1
|
Hicks AJ, Carrington H, Bura L, Yang A, Pesce R, Yew B, Dams-O'Connor K. Blood-Based Protein Biomarkers in the Chronic Phase of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2025; 42:759-797. [PMID: 40176450 DOI: 10.1089/neu.2024.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
There has been limited exploration of blood-based biomarkers in the chronic period following traumatic brain injury (TBI). Our objective was to conduct a systematic review of studies examining blood-based protein biomarkers with at least one sample collected 12 months post-TBI in adults (≥16 years). Database searches were conducted in Embase, MEDLINE, and Science Citation Index-Expanded on July 24, 2023. Risk of bias was assessed using modified Joanna Briggs Institute critical appraisal tools. Only 30 of 12,523 articles met inclusion criteria, with samples drawn from 12 months to 48 years. Higher quality evidence (low risk of bias; large samples) identified promising inflammatory biomarkers at 12 months post-injury in both moderate-severe TBI (GFAP) and mild TBI (eotaxin-1, IFN-y, IL-8, IL-9, IL-17A, MCP-1, MIP-1β, FGF-basic, and TNF-α). Studies with low risk of bias but smaller samples also suggest NSE, MME, and CRP may be informative, alongside protein variants for α-syn (10H, D5), amyloid-β (A4, C6T), TDP-43 (AD-TDP 1;2;3;9;11), and tau (D11C). Findings for NfL were inconclusive. Longitudinal data were mostly available for acute samples followed until 12 months post-injury, with limited evaluation of changes beyond 12 months. Associations of some blood-based biomarkers with cognitive, sleep, and functional outcomes were reported. The overall strength of the evidence in this review was limited by the risk of bias and small sample sizes. Replication is required within prospective longitudinal studies that move beyond 12 months post-injury. Novel efforts should be guided by promising neurodegenerative-disease markers and use panels to model polypathology.
Collapse
Affiliation(s)
- Amelia J Hicks
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holly Carrington
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Bura
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rico Pesce
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
2
|
Puravet A, Oris C, Pereira B, Kahouadji S, Dwamena BA, Sapin V, Bouvier D. Can the Association of the Biomarkers GFAP and UCH-L1 Predict Intracranial Injury After Mild Traumatic Brain Injury in Adults? A Systematic Review and Meta-Analysis. Ann Emerg Med 2025:S0196-0644(25)00146-5. [PMID: 40272329 DOI: 10.1016/j.annemergmed.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
STUDY OBJECTIVES Brain biomarkers have been used to predict intracranial injury in both adults and children following mild traumatic brain injury (mTBI). Several biomarkers have been evaluated, including S100B, NfL, Tau, glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1). The combined measurement of GFAP and UCH-L1 has recently been recommended by scientific societies, but no meta-analysis on the topic has been performed yet. METHODS A meta-analysis was performed to assess the prognostic value of the association of GFAP and UCH-L1 blood levels in predicting intracerebral lesions in adults after mTBI. A protocol was designed and registered with PROSPERO (CRD42024562587). Studies were chosen if they included adults with mTBI who underwent GFAP and/or UCH-L1 measurement and cranial computed tomography scans. The quality of each study was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 criteria. Three databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) were consulted. RESULTS Of the 379 articles screened, 16 were selected for inclusion. The overall pooled sensitivity (Se) and specificity (Spe) were 100% (95% confidence interval [CI] 99% to 100%) and 31% (95% CI 26% to 36%), respectively, for the association of GFAP and UCH-L1. For GFAP alone, the overall pooled Se and Spe were 94% (95% CI 91% to 97%) and 40% (95% CI 34% to 46%), respectively. For UCH-L1 alone, the overall pooled Se and Spe were 83% (95% CI 69% to 94%) and 51% (95% CI 40% to 63%), respectively. The areas under the curve were 88, 67, and 97%, respectively, for GFAP, UCH-L1, and the association GFAP/UCH-L1. CONCLUSION The combined measurement of GFAP and UCH-L1 allows the exclusion of intracranial injury after mTBI in adults with 100% Se and negative predictive value. Its routine use can theoretically reduce the number of cranial computed tomography scans by 31%. The different sampling times and techniques used in the studies did not allow us to make specific recommendations.
Collapse
Affiliation(s)
- Antoine Puravet
- Department of Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France; Faculty of Medicine, CNRS 6293, INSERM 1103, iGReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charlotte Oris
- Department of Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Samy Kahouadji
- Department of Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France; Faculty of Medicine, CNRS 6293, INSERM 1103, iGReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ben A Dwamena
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI
| | - Vincent Sapin
- Department of Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France; Faculty of Medicine, CNRS 6293, INSERM 1103, iGReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- Department of Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France; Faculty of Medicine, CNRS 6293, INSERM 1103, iGReD, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Lagares A, de la Cruz J, Terrisse H, Mejan O, Pavlov V, Vermorel C, Payen JF. An automated blood test for glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) to predict the absence of intracranial lesions on head CT in adult patients with mild traumatic brain injury: BRAINI, a multicentre observational study in Europe. EBioMedicine 2024; 110:105477. [PMID: 39612652 PMCID: PMC11647500 DOI: 10.1016/j.ebiom.2024.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Following mild traumatic brain injury (mTBI), elevated concentrations of brain-specific blood proteins glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) may be indicative of intracranial lesions normally detected by head CT scans. We sought to validate the performance of this combination of biomarkers at predetermined cutoff values with an automated immunoassay to predict which patients did not have intracranial lesions. METHODS This prospective, observational study was conducted in France and Spain at 16 emergency departments. Adult patients with mTBI were eligible if they had a head CT scan and gave a 10-ml blood sample within 12 h of injury. GFAP and UCH-L1 serum concentrations were measured and analysed, in less than an hour time, according to predefined cutoff values of 22 pg/ml and 327 pg/ml, respectively. Serum concentrations of S100B protein were concomitantly determined in a subset of patients. The primary outcome measures were the sensitivity and negative predictive value (NPV) of the combined GFAP-UCH-L1 test to rule out intracranial lesions on head CT scans. CLINICALTRIALS gov (NCT04032509). FINDINGS Between August 2019 and June 2021, 1508 patients were recruited, and 1438 were included in the main analysis. Median age was 69 years (IQR 44-83). Most patients (74%) presented 3 h after trauma. 179 (12.4%) patients were positive for intracranial lesions by CT. The sensitivity of the combined test was 98.3% (95% CI 95.0-99.7) and the specificity 24.9 (95% CI 22.6-27.4), with a NPV of 99.1% (95% CI 97.1-99.8). Three patients with a positive CT scan had negative biomarker test results. S100B had a sensitivity of 83.0% (95% CI 76.2-88.2) and a NPV of 94.2% (95% CI 91.6-96.0). Patients with higher biomarker values more frequently had poorer recovery at 3 months after injury. INTERPRETATION Testing for GFAP and UCH-L1, using validated cutoffs obtained with a new, fast automated immunoassay platform, accurately predicted the absence of intracranial lesions on head CT following mTBI. FUNDING This study is co-funded by the European Institute of Innovation and Technology (EIT) Health, a body of the European Union (Grant nº19474). Biomarkers tests were funded by bioMérieux.
