1 levels (p = 0.003) and significantly higher TIMP‑1 values after 12-72 h. Traumatic brain injury patients (n = 28; 44 ± 19 years; ISS 42 ± 10 points) showed significantly higher MMP‑9 levels (p = 0.049) in the posttraumatic period. CONCLUSION Polytraumatized patients who received massive blood transfusions following major trauma showed significantly higher TIMP‑1 levels than patients who did not receive massive transfusions. This seems to be an expression of a massively excessive inflammatory reaction and therefore represents a substantial factor in the pathogenesis of severe posttraumatic immune dysfunction in this collective. Furthermore, the significant increase in MMP‑9 with accompanying traumatic brain injury reflects the pivotal role of matrix metalloproteinases in the pathophysiology of traumatic brain injury.
Collapse
|
11
|
Lorente L, Martín MM, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM, González-Rivero AF, Orbe J, Rodríguez JA, Páramo JA. Persistently high circulating tissue inhibitor of matrix metalloproteinase-1 levels in non-survivor brain trauma injury patients. J Crit Care 2019; 51:117-121. [PMID: 30802757 DOI: 10.1016/j.jcrc.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Previously, higher circulating levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor matrix metalloproteinases (TIMP)-1 were reported in the first hours after TBI in blood samples from patients with poor prognosis. Thus, the objectives of this study were to determine whether MMP-9 and TIMP-1 levels during the first week of a severe TBI could be used as biomarker predictive of mortality. METHODS We included patients with severe TBI (defined as Glasgow Coma Scale lower than 9), and with Injury Severity Score in non-cranial aspects lower than 9. We determined serum concentrations of MMP-9 and TIMP-1 at days 1, 4 and 8 of TBI. RESULTS TIMP-1 concentrations at days 1 (p < .001), 4 (p = .001), and 8 (p = .01) of TBI were higher in non-surviving (n = 34) than in surviving (n = 90) patients. ROC curve analyses showed an area under curve of TIMP-1 concentrations at days 1, 4, and 8 of TBI to predict 30-day mortality of 78% (p < .001), 76% (p < .001) and 71% (p = .02) respectively. CONCLUSIONS The most relevant new findings of our study were that TIMP-1 levels during the first week of a severe TBI were higher in non-surviving than in surviving patients and that could be used as biomarker predictive of mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Juan M Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| |
Collapse
|
12
|
Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 2018; 28:21-30. [PMID: 29396300 PMCID: PMC5835563 DOI: 10.1016/j.ebiom.2018.01.021] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology. Cerebrovascular dysfunction (CVD) is emerging as a key element in the development of neurodegeneration after TBI. We propose that TBI initiates CVD, accelerating Aβ/tau deposition and leading to neurodegeneration and dementias. Clarifying this connection will support the development of novel biomarkers and therapeutic approaches for both TBI and AD.
Collapse
|
13
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
14
|
Schumacher R, Müri RM, Walder B. Integrated Health Care Management of Moderate to Severe TBI in Older Patients-A Narrative Review. Curr Neurol Neurosci Rep 2017; 17:92. [PMID: 28986740 DOI: 10.1007/s11910-017-0801-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Traumatic brain injuries are common, especially within the elderly population, which is typically defined as age 65 and older. This narrative review aims at summarizing and critically evaluating important aspects of their health care management in covering the entire pathway from prehospital care to rehabilitation and beyond. RECENT FINDINGS The number of older patients with traumatic brain injury (TBI) is increasing, and there seem to be differences in all aspects of care along their pathway when compared to younger patients. Despite a higher mortality and a generally less favorable outcome, the current literature shows that older TBI patients have the potential to make significant improvements over time. More research is needed to evaluate the most efficient and integrated clinical pathway from prehospital interventions to rehabilitation as well as the optimal treatment of older TBI patients. Most importantly, they should not be denied access to specific treatments and therapies only based on age.