Collapse
Affiliation(s)
- Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain; Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, Madrid, Spain; Instituto de Investigación Sanitaria imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Javier de la Cruz
- Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, RICORS-SAMID, Madrid, Spain
| | - Hugo Terrisse
- Department of Biostatistics, Grenoble Alpes University Hospital, Grenoble, France; TIMC-IMAG Laboratory, UMR, CNRS 5525, Grenoble Alpes University, Grenoble, France
| | - Odile Mejan
- bioMérieux, R&D Immunoassay, Chemin de l'Orme, Marcy l'Etoile, France
| | - Vladislav Pavlov
- bioMérieux, Medical Affairs, Chemin de l'Orme, Marcy l'Etoile, France
| | - Celine Vermorel
- Department of Biostatistics, Grenoble Alpes University Hospital, Grenoble, France; TIMC-IMAG Laboratory, UMR, CNRS 5525, Grenoble Alpes University, Grenoble, France
| | - Jean-François Payen
- Department of Anaesthesia and Intensive Care, University Grenoble Alpes, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes, France; Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| |
Collapse
|
4
|
Santing JAL, Hopman JH, Verheul RJ, van der Naalt J, van den Brand CL, Jellema K. Clinical value of S100B in detecting intracranial injury in elderly patients with mild traumatic brain injury. Injury 2024; 55:111313. [PMID: 38219558 DOI: 10.1016/j.injury.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The biomarker S100B is a sensitive biomarker to detect traumatic intracranial injury in patients mild traumatic brain injury (mTBI). Higher blood values of S100B, resulting in lower specificity and decreased head computed tomography (CT) reduction has been regarded as one of shortcomings in patients over 65 years of age. The purpose of this study was to assess the accuracy of plasma S100B to detect intracranial injury in elderly patients with mTBI. METHODS A posthoc analysis was performed of a larger prospective cohort study. Previous recorded patient variables and plasma values of S100B from patients with mTBI who presented to the Emergency Department (ED) within 6 h of injury, underwent a head CT and had a blood sample drawn as part of their routine clinical care, were partitioned at 65 years of age. Sensitivity, specificity, negative predictive value, and positive predictive value of plasma S100B for predicting traumatic intracranial lesions on head CT, with a cut-off set at 0.105 μg/L, were calculated. Results were compared with data from an additional systematic review on the accuracy of S100B to detect intracranial injury in elderly patients with mTBI. RESULTS Data of 240 patients (48.4 %) of 65 years or older were analyzed. Sensitivity and NPV of S100B were 89 % and 86 % respectively, which is lower than among younger patients (both 97 %). The specificity decreased stepwise with older age: 22 %, 18 %, and 5 % for the age groups 65-74, 75-84, and ≥ 85 years old, respectively. The meta-analysis comprised 4 studies and the current study with data from 2166 patients. Pooled data estimated the sensitivity of s100B as 97.4 % (95 % CI 83.3-100 %) and specificity as 17.3 % (95 % CI 9.5-29.3 %) to detect intracranial injury in elderly patients with mTBI. CONCLUSION The biomarker S100B at the routine threshold has a limited clinical value in the management of elderly mTBI patients mainly due to a poor specificity leading to only a small decrease in head CTs. Alternate cut-off values and combining several plasma biomarkers with clinical variables may be useful strategies to increase the accuracy of S100B in (subgroups of) elderly mTBI patients.
Collapse
Affiliation(s)
| | - Joella H Hopman
- Department of Emergency Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | - Rolf J Verheul
- Department of Clinical Chemistry and Laboratory Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Crispijn L van den Brand
- Department of Emergency Medicine, Haaglanden Medical Center, The Hague, The Netherlands; Department of Emergency Medicine, Erasmus Medical Center, The Netherlands
| | - Korné Jellema
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
5
|
Wania R, Lampart A, Niedermeier S, Stahl R, Trumm C, Reidler P, Kammerlander C, Böcker W, Klein M, Pedersen V. Diagnostic value of protein S100b as predictor of traumatic intracranial haemorrhage in elderly adults with low-energy falls: results from a retrospective observational study. Eur J Trauma Emerg Surg 2024; 50:205-213. [PMID: 37442831 PMCID: PMC10924004 DOI: 10.1007/s00068-023-02324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE The objectives of this study were to analyse the clinical value of protein S100b (S100b) in association with clinical findings and anticoagulation therapy in predicting traumatic intracranial haemorrhage (tICH) and unfavourable outcomes in elderly individuals with low-energy falls (LEF). METHODS We conducted a retrospective study in the emergency department (ED) of the LMU University Hospital, Munich by consecutively including all patients aged ≥ 65 years presenting to the ED following a LEF between September 2014 and December 2016 and receiving an emergency cranial computed tomography (cCT) examination. Primary endpoint was the prevalence of tICH. Multivariate logistic regression models and receiver operating characteristics were used to measure the association between clinical findings, anticoagulation therapy and S100b and tICH. RESULTS We included 2687 patients, median age was 81 years (60.4% women). Prevalence of tICH was 6.7% (180/2687) and in-hospital mortality was 6.1% (11/180). Skull fractures were highly associated with tICH (odds ratio OR 46.3; 95% confidence interval CI 19.3-123.8, p < 0.001). Neither anticoagulation therapy nor S100b values were significantly associated with tICH (OR 1.14; 95% CI 0.71-1.86; OR 1.08; 95% CI 0.90-1.25, respectively). Sensitivity of S100b (cut-off: 0.1 ng/ml) was 91.6% (CI 95% 85.1-95.9), specificity was 17.8% (CI 95% 16-19.6), and the area under the curve value was 0.59 (95% CI 0.54 - 0.64) for predicting tICH. CONCLUSION In conclusion, under real ED conditions, neither clinical findings nor protein S100b concentrations or presence of anticoagulation therapy was sufficient to decide with certainty whether a cCT scan can be bypassed in elderly patients with LEF. Further prospective validation is required.
Collapse
Affiliation(s)
- Rebecca Wania
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
| | - Alina Lampart
- Department of Medicine, Kantonsspital Lucerne, Spitalstrasse, 6000, Lucerne, Switzerland
| | - Sandra Niedermeier
- Department of Anaesthesiology and Intensive Care Medicine, ISAR Klinikum, Sonnenstr. 24-26, 80331, Munich, Germany
| | - Robert Stahl
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Trumm
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Paul Reidler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Kammerlander
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
- Trauma Hospital Styria, Goestinger Straße 24, 8020, Graz, Austria
| | - Wolfgang Böcker
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Emergency Department, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Vera Pedersen
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany.
- Emergency Department, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
6
|
Korhonen O, Mononen M, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Sanchez JC, Takala RSK, Tallus J, van Gils M, Zetterberg H, Posti JP. Outlier Analysis for Acute Blood Biomarkers of Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:91-105. [PMID: 37725575 DOI: 10.1089/neu.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-tau), amyloid β40 (Aβ40) and amyloid β42 (Aβ42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1 - 1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
Collapse
Affiliation(s)
- Otto Korhonen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Malla Mononen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| |
Collapse
|
7
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
8
|
Modin A, Wickbom F, Kamis C, Undén J. Management of traumatic brain injury in adult-A cross-sectional national study. Health Sci Rep 2023; 6:e1651. [PMID: 37915367 PMCID: PMC10616643 DOI: 10.1002/hsr2.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Background Mild traumatic brain injury (mTBI) is a common cause for seeking care. Previous studies have shown considerable variations in TBI management. New guidelines may have influenced management routines. Methods This is a descriptive cross-sectional study, collecting data through structured questionnaires. All Swedish emergency hospitals that manage and treat adult patients with mTBI (Reaction Level Scale [RLS] 1-3, Glasgow Coma Scale [GCS] 13-15, age > 18 years) for the initial 24 h after injury were included in this study. Results The response rate among hospitals fulfilling the study criteria's was 61/67 (91%). We observed a distinct predominance of nonspecialists being responsible for the initial management of these patients, with general surgeons and ED-physicians being the dominating specialties. A total of 45/61 (74%) of the hospitals use a guideline when managing TBI, with 12 hospitals (20%) stating that no guideline was used. Conclusion In general, established guidelines are used for the management of TBI in Sweden. However, some of these are outdated and several hospitals used local guidelines not based upon reliable evidence-based methodology. Most patients with TBI are managed by nonspecialist doctors, stressing the need of a reliable guideline.
Collapse
Affiliation(s)
- Albert Modin
- Department of SurgeryHallands HospitalHalmstadSweden
| | - Fredrik Wickbom
- Department of Operation and Intensive CareHallands HospitalHalmstadSweden
| | | | - Johan Undén
- Department of Operation and Intensive CareHallands HospitalHalmstadSweden
- Institution of Clinical ScienceLund UniversityLundSweden
| |
Collapse
|
9
|
Lagares A, Payen JF, Biberthaler P, Poca MA, Méjan O, Pavlov V, Viglino D, Sapin V, Lassaletta A, de la Cruz J. Study protocol for investigating the clinical performance of an automated blood test for glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase L1 blood concentrations in elderly patients with mild traumatic BRAIN Injury and reference values (BRAINI-2 Elderly European study): a prospective multicentre observational study. BMJ Open 2023; 13:e071467. [PMID: 37460257 DOI: 10.1136/bmjopen-2022-071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Two blood brain-derived biomarkers, glial fibrillar acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), can rule out intracranial lesions in patients with mild traumatic brain injury (mTBI) when assessed within the first 12 hours. Most elderly patients were excluded from previous studies due to comorbidities. Biomarker use in elderly population could be affected by increased basal levels. This study will assess the performance of an automated test for measuring serum GFAP and UCH-L1 in elderly patients to predict the absence of intracranial lesions on head CT scans after mTBI, and determine both biomarkers reference values in a non-TBI elderly population. METHODS AND ANALYSIS This is a prospective multicentre observational study on elderly patients (≥65 years) that will be performed in Spain, France and Germany. Two patient groups will be included in two independent substudies. (1) A cohort of 2370 elderly patients (1185<80 years and 1185≥80 years; BRAINI2-ELDERLY DIAGNOSTIC AND PROGNOSTIC STUDY) with mTBI and a brain CT scan that will undergo blood sampling within 12 hours after mTBI. The primary outcome measure is the diagnostic performance of GFAP and UCH-L1 measured using an automated assay for discriminating between patients with positive and negative findings on brain CT scans. Secondary outcome measures include the performance of both biomarkers in predicting early (1 week) and midterm (3 months) neurological status and quality of life after trauma. (2) A cohort of 480 elderly reference participants (BRAINI2-ELDERLY REFERENCE STUDY) in whom reference values for GFAP and UCHL1 will be determined. ETHICS AND DISSEMINATION Ethical approval was obtained from the Institutional Review Boards of Hospital 12 de Octubre in Spain (Re#22/027) and Southeast VI (Clermont Ferrand Hospital) (Re# 22.01782.000095) in France. The study's results will be presented at scientific meetings and published in peer-review publications. TRIAL REGISTRATION NUMBER NCT05425251.
Collapse
Affiliation(s)
- Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, Madrid, Spain
- Instituto de Investigación Sanitaria imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jean-François Payen
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes, France
- Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Peter Biberthaler
- Department of Trauma Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - M Antonia Poca
- Department of Neurosurgery, Vall d'Hebron Hospital Universitari; Neurotrauma and Neurosurgery Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Odile Méjan
- bioMérieux, Clinical Unit, Chemin de l'Orme, Marcy l'Etoile, France
| | - Vladislav Pavlov
- bioMérieux, Medical Affairs, Chemin de l'Orme, Marcy l'Etoile, France
| | - Damien Viglino
- Emergency Department, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- HP2 Laboratory INSERM U1800, Grenoble, France
| | - Vincent Sapin
- Department of Biochemistry and Molecular Genetics, University Hospital, Clermont-Ferrand, Clermont Auvergne University, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | | | - Javier de la Cruz
- Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, SAMID, Madrid, Spain
| |
Collapse
|
10
|
Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int J Mol Sci 2023; 24:6602. [PMID: 37047574 PMCID: PMC10095287 DOI: 10.3390/ijms24076602] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for approximately 80% of all TBI cases and is a growing source of morbidity and mortality worldwide. To improve the management of children and adults with mTBI, a series of candidate biomarkers have been investigated in recent years. In this context, the measurement of blood biomarkers in the acute phase after a traumatic event helps reduce unnecessary CT scans and hospitalizations. In athletes, improved management of sports-related concussions is also sought to ensure athletes' safety. S100B protein has emerged as the most widely studied and used biomarker for clinical decision making in patients with mTBI. In addition to its use as a diagnostic biomarker, S100B plays an active role in the molecular pathogenic processes accompanying acute brain injury. This review describes S100B protein as a diagnostic tool as well as a potential therapeutic target in patients with mTBI.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
H Hopman J, A L Santing J, A Foks K, J Verheul R, M van der Linden C, L van den Brand C, Jellema K. Biomarker S100B in plasma a screening tool for mild traumatic brain injury in an emergency department. Brain Inj 2023; 37:47-53. [PMID: 36397287 DOI: 10.1080/02699052.2022.2145360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION A computerized tomography (CT) scan is an effective test for detecting traumatic intracranial findings after mild traumatic brain injury (mTBI). However, a head CT is costly, and can only be performed in a hospital. OBJECTIVE To determine if the addition of plasma S100B to clinical guidelines could lead to a more selective scanning strategy without compromising safety. METHODS We conducted a single center prospective cohort study at the emergency department. Patients (≥16 years) who received head CT and had a blood draw were included. The primary outcome was the accuracy of plasma S100B to predict the presence of any traumatic intracranial lesion on head CT. RESULTS We included 495 patients, out of the 74 patients who had traumatic intracranial lesions, 5 patients had a plasma S100B level below the cutoff value of 0.105 ug/L. For the detection of traumatic intracranial injury, S100B had a sensitivity of 0.932 , a specificity of 0.157, a negative predictive value of 0.930, and a positive predictive value of 0.163. CONCLUSIONS Among patients undergoing guideline-based CT scan for mTBI, the use of S100B, would results in a further decrease (14.8%) of CT scans but at a cost of missed injury, without clinical consequence, on CT.
Collapse
Affiliation(s)
- Joëlla H Hopman
- Department of Emergency Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | | | - Kelly A Foks
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rolf J Verheul
- Department of Clinical Chemistry and Laboratory Medicine, Haaglanden Medical Center, The Hague
| | | | | | - Korné Jellema
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
12
|
Gardner RC, Puccio AM, Korley FK, Wang KKW, Diaz-Arrastia R, Okonkwo DO, Puffer RC, Yuh EL, Yue JK, Sun X, Taylor SR, Mukherjee P, Jain S, Manley GT, Ferguson AR, Gaudette E, Shankar GC, Keene D, Madden C, Martin A, McCrea M, Merchant R, Mukherjee P, Ngwenya LB, Robertson C, Temkin N, Vassar M, Yue JK, Zafonte R. Effects of age and time since injury on traumatic brain injury blood biomarkers: a TRACK-TBI study. Brain Commun 2022; 5:fcac316. [PMID: 36642999 PMCID: PMC9832515 DOI: 10.1093/braincomms/fcac316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Older adults have the highest incidence of traumatic brain injury globally. Accurate blood-based biomarkers are needed to assist with diagnosis of patients across the spectrum of age and time post-injury. Several reports have suggested lower accuracy for blood-based biomarkers in older adults, and there is a paucity of data beyond day-1 post-injury. Our aims were to investigate age-related differences in diagnostic accuracy and 2-week evolution of four leading candidate blood-based traumatic brain injury biomarkers-plasma glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1, S100 calcium binding protein B and neuron-specific enolase-among participants in the 18-site prospective cohort study Transforming Research And Clinical Knowledge in Traumatic Brain Injury. Day-1 biomarker data were available for 2602 participants including 2151 patients with traumatic brain injury, 242 orthopedic trauma controls and 209 healthy controls. Participants were stratified into 3 age categories (young: 17-39 years, middle-aged: 40-64 years, older: 65-90 years). We investigated age-stratified biomarker levels and biomarker discriminative abilities across three diagnostic groups: head CT-positive/negative; traumatic brain injury/orthopedic controls; and traumatic brain injury/healthy controls. The difference in day-1 glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1 and neuron-specific enolase levels across most diagnostic groups was significantly smaller for older versus younger adults, resulting in a narrower range within which a traumatic brain injury diagnosis may be discriminated in older adults. Despite this, day-1 glial fibrillary acidic protein had good to excellent performance across all age-categories for discriminating all three diagnostic groups (area under the curve 0.84-0.96; lower limit of 95% confidence intervals all >0.78). Day-1 S100 calcium-binding protein B and ubiquitin carboxy-terminal hydrolase L1 showed good discrimination of CT-positive versus negative only among adults under age 40 years within 6 hours of injury. Longitudinal blood-based biomarker data were available for 522 hospitalized patients with traumatic brain injury and 24 hospitalized orthopaedic controls. Glial fibrillary acidic protein levels maintained good to excellent discrimination across diagnostic groups until day 3 post-injury irrespective of age, until day 5 post-injury among middle-aged or younger patients and until week 2 post-injury among young patients only. In conclusion, the blood-based glial fibrillary acidic protein assay tested here has good to excellent performance across all age-categories for discriminating key traumatic brain injury diagnostic groups to at least 3 days post-injury in this trauma centre cohort. The addition of a blood-based diagnostic to the evaluation of traumatic brain injury, including geriatric traumatic brain injury, has potential to streamline diagnosis.
Collapse
Affiliation(s)
- Raquel C Gardner
- Correspondence to: Raquel C. Gardner, MD Sheba Medical Center, Derech Sheba 2 Ramat Gan, Israel 52621 E-mail:
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin K W Wang
- Departments of Emergency Medicine, Psychiatry, and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA,Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd., 32608, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ross C Puffer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA,Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55901, USA
| | - Esther L Yuh
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoying Sun
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA 92161, USA
| | - Sabrina R Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pratik Mukherjee
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA 92161, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 2022; 13:835597. [PMID: 35386417 PMCID: PMC8977512 DOI: 10.3389/fneur.2022.835597] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning from intracranial bleeding, debilitating sequelae, and invalidity with consequences for individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral fluids such as blood or saliva has been the focus of many research efforts, leading to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have been recognized, including the robustness of prior data, the presence of biomarkers in tissues beyond the central nervous system, and the time course of biomarkers in peripheral body fluids. In this review article, we present some of these issues and provide a viewpoint derived from an analysis of existing literature. We focus on two astrocytic proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI. We also offer recommendations that may translate into a broader acceptance of these clinical tools.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,FloTBI, Cleveland, OH, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Johan Unden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury-A clinical perspective. Acta Neurol Scand 2022; 146:389-399. [PMID: 35383879 DOI: 10.1111/ane.13620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 12/19/2022]
Abstract
Blood-based biomarkers are promising tools to complement clinical variables and imaging findings in the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Several promising biomarker candidates have been found for various clinical questions, but the translation of TBI biomarkers into clinical applications has been negligible. Measured biomarker levels are influenced by patient-related variables such as age, blood-brain barrier integrity and renal and liver function. It is not yet fully understood how biomarkers enter the bloodstream from the interstitial fluid of the brain. In addition, the diagnostic performance of TBI biomarkers is affected by sampling timing and analytical methods. In this focused review, the clinical aspects of glial fibrillary acidic protein, neurofilament light, S100 calcium-binding protein B, tau and ubiquitin C-terminal hydrolase-L1 are examined. Current findings and clinical caveats are addressed.