Collapse
Affiliation(s)
- Rahel Schumacher
- Department of Neurology, University Neurorehabilitation, Inselspital, University Hospital Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - René M Müri
- Department of Neurology, University Neurorehabilitation, Inselspital, University Hospital Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Bernhard Walder
- Division of Anaesthesiology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Saekhu M, Ibrahim N, Timan IS, Madjid AS, Muttaqin Z, Ronokusumo TA, Sastroasmoro S, Mahyuddin H. MMP-9, brain edema, and length of hospital stay of patients with spontaneous supratentorial intracerebral hemorrhage after hematoma evacuation along with the administration of tigecycline. MEDICAL JOURNAL OF INDONESIA 2017. [DOI: 10.13181/mji.v25i4.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Background: The high plasma level of matrix metalloproteinses–9 (MMP-9) is believed to disrupt the blood-brain barrier (BBB) and cause brain edema, as well as increase patient’s length of hospital stay (LOS). Tigecycline showed ability to reduce the MMP-9 level on study in animals. This study aimed to evaluate whether tigecycline can reduce the plasma levels of MMP-9; brain edema; and LOS of patients with supratentorial spontaneous intracerebral hemorrhage (SSICH).Methods: A randomized clinical trial (RCT) was conducted on 72 SSICH patients who underwent hematoma evacuation in eleven hospitals in Jakarta; 100 mg tigecycline (n=35) or 2 g fosfomycine (n=37) administered intravenously before skin incision as an prophylactic antibiotics to avoid post-operative infections. Plasma levels of MMP-9 were measured in all subjects before and on the first and seventh day after the surgery. Reduction of brain edema was assessed by comparing the extent of brain edema on computed tomography scan (CT scan) before and CT scan after surgery. The length of stay (LOS) was recorded at the time of hospital discharge either survive or death. Data were analyzed using Mann-Whitney and Chi-Square test.Results: There were non-significant statistical differences between two groups in the proportion of subjects with reduced MMP-9 levels on the first day (48% vs 50%; p=0.902; OR=1.1) and seventh day after the surgery (33% vs 48%; p=0.296; OR=1.9); proportion of the subjects with brain edema reduction (86% vs 80%, p=0.58); LOS (median 12 days vs 13 days, p=0.256; LOS ≥15 days 40% vs 27%; p=0.243; OR=1.81; NNT=8).Conclusion: On SSICH patients who underwent hematoma evacuation, tigecycline did not either reduce MMP-9 levels and brain edema or shorthen LOS.
Collapse
|
16
|
Fluid Biomarkers of Traumatic Brain Injury and Intended Context of Use. Diagnostics (Basel) 2016; 6:diagnostics6040037. [PMID: 27763536 PMCID: PMC5192512 DOI: 10.3390/diagnostics6040037] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability around the world. The lack of validated biomarkers for TBI is a major impediment to developing effective therapies and improving clinical practice, as well as stimulating much work in this area. In this review, we focus on different settings of TBI management where blood or cerebrospinal fluid (CSF) biomarkers could be utilized for predicting clinically-relevant consequences and guiding management decisions. Requirements that the biomarker must fulfill differ based on the intended context of use (CoU). Specifically, we focus on fluid biomarkers in order to: (1) identify patients who may require acute neuroimaging (cranial computerized tomography (CT) or magnetic resonance imaging (MRI); (2) select patients at risk for secondary brain injury processes; (3) aid in counseling patients about their symptoms at discharge; (4) identify patients at risk for developing postconcussive syndrome (PCS), posttraumatic epilepsy (PTE) or chronic traumatic encephalopathy (CTE); (5) predict outcomes with respect to poor or good recovery; (6) inform counseling as to return to work (RTW) or to play. Despite significant advances already made from biomarker-based studies of TBI, there is an immediate need for further large-scale studies focused on identifying and innovating sensitive and reliable TBI biomarkers. These studies should be designed with the intended CoU in mind.