Collapse
Affiliation(s)
- Jussi P. Posti
- Neurocenter Department of Neurosurgery and Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| | - Olli Tenovuo
- Neurocenter Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| |
Collapse
|
15
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
16
|
Rogan A, O'Sullivan MB, Holley A, McQuade D, Larsen P. Can serum biomarkers be used to rule out significant intracranial pathology in emergency department patients with mild traumatic brain injury? A Systemic Review & Meta-Analysis. Injury 2022; 53:259-271. [PMID: 34763896 DOI: 10.1016/j.injury.2021.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Interest has mounted into the use of objective clinical biomarkers for traumatic brain injury (TBI). This systematic review and meta-analysis aimed to synthesise the existing evidence investigating the use of serum & plasma biomarkers to exclude significant intracranial injuries seen on CT head scans in patients that present to ED with TBI. METHODS The primary outcome was to review the diagnostic accuracy (sensitivity & specificity) of S100B, GFAP and UCH-L1 to exclude significant intracranial pathology on CT head scan in adults presenting with TBI. Secondary outcomes investigated biomarker performance at different time points, in isolated TBI and multi-trauma and with pre-specified cut offs. Systematic searches were conducted on MEDLINE ® (via PubMed), Cochrane electronic databases and EMBASE from 1st January 2000 until June 2020. Bias was assessed using QUADAS 2 tool. A narrative synthesis and meta-analysis were performed. PROSPERO registration number CRD42020212206. RESULTS After screening, 22 papers were included. The total number of patients with TBI was 9,416. There was significant variation regarding study design, population selection and the clinical threshold/decision rule for CT head request. The diagnostic accuracy of S100B as measured by the range of individual sensitivities and specificities were 63-100% and 5-58%, respectively. Individual sensitivities and specificities for GFAP were 67-100% and 0-89% and for UCH-L1 were 61-100% and 21-63.7% respectively. When measured within 3 hours individual sensitivities & specificities for S100B were 98-100% & 20-58% respectively. The quality of evidence for the primary outcome overall was low. The quality of evidence was low for all secondary outcomes apart from studies that used a pre-specified cut off for S100B which had a moderate strength of evidence. CONCLUSION The overall quality of evidence regarding the diagnostic accuracy of single biomarkers as a rule out for significant intracranial injury seen on CT head scans in ED patients with TBI is low. Based on current evidence, S100B is the only single biomarker with a validated clinical platform, pre-determined cut off threshold and moderate quality evidence; at this stage making it the biomarker of choice. More robust clinical outcome and economic impact data is required to support its incorporation into clinical decision tools.
Collapse
Affiliation(s)
- Alice Rogan
- Emergency Medicine Research Fellow, Department of Surgery and Anaesthesia, School of Medicine and Health Sciences, University of Otago, Wellington, PO Box 7343, Wellington South 6242, New Zealand.
| | | | - Ana Holley
- Lecturer, Department of Surgery and Anaesthesia, University of Otago (Wellington).
| | - David McQuade
- Emergency Medicine Specialist (FACEM), Wellington Regional Hospital Emergency Department.
| | - Peter Larsen
- Associate Professor, Department of Surgery and Anaesthesia, University of Otago (Wellington).
| |
Collapse
|
17
|
Koivikko P, Posti JP, Mohammadian M, Lagerstedt L, Azurmendi L, Hossain I, Katila AJ, Menon D, Newcombe VFJ, Hutchinson PJ, Maanpää HR, Tallus J, Zetterberg H, Blennow K, Tenovuo O, Sanchez JC, Takala RSK. Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury. Emerg Med J 2021; 39:206-212. [PMID: 34916280 DOI: 10.1136/emermed-2020-209471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. METHODS Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. RESULTS Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. CONCLUSIONS S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.
Collapse
Affiliation(s)
- Pia Koivikko
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland .,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland
| | - Linnea Lagerstedt
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leire Azurmendi
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Cambridge, UK
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - David Menon
- Department of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Peter John Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Cambridge, UK
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Jussi Tallus
- Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Mölndal, Sweden.,UK Dementia Research Institute, UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Li Z, Zhang J, Halbgebauer S, Chandrasekar A, Rehman R, Ludolph A, Boeckers T, Huber-Lang M, Otto M, Roselli F, Heuvel FO. Differential effect of ethanol intoxication on peripheral markers of cerebral injury in murine blunt traumatic brain injury. BURNS & TRAUMA 2021; 9:tkab027. [PMID: 34604393 PMCID: PMC8484207 DOI: 10.1093/burnst/tkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/28/2021] [Indexed: 11/29/2022]
Abstract
Background Blood-based biomarkers have proven to be a reliable measure of the severity and outcome of traumatic brain injury (TBI) in both murine models and patients. In particular, neuron-specific enolase (NSE), neurofilament light (NFL) and S100 beta (S100B) have been investigated in the clinical setting post-injury. Ethanol intoxication (EI) remains a significant comorbidity in TBI, with 30–40% of patients having a positive blood alcohol concentration post-TBI. The effect of ethanol on blood-based biomarkers for the prognosis and diagnosis of TBI remains unclear. In this study, we investigated the effect of EI on NSE, NFL and S100B and their correlation with blood–brain barrier integrity in a murine model of TBI. Methods We used ultra-sensitive single-molecule array technology and enzyme-linked immunosorbent assay methods to measure NFL, NSE, S100B and claudin-5 concentrations in plasma 3 hours post-TBI. Results We showed that NFL, NSE and S100B were increased at 3 hours post-TBI. Interestingly, ethanol blood concentrations showed an inverse correlation with NSE but not with NFL or S100B. Claudin-5 levels were increased post-injury but no difference was detected compared to ethanol pretreatment. The increase in claudin-5 post-TBI was correlated with NFL but not with NSE or S100B. Conclusions Ethanol induces an effect on biomarker release in the bloodstream that is different from TBI not influenced by alcohol. This could be the basis of investigations into humans.
Collapse
Affiliation(s)
- Zhenghui Li
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Jin Zhang
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Akila Chandrasekar
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rida Rehman
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tobias Boeckers
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, ZBMF - Helmhotzstrasse 8/1, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Florian Olde Heuvel
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
19
|
Mozaffari K, Dejam D, Duong C, Ding K, French A, Ng E, Preet K, Franks A, Kwan I, Phillips HW, Kim DY, Yang I. Systematic Review of Serum Biomarkers in Traumatic Brain Injury. Cureus 2021; 13:e17056. [PMID: 34522534 PMCID: PMC8428323 DOI: 10.7759/cureus.17056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is responsible for the majority of trauma-related deaths and is a leading cause of disability. It is characterized by an inflammatory process involved in the progression of secondary brain injury. TBI is measured by the Glasgow Coma Scale (GCS) with scores ranging from 15-3, demonstrating mild to severe brain injury. Apart from this clinical assessment of TBI, compendiums of literature have been published on TBI-related serum markers.Herein we create a comprehensive appraisal of the most prominent serum biomarkers used in the assessment and care of TBI.The PubMed, Scopus, Cochrane, and Web of Science databases were queried with the terms “biomarker” and “traumatic brain injury” as search terms with only full-text, English articles within the past 10 years selected. Non-human studies were excluded, and only adult patients fell within the purview of this analysis. A total of 528 articles were analyzed in the initial search with 289 selected for screening. A further 152 were excluded for primary screening. Of the remaining 137, 54 were included in the final analysis. Serum biomarkers were listed into the following broad categories for ease of discussion: immune markers and markers of inflammation, hormones as biomarkers, coagulation and vasculature, genetic polymorphisms, antioxidants and oxidative stress, apoptosis and degradation pathways, and protein markers. Glial fibrillary acidic protein(GFAP), S100, and neurons specific enolase (NSE) were the most prominent and frequently cited markers. Amongst these three, no single serum biomarker demonstrated neither superior sensitivity nor specificity compared to the other two, therefore noninvasive panels should incorporate these three serum biomarkers to retain sensitivity and maximize specificity for TBI.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Dillon Dejam
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Courtney Duong
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Kevin Ding
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Alexis French
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Edwin Ng
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Komal Preet
- Neurosurgery, University of California, Los Angeles, USA
| | - Alyssa Franks
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Isabelle Kwan
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - H Westley Phillips
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Dennis Y Kim
- Biomedical Sciences, Harbor University of California Los Angeles Medical Center, Los Angeles, USA
| | - Isaac Yang
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
20
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
21
|
Oris C, Bouillon-Minois JB, Pinguet J, Kahouadji S, Durif J, Meslé V, Pereira B, Schmidt J, Sapin V, Bouvier D. Predictive Performance of Blood S100B in the Management of Patients Over 65 Years Old With Mild Traumatic Brain Injury. J Gerontol A Biol Sci Med Sci 2021; 76:1471-1479. [PMID: 33647933 DOI: 10.1093/gerona/glab055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We previously assessed the inclusion of S100B blood determination into clinical decision rules for mild traumatic brain injury (mTBI) management in the Emergency Department (ED) of Clermont-Ferrand Hospital. At the 0.10 µg/L threshold, S100B reduced the use of cranial computed tomography (CCT) scan in adults by at least 30% with a ~100% sensitivity. Older patients had higher serum S100B values, resulting in lower specificity (18.7%) and decreased CCT reduction. We conducted this study to confirm the age effect on S100B concentrations, and to propose new decisional thresholds for older patients. METHODS A total of 1172 mTBI patients aged 65 and over were included. They were divided into 3 age groups: 65-79, 80-89, and ≥ 90 years old. S100B's performance to identify intracranial lesions (sensitivity [SE] and specificity [SP]) was assessed using the routine 0.10 µg/L threshold and also other more efficient thresholds established for each age group. RESULTS S100B concentration medians were 0.18, 0.26, and 0.32 µg/L for the 65-79, 80-89, and ≥ 90 years old age groups, respectively (p < .001). The most efficient thresholds were 0.11 µg/L for the 65-79 age group and 0.15 µg/L for the other groups. At these new thresholds, SP was respectively 28.4%, 34.3%, and 20.5% for each age group versus 24.9%, 18.2%, and 10.5% at the 0.10 µg/L threshold. CONCLUSIONS Adjustment of the S100B threshold is necessary in older patients' management. An increased threshold of 0.15 µg/L is particularly interesting for patients ≥ 80 years old, allowing a significant increase of CCT scan reduction (29.3%).
Collapse
Affiliation(s)
- Charlotte Oris
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | | | - Jérémy Pinguet
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Samy Kahouadji
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Julie Durif
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Vallauris Meslé
- Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital, Biostatistics unit (DRCI) Department, Clermont-Ferrand, France
| | - Jeannot Schmidt
- University Hospital, Adult Emergency Department, Clermont-Ferrand, France
| | - Vincent Sapin
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| |
Collapse
|
22
|
Mastandrea P, Mengozzi S, Bernardini S. Systematic review and cumulative meta-analysis of the diagnostic accuracy of glial fibrillary acidic protein vs. S100 calcium binding protein B as blood biomarkers in observational studies of patients with mild or moderate acute traumatic brain injury. Diagnosis (Berl) 2021; 9:18-27. [PMID: 34214384 DOI: 10.1515/dx-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Traumatic brain injuries (TBIs) and sports-related concussions (SRCs) are the leading causes of hospitalization and death in subjects <45 years old in the USA and Europe. Some biomarkers (BMs) have been used to reduce unnecessary cranial computed tomography (CCT). In recent years, the astroglial S100 calcium-binding B protein (S100B) has prevented approximately 30% of unnecessary CCTs. Glial fibrillary acidic protein (GFAP) has also been studied in direct comparison with S100B. The aim of our cumulative meta-analysis (cMA) is to compare - in the context of hospital emergency departments or SRC conditions - the differences in diagnostic accuracy (DA), sensitivity (Se) and specificity (Sp) of GFAP and S100B. The main cMA inclusion criterion was the assessment of both BMs in the included subjects since 2010, with blood samples drawn 1-30 h from the suspected TBI or SRC. The risk-of-bias (RoB) score was determined, and both the publication bias (with the Begg, Egger and Duval trim-and-fill tests) and sensitivity (with the box-and-whiskers plot) were analyzed for outliers. Seven studies with 899 subjects and nine observations (samples) were included. The diagnostic odds ratios (dORs) with their prediction intervals (PIs), Se and Sp (analyzed with a hierarchical model to respect the binomial data structure) were assessed, and a random-effects MA and a cMA of the difference in the BMs dOR natural logarithms (logOR(G-S)) between the BMs were performed. The cMA of dOR(G-S) was significant (5.78 (CI 2-16.6)) probably preventing approximately 50% of unnecessary CCTs. Further work is needed to standardize and harmonize GFAP laboratory methods.
Collapse
Affiliation(s)
- Paolo Mastandrea
- Laboratory of Clinical Pathology, Azienda Ospedaliera "s. G. Moscati", Avellino, Italy
| | | | - Sergio Bernardini
- Department Experimental Medicine, Tor Vergata University General Hospital, Rome, Italy
| |
Collapse
|
23
|
Ward MD, Weber A, Merrill VD, Welch RD, Bazarian JJ, Christenson RH. Predictive Performance of Traumatic Brain Injury Biomarkers in High-Risk Elderly Patients. J Appl Lab Med 2021; 5:91-100. [PMID: 32445344 DOI: 10.1093/jalm.2019.031393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Serum glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal esterase L1 (UCH-L1) have recently received US Food and Drug Administration approval for prediction of abnormal computed tomography (CT) in mild traumatic brain injury patients (mTBI). However, their performance in elderly patients has not been characterized. METHODS We performed a posthoc analysis using the A Prospective Clinical Evaluation of Biomarkers of Traumatic Brain Injury (ALERT-TBI) study data. Previously recorded patient variables and serum values of GFAP and UCH-L1 from mTBI patients were partitioned at 65 years of age (herein referred to as ≥65, high-risk; <65, low-risk). We sought to assess the influence of age on predictive performance, sensitivity, and negative predictive value (NPV) of serum UCH-L1 and GFAP to predict intracranial injury by CT. RESULTS Elderly mTBI patients constituted 25.7% of the patient cohort (n = 504/1959). Sensitivity and NPV of GFAP/UCH-L1 were 100%, with no significant difference from younger patients (P = 0.5525 and P > 0.9999, respectively). Specificity was significantly lower in elderly patients (0.131 vs 0.442; P < 0.0001) and decreased stepwise with older age. Compared to younger patients, elderly mTBI patients without abnormal (i.e., normal) CT findings also had a significantly higher GFAP (38.6 vs 16.2 pg/mL; P < 0.0001) and UCH-L1 (347.4 vs 232.1 pg/mL; P < 0.0001). CONCLUSIONS Sensitivity and NPV to predict intracranial injury by CT was nearly identical between younger and elderly mTBI patients. Decrements in specificity and increased serum values suggest that special deference may be warranted for elderly patients.