Collapse
|
17
|
Lorente L. New Prognostic Biomarkers in Patients With Traumatic Brain Injury. ARCHIVES OF TRAUMA RESEARCH 2015; 4:e30165. [PMID: 26848476 PMCID: PMC4733516 DOI: 10.5812/atr.30165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/15/2015] [Indexed: 01/02/2023]
Abstract
CONTEXT Traumatic brain injury (TBI) is a leading cause of death, disability, and resource consumption per year. There are two kinds of brain injury in TBI, primary and secondary injuries. Primary injury refers to the initial physical forces applied to the brain at the moment of impact. Secondary injury occurs over a period of hours or days following the initial trauma and results from the activation of different pathways such as inflammation, coagulation, oxidation, and apoptosis. EVIDENCE ACQUISITION This review focuses on new prognostic biomarkers of mortality in TBI patients related to inflammation, coagulation, oxidation, and apoptosis. RESULTS Recently circulating levels of substance P (SP), soluble CD40 ligand (sCD40L), tissue inhibitor of matrix metalloproteinases (TIMP)-1, malondialdehyde (MDA), and cytokeratin (CK)-18 fragmented have been found to be associated with mortality in TBI patients. Substance P is a neuropeptide of the tachykinin family, mainly synthesized in the central and peripheral nervous system, with proinflammatory effects when binding to their neurokinin-1 receptor (NK1R). Soluble CD40 ligand, a member of the tumor necrosis factor (TNF) family that is released into circulation from activated platelets, exhibit proinflamatory, and procoagulant properties on binding to their cell surface receptor CD40. Matrix metalloproteinases (MMPs) are a family of zinc-containing endoproteinases involved neuroinflammation and TIMP-1 is the inhibitor of some of them. Malondialdehyde is an end-product formed during lipid peroxidation due to degradation of cellular membrane phospholipids, that is released into extracellular space and finally into the blood. Cytokeratin -18 is cleaved by the action of caspases during apoptosis, and CK-18 fragmented is released into the blood. CONCLUSIONS Circulating levels of some biomarkers, such as SP, sCD40L, TIMP-1, MDA, and CK-18 fragmented, related to inflammation, coagulation, oxidation, and apoptosis have been recently associated with mortality in patients with TBI. These biomarkers could help in the prognostic classification of the patients and open new research lines in the treatment of patients with TBI.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
18
|
Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse. PLoS One 2015; 10:e0143386. [PMID: 26588471 PMCID: PMC4654502 DOI: 10.1371/journal.pone.0143386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.
Collapse
|
19
|
Phillips LL, Chan JL, Doperalski AE, Reeves TM. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res 2014; 9:362-76. [PMID: 25206824 PMCID: PMC4146196 DOI: 10.4103/1673-5374.128237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.
Collapse
Affiliation(s)
- Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Adele E Doperalski
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Lorente L, Martín MM, López P, Ramos L, Blanquer J, Cáceres JJ, Solé-Violán J, Solera J, Cabrera J, Argueso M, Ortiz R, Mora ML, Lubillo S, Jiménez A, Borreguero-León JM, González A, Orbe J, Rodríguez JA, Páramo JA. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury. PLoS One 2014; 9:e94370. [PMID: 24728097 PMCID: PMC3984169 DOI: 10.1371/journal.pone.0094370] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/15/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. METHODS This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. RESULTS Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. CONCLUSIONS The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
- * E-mail:
| | - María M. Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Patricia López
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - José Blanquer
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Juan J. Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorge Solera
- Deparment of Anesthesiology and Reanimation, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Judith Cabrera
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Raquel Ortiz
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - María L. Mora
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Santiago Lubillo
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Agustín González
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| |
Collapse
|
21
|
Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 2013; 5:29. [PMID: 23847533 PMCID: PMC3705200 DOI: 10.3389/fnagi.2013.00029] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.
Collapse
Affiliation(s)
- Kendall R Walker
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|