Collapse
Affiliation(s)
- Matthew D Ward
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Art Weber
- Banyan Biomarkers Inc., San Diego, CA
| | - VeRonika D Merrill
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Robert D Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Kahouadji S, Salamin P, Praz L, Coiffier J, Frochaux V, Durif J, Pereira B, Arlettaz L, Oris C, Sapin V, Bouvier D. S100B Blood Level Determination for Early Management of Ski-Related Mild Traumatic Brain Injury: A Pilot Study. Front Neurol 2020; 11:856. [PMID: 32922357 PMCID: PMC7456809 DOI: 10.3389/fneur.2020.00856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Mild traumatic brain injury (mTBI) management in emergency departments is a complex process involving clinical evaluation, laboratory testing, and computerized tomography (CT) scanning. Protein S100B has proven to be a useful blood biomarker for early evaluation of mTBI, as it reduces the required CT scans by one-third. However, to date, the ability of S100B to identify positive abnormal findings in the CT scans of patients suffering from mTBI caused by ski practice has not been investigated. Thus, the primary aim of this study was to investigate the diagnostic performance of S100B as an mTBI management biomarker in patients with ski-related mTBI. Materials and Methods: One hundred and thirty adult mTBI patients presenting to the emergency department of Hôpital du Valais in Sion, Switzerland, with a Glasgow Coma Scale (GCS) score of 13–15 and clinical indication for a CT scan were included in the study. Blood samples for S100B measurement were collected from each patient and frozen in 3-hour post-injury intervals. CT scans were performed for all patients. Later, serum S100B levels were compared to CT scan findings in order to evaluate the biomarker's performance. Results: Of the 130 included cases of mTBI, 87 (70%) were related to ski practice. At the internationally established threshold of 0.1 μg/L, the receiver operating characteristic curve of S100B serum levels for prediction of abnormal CT scans showed 97% sensitivity, 11% specificity, and a 92% negative predictive value. Median S100B concentrations did not differ according to sex, age, or GCS score. Additionally, there was no significant difference between skiers and non-skiers. However, a statistically significant difference was found when comparing the median S100B concentrations of patients who suffered fractures or had polytrauma and those who did not suffer fractures. Conclusion: The performance of S100B in post-mTBI brain lesion screenings seems to be affected by peripheral lesions and/or ski practice. The lack of neurospecificity of the biomarker in this context does not allow unnecessary CT scans to be reduced by one-third as expected.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pauline Salamin
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Laurent Praz
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Julien Coiffier
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Vincent Frochaux
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lionel Arlettaz
- Department of Biology, ICH, Valais Hospital, Sion, Switzerland
| | - Charlotte Oris
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
25
|
The utility of S100B level in detecting mild traumatic brain injury in intoxicated patients. Am J Emerg Med 2019; 38:799-805. [PMID: 31884023 DOI: 10.1016/j.ajem.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND S100B is a serum protein known to elevate in patients with brain injury, but it is unknown whether it can predict intracranial pathology in intoxicated patients following mild traumatic brain injury (MTBI). We performed a systematic review and meta-analysis of the English language literature to address this question. MAIN OUTCOMES AND RESULTS Four prospective cohort trials of serum S100B levels on acutely intoxicated patients with MTBI were included in this meta-analysis. Prevalence of intracranial pathology in the pooled cohort of the intoxicated MTBI patients was 10%, lower than the 15-30% reported in the literature for the general MTBI population. Standard mean difference of serum S100B levels between patients with and without intracranial pathology on CT was 0.73 μg/L (Z = 18.33, P < 0.001). Following sensitivity analysis and hierarchical summary receiver-operating characteristic models, three remaining articles were used for pooled estimates that found that S100B had a sensitivity of 0.96 (95% CI: 0.84-1.00, I2 = 0%) and specificity of 0.63 (95% CI: 0.58-0.68, I2 = 86.8%) with a high negative predictive value (100%, 95% CI: 95.14-100, I2 = 0%) and a negative LR of 0.06 (95% CI: 0.01-0.31). CONCLUSIONS Serum S100B levels may have utility in ruling out intracranial pathology in intoxicated patients, however more study and comparison with other serum biomarkers of brain injury are necessary before this becomes the accepted standard of care.
Collapse
|
26
|
Minkkinen M, Iverson GL, Kotilainen AK, Pauniaho SL, Mattila VM, Lehtimäki T, Berghem K, Posti JP, Luoto TM. Prospective Validation of the Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries in Adults. J Neurotrauma 2019; 36:2904-2912. [DOI: 10.1089/neu.2018.6351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Spaulding Rehabilitation Hospital and Spaulding Research Institute; MassGeneral Hospital for Children Sports Concussion Program; Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | | | - Satu-Liisa Pauniaho
- Emergency Division of Pirkanmaa Hospital District, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Ville M. Mattila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Orthopedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Jussi P. Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, and Turku Brain Injury Centre, Turku University Hospital, and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
27
|
Iverson GL, Reddi PJ, Posti JP, Kotilainen AK, Tenovuo O, Öhman J, Zetterberg H, Blennow K, Luoto TM. Serum Neurofilament Light Is Elevated Differentially in Older Adults with Uncomplicated Mild Traumatic Brain Injuries. J Neurotrauma 2019; 36:2400-2406. [PMID: 30843469 DOI: 10.1089/neu.2018.6341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurofilament light (NF-L) might have diagnostic and prognostic potential as a blood biomarker for mild traumatic brain injury (mTBI). However, elevated NF-L is associated with several neurological disorders associated with older age, which could confound its usefulness as a traumatic brain injury biomarker. We examined whether NF-L is elevated differentially following uncomplicated mTBI in older adults with pre-injury neurological disorders. In a case-control study, a sample of 118 adults (mean age = 62.3 years, standard deviation [SD] = 22.5, range = 18-100; 52.5% women) presenting to the emergency department (ED) with an uncomplicated mTBI were enrolled. All participants underwent head computed tomography in the ED and showed no macroscopic evidence of injury. The mean time between injury and blood sampling was 8.3 h (median [Md] = 3.5; SD = 13.5; interquartile range [IQR] = 1.9-6.0, range = 0.8-67.4, and 90% collected within 19 h). A sample of 40 orthopedically-injured trauma control subjects recruited from a second ED also were examined. Serum NF-L levels were measured and analyzed using Human Neurology 4-Plex A assay on a HD-1 Single Molecule Array (Simoa) instrument. A high correlation was found between age and NF-L levels in the total mTBI sample (r = 0.80), within the subgroups without pre-injury neurological diseases (r = 0.76) and with pre-injury neurological diseases (r = 0.68), and in the trauma control subjects (r = 0.76). Those with mTBIs and pre-injury neurological conditions had higher NF-L levels than those with no pre-injury neurological conditions (p < 0.001, Cohen's d = 1.01). Older age and pre-injury neurological diseases are associated with elevated serum NF-L levels in patients with head trauma and in orthopedically-injured control subjects.
Collapse
Affiliation(s)
- Grant L Iverson
- 1Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, and Home Base, a Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | | | - Jussi P Posti
- 3Department of Neurosurgery and Turku University Hospital and University of Turku, Turku, Finland.,4Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Olli Tenovuo
- 4Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Öhman
- 6Department of Neurosurgery, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Henrik Zetterberg
- 7Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,8Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,9U.K. Dementia Research Institute at University College London, London, United Kingdom.,10Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Kaj Blennow
- 7Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,8Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Teemu M Luoto
- 6Department of Neurosurgery, Tampere University Hospital and University of Tampere, Tampere, Finland
| |
Collapse
|
28
|
Girard M, Malauzat D, Nubukpo P. Serum inflammatory molecules and markers of neuronal damage in alcohol-dependent subjects after withdrawal. World J Biol Psychiatry 2019; 20:76-90. [PMID: 28669319 DOI: 10.1080/15622975.2017.1349338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Our aim is to describe changes in serum concentration for the pro-inflammatory factors TNF-α, IFN-γ, IL-1β, IL-8, IL-6, IL-10, IL-12 and MCP-1, for the satiety factor leptin and for factors associated with neuronal changes, neuron-specific enolase (NSE) and glial activation S100-beta protein (S100-β), and explore their association with abstinence in alcohol-dependent subjects after withdrawal. METHODS Serum sampling and clinical assessments from 115 alcohol-dependent subjects admitted to a psychiatric hospital for alcohol were repeated during the first 48 h of withdrawal (M0) and 1, 2, 4 and 6 months (M1, M2, M4 and M6) thereafter. Serum factors were determined with Luminex technology or by ELISA. RESULTS The levels of TNF-α, IL-1β, IL-8, IL-6, IL-12, MCP-1, and leptin decreased after withdrawal and remained low until M6, regardless of alcohol consumption. IFN-γ levels remained constant and IL-10 levels changed only slightly. NSE levels were not modified, whereas serum S100-β concentration increased significantly on M1 and then plateaued, regardless of abstinence status at 6 months. CONCLUSIONS Alcohol-dependent subjects present an inflammatory condition that is not dependent on alcohol consumption. An understanding of the changes in concentration of the various proteins considered here would provide insight into the physiology of withdrawal or dependence.
Collapse
Affiliation(s)
- Murielle Girard
- a Unité de Recherche et de Neurostimulation , Centre Hospitalier Esquirol , Limoges , France
| | - Dominique Malauzat
- a Unité de Recherche et de Neurostimulation , Centre Hospitalier Esquirol , Limoges , France
| | - Philippe Nubukpo
- a Unité de Recherche et de Neurostimulation , Centre Hospitalier Esquirol , Limoges , France.,b Faculté de Médecine , UMR/INSERM 1094/NET , Limoges , France
| |
Collapse
|
29
|
Allouchery G, Moustafa F, Roubin J, Pereira B, Schmidt J, Raconnat J, Pic D, Sapin V, Bouvier D. Clinical validation of S100B in the management of a mild traumatic brain injury: issues from an interventional cohort of 1449 adult patients. ACTA ACUST UNITED AC 2018; 56:1897-1904. [DOI: 10.1515/cclm-2018-0471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Background:
This study’s primary objective was to validate the routine use of S100B via a prospective study. The aim was a reduction of cranial computed tomography (CCT) scans by 30%. The secondary goal was to investigate the influence of age and associated risk factors on the reduction of CCT.
Methods:
S100B (sampling within 3 h postinjury) was used for patients with mild traumatic brain injury (mTBIs) presenting a medium risk of complications and requiring a CCT scan. Patients with negative S100B (S100B−) were discharged without a CCT scan.
Results:
Of the 1449 patients included in this study, 468 (32.3%) had S100B− with a sensitivity of 96.4% (95% CI: 87.5%–99.6%), a specificity of 33.4% (95% CI: 31%–36%) and a negative predictive value of 99.6% (95% CI: 98.5%–99.9%). No significant difference in serum levels or the S100B+ rate was observed if patients had retrograde amnesia (0.16 μg/L; 63.8%), loss of consciousness (0.13; 63.6%) or antiplatelet therapy (0.20; 77.9%). Significant differences were found between the S100B concentrations and S100B positivity rates in patients >65 years old and all the groups with patients <55 years old (18–25, 26–35, 36–45 and 46–55). From 18 to 65 years old (n=874), the specificity is 39.3% (95% CI: 36%–42.6%) compared to 18.7% (95% CI: 15.3%–22.3%) for patients >65 years old (n=504).
Conclusions:
The clinical use of S100B in mTBI management reduces the use of CCTs by approximately one-third; furthermore, the percentage of CCTs reduction is influenced by the age of the patient.
Collapse
|
30
|
Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, Donoghue E, Sándor J, Wang KKW, Diaz-Arrastia R, Steyerberg EW, Menon DK, Maas AIR, Buki A. Blood-Based Protein Biomarkers for the Management of Traumatic Brain Injuries in Adults Presenting to Emergency Departments with Mild Brain Injury: A Living Systematic Review and Meta-Analysis. J Neurotrauma 2018; 38:1086-1106. [PMID: 29020853 PMCID: PMC8054517 DOI: 10.1089/neu.2017.5182] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through searches of MEDLINE®, Embase, EBM Reviews, the Cochrane Library, World Health Organization (WHO), International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated information as it becomes available, can inform and guide future implementation of biomarkers in the clinical arena.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | | | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Zoltán Vámos
- Anesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Anneliese Synnot
- Australian & New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Victoria, Australia.,Cochrane Consumers and Communication Group, Centre for Health Communication and Participation, La Trobe University, Melbourne, Victoria, Australia
| | - Emma Donoghue
- Australian & New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Victoria, Australia.,Cochrane Consumers and Communication Group, Centre for Health Communication and Participation, La Trobe University, Melbourne, Victoria, Australia
| | - János Sándor
- Department of Preventive Medicine, Division of Biostatistics and Epidemiology, University of Debrecen, Debrecen, Hungary
| | - Kevin K W Wang
- Program for Neuroproteomics & Biomarkers Research, Departments of Psychiatry & Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ewout W Steyerberg
- Center for Clinical Decision Sciences, Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| |
Collapse
|
31
|
Gardner RC, Rubenstein R, Wang KKW, Korley FK, Yue JK, Yuh EL, Mukherje P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. Age-Related Differences in Diagnostic Accuracy of Plasma Glial Fibrillary Acidic Protein and Tau for Identifying Acute Intracranial Trauma on Computed Tomography: A TRACK-TBI Study. J Neurotrauma 2018; 35:2341-2350. [PMID: 29717620 DOI: 10.1089/neu.2018.5694] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma tau and glial fibrillary acidic protein (GFAP) are promising biomarkers for identifying traumatic brain injury (TBI) patients with intracranial trauma on computed tomography (CT). Accuracy in older adults with mild TBI (mTBI), the fastest growing TBI population, is unknown. Our aim was to assess for age-related differences in diagnostic accuracy of plasma tau and GFAP for identifying intracranial trauma on CT. Samples from 169 patients (age <40 years [n = 79], age 40-59 years [n = 60], age 60 years+ [n = 30]), a subset of patients from the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study who presented with mTBI (Glasgow Coma Scale score of 13-15), received head CT, and consented to blood draw within 24 h of injury, were assayed for hyperphosphorylated-tau (P-tau), total-tau (T-tau; both via amplification-linked enhanced immunoassay using multi-arrayed fiberoptics), and GFAP (via sandwich enzyme-linked immunosorbent assay). P-tau, T-tau, P-tau:T-tau ratio, and GFAP concentration were significantly associated with CT findings. Overall, discriminative ability declined with increasing age for all assays, but this decline was only statistically significant for GFAP (area under the receiver operating characteristic curve [AUC]: old 0.73 [reference group; ref] vs. young 0.93 [p = 0.037] or middle-aged 0.92 [p = 0.0497]). P-tau concentration consistently showed the highest diagnostic accuracy across all age-groups (AUC: old 0.84 [ref] vs. young 0.95 [p = 0.274] or middle-aged 0.93 [p = 0.367]). Comparison of models including P-tau alone versus P-tau plus GFAP revealed significant added value of GFAP. In conclusion, the GFAP assay was less accurate for identifying intracranial trauma on CT among older versus younger mTBI patients. Mechanisms of this age-related difference, including role of assay methodology, specific TBI neuroanatomy, pre-existing conditions, and anti-thrombotic use, warrant further study.
Collapse
Affiliation(s)
- Raquel C Gardner
- 1 Department of Neurology, Memory and Aging Center, and Weill Institute for Neurosciences, University of California San Francisco , San Francisco, California.,2 Department of Neurology and Center for Population Brain Health, San Francisco Veterans Affairs Medical Center , San Francisco, California
| | - Richard Rubenstein
- 3 Departments of Neurology and Physiology/Pharmacology, Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, State University of New York Downstate Medical Center , Brooklyn, New York
| | - Kevin K W Wang
- 4 Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida , Gainesville, Florida.,5 Brain Rehabilitation Research Center , Malcom Randall VA Medical Center, Gainesville, Florida
| | - Frederick K Korley
- 6 Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan
| | - John K Yue
- 7 Department of Neurological Surgery, University of California San Francisco , San Francisco, California.,8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Esther L Yuh
- 8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California.,9 Department of Radiology, University of California San Francisco , San Francisco, California
| | - Pratik Mukherje
- 8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California.,9 Department of Radiology, University of California San Francisco , San Francisco, California
| | - Alex B Valadka
- 10 Department of Neurological Surgery, Virginia Commonwealth University , Richmond, Virginia
| | - David O Okonkwo
- 11 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramon Diaz-Arrastia
- 12 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Geoffrey T Manley
- 7 Department of Neurological Surgery, University of California San Francisco , San Francisco, California.,8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
32
|
Gardner RC, Dams-O'Connor K, Morrissey MR, Manley GT. Geriatric Traumatic Brain Injury: Epidemiology, Outcomes, Knowledge Gaps, and Future Directions. J Neurotrauma 2018; 35:889-906. [PMID: 29212411 PMCID: PMC5865621 DOI: 10.1089/neu.2017.5371] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review of the literature on traumatic brain injury (TBI) in older adults focuses on incident TBI sustained in older adulthood ("geriatric TBI") rather than on the separate, but related, topic of older adults with a history of earlier-life TBI. We describe the epidemiology of geriatric TBI, the impact of comorbidities and pre-injury function on TBI risk and outcomes, diagnostic testing, management issues, outcomes, and critical directions for future research. The highest incidence of TBI-related emergency department visits, hospitalizations, and deaths occur in older adults. Higher morbidity and mortality rates among older versus younger individuals with TBI may contribute to an assumption of futility about aggressive management of geriatric TBI. However, many older adults with TBI respond well to aggressive management and rehabilitation, suggesting that chronological age and TBI severity alone are inadequate prognostic markers. Yet there are few geriatric-specific TBI guidelines to assist with complex management decisions, and TBI prognostic models do not perform optimally in this population. Major barriers in management of geriatric TBI include under-representation of older adults in TBI research, lack of systematic measurement of pre-injury health that may be a better predictor of outcome and response to treatment than age and TBI severity alone, and lack of geriatric-specific TBI common data elements (CDEs). This review highlights the urgent need to develop more age-inclusive TBI research protocols, geriatric TBI CDEs, geriatric TBI prognostic models, and evidence-based geriatric TBI consensus management guidelines aimed at improving short- and long-term outcomes for the large and growing geriatric TBI population.
Collapse
Affiliation(s)
- Raquel C. Gardner
- Department of Neurology, University of California San Francisco, and San Francisco VA Medical Center, San Francisco, California
- University of California San Francisco Weill Institute for Neurosciences, San Francisco, California
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Molly Rose Morrissey
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California San Francisco and Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Geoffrey T. Manley
- University of California San Francisco Weill Institute for Neurosciences, San Francisco, California
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California San Francisco and Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
33
|
Evaluation of the Roche® Elecsys and the Diasorin® Liaison S100 kits in the management of mild head injury in the emergency room. Clin Biochem 2017; 52:123-130. [PMID: 29122642 DOI: 10.1016/j.clinbiochem.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The aim of this single-center prospective study is to compare two commercially available S100ß kits (the Roche® Elecsys and the Diasorin® Liaison S100 kits) in terms of analytical and clinical performances in a population admitted in the emergency room for mild traumatic brain injury (mTBI). MATERIAL AND METHOD 110 patients were enrolled from September 2014 to May 2015. Blood sample draws were performed within 3h after head trauma and the study population was split into pediatric and adult subpopulations (>18years of age). RESULTS Although both kits correlated well, we observed a significant difference in terms of S100ß levels (P value<0.05) in both subpopulations. In the pediatric subpopulation, both kits showed elevated S100ß levels for the only patient (3.5%) who displayed abnormal findings on a CT-scan. However, we observed a poor agreement between both kits (Cohen's kappa=0.345, P value=0.077). In the adult subpopulation, a total of 10 patients (12.2%) had abnormal head computed tomography scans. Using the Roche® (cut off=0.1μg/L) and the Diasorin® (cut off=0.15μg/L) S100ß kits, brain injuries were detected with a sensitivity of 100% (95% CI: 65-100%) and 100% (95% CI: 63-100%) and a specificity of 15.28% (95% CI: 7.9-25.7%) and 24.64% (95% CI: 15-36.5) respectively. Finally, a moderate agreement was concluded between both kits (Cohen's kappa=0.569, P value=0.001). CONCLUSION Although a good correlation could be found between both kits, emergency physicians should be aware of discrepancies observed between both methods, making those immunoassays not interchangeable. Furthermore, more studies are still needed to validate cut off used according to technique and to age, especially in the population below the age of 2years.
Collapse
|
34
|
Management of Traumatic Brain Injury in the Emergency Department: Guideline Adherence and Patient Safety. Qual Manag Health Care 2017; 26:190-195. [PMID: 28991814 DOI: 10.1097/qmh.0000000000000151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Traumatic brain injury is a common reason not only for emergency visits worldwide but also for significant morbidity and mortality. Several clinical guidelines exist but adherence is generally low. AIM To study attitudes toward computed tomography of the head among emergency department Change to physicians throughout the article who manage patients with trauma to the head and doctors' adherence to guidelines. METHODS Quantitative questionnaire study with questionnaires collected over 3 months before introduction of new guidelines. After introduction, intermission of 8 months passed when information and education were given. Thereafter, questionnaires were collected for another 3 months. RESULTS A total of 694 patients were registered at the emergency department. A total of 161 questionnaires were analyzed; 50.9% did not use guidelines, 39% before intermission, and 60.5% after. When Canadian CT Head Rule was applied, 30.4% of patients with no loss of consciousness were referred to computed tomography, violating guideline recommendation. CONCLUSION Guidelines are designed to improve performance but are not always applied correctly or as frequently as intended. Information and education did not increase guideline adherence. To improve guideline adherence, more innovative measures than formal guidelines must be undertaken. To find out what these measures are, we suggest qualitative studies to elucidate interventions that will have bigger impact on performance.
Collapse
|
35
|
Mercier E, Tardif PA, Emond M, Ouellet MC, de Guise É, Mitra B, Cameron P, Le Sage N. Characteristics of patients included and enrolled in studies on the prognostic value of serum biomarkers for prediction of postconcussion symptoms following a mild traumatic brain injury: a systematic review. BMJ Open 2017; 7:e017848. [PMID: 28963310 PMCID: PMC5623519 DOI: 10.1136/bmjopen-2017-017848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) has been insufficiently researched, and its definition remains elusive. Investigators are confronted by heterogeneity in patients, mechanism of injury and outcomes. Findings are thus often limited in generalisability and clinical application. Serum protein biomarkers are increasingly assessed to enhance prognostication of outcomes, but their translation into clinical practice has yet to be achieved. A systematic review was performed to describe the adult populations included and enrolled in studies that evaluated the prognostic value of protein biomarkers to predict postconcussion symptoms following an mTBI. DATA SOURCES Searches of MEDLINE, Embase, CENTRAL, CINAHL, Web of Science, PsycBITE and PsycINFO up to October 2016. DATA SELECTION AND EXTRACTION Two reviewers independently screened for potentially eligible studies, extracted data and assessed the overall quality of evidence by outcome using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS A total of 23 298 citations were obtained from which 166 manuscripts were reviewed. Thirty-six cohort studies (2812 patients) having enrolled between 7 and 311 patients (median 89) fulfilled our inclusion criteria. Most studies excluded patients based on advanced age (n=10 (28%)), neurological disorders (n=20 (56%)), psychiatric disorders (n=17 (47%)), substance abuse disorders (n=13 (36%)) or previous traumatic brain injury (n=10 (28%)). Twenty-one studies (58%) used at least two of these exclusion criteria. The pooled mean age of included patients was 39.3 (SD 4.6) years old (34 studies). The criteria used to define a mTBI were inconsistent. The most frequently reported outcome was postconcussion syndrome using the Rivermead Post-Concussion Symptoms Questionnaire (n=18 (50%)) with follow-ups ranging from 7 days to 5 years after the mTBI. CONCLUSIONS Most studies have recruited samples that are not representative and generalisable to the mTBI population. These exclusion criteria limit the potential use and translation of promising serum protein biomarkers to predict postconcussion symptoms.
Collapse
Affiliation(s)
- Eric Mercier
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pier-Alexandre Tardif
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Marcel Emond
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Marie-Christine Ouellet
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Quebec, Canada
| | - Élaine de Guise
- Research-Institute, McGill University Health Centre, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Quebec, Canada
| | - Biswadev Mitra
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter Cameron
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Natalie Le Sage
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
| |
Collapse
|
36
|
Lagerstedt L, Egea-Guerrero JJ, Bustamante A, Montaner J, Rodríguez-Rodríguez A, El Rahal A, Turck N, Quintana M, García-Armengol R, Prica CM, Andereggen E, Rinaldi L, Sarrafzadeh A, Schaller K, Sanchez JC. H-FABP: A new biomarker to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2017; 12:e0175572. [PMID: 28419114 PMCID: PMC5395174 DOI: 10.1371/journal.pone.0175572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/28/2017] [Indexed: 11/18/2022] Open
Abstract
The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%-8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient's risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8-10.7) for S100B and 29% (95% CI 21.4-37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amir El Rahal
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Natacha Turck
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel Quintana
- Intensive Medicine Unit, Hospital Universitario La Paz, idiPAZ, Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roser García-Armengol
- Neurosurgical department, Neuroscience Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Elisabeth Andereggen
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lara Rinaldi
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
| | - Asita Sarrafzadeh
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry 2017; 74:27-34. [PMID: 28088747 DOI: 10.1016/j.comppsych.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with bipolar disorder might have brain damage. The aim of this study was to investigate the serum levels of brain injury biomarkers and S100A10 in bipolar patients in a manic phase, and evaluate the changes in S100B, neuron specific enolase (NSE), heat shock protein 70 (HSP70) and S100A10 after treatment. METHOD We consecutively enrolled 17 bipolar inpatients in a manic phase and 30 healthy subjects. Serum brain injury biomarkers and S100A10 were measured with assay kits. All patients were evaluated by examining the correlation between brain injury biomarkers and Young Mania Rating Scale (YMRS) scores. RESULT We found significantly decreased S100B levels only in bipolar manic patients after treatment (p=0.002), but S100B levels were not significantly different from those in healthy controls (p>0.05). CONCLUSION Our results indicate there were decreased S100B serum levels in bipolar patients in a manic phase after treatment and that increased serum S100B levels might be a possible indicator of transient disruption of the blood-brain barrier in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Ernstbrunner L, Korn G, Ernstbrunner E, Auffarth A, Tauber M, Resch H, Moroder P. S100B serum protein cannot predict secondary intracranial haemorrhage after mild head injury in patients with low-dose acetylsalicylic acid prophylaxis. Brain Inj 2015; 30:43-7. [PMID: 26580090 DOI: 10.3109/02699052.2015.1087593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The goal of this study was to investigate if S100B serum protein could predict secondary intracranial haemorrhagic events (SIHEs) after mild head injury (mHI) in patients taking low-dose acetylsalicylic acid (LDA), making routinely repeated head computed tomography (RRHCT) scans unnecessary. METHODS Three hundred and eight-two patients with mHI, older than 60 years and taking LDA prophylaxis were enrolled. Primary head CT and RRHCT scans within 3 and 48 hours to trauma were performed. Additionally, S100B serum protein levels were evaluated at admission and predictive power for SIHEs was analysed. RESULTS Fifty-nine per cent were female and the mean age of all included patients was 81.8 ± 8.9 years. In four patients SIHEs were diagnosed. Sensitivity and the negative predictive value of S100B serum protein (cut-off value 0.10 µg l(-1)) were 75.0% and 98.6%, respectively. Specificity was 19.0% and the positive predictive value 1.0% (306 false positive values). In patients without bleeding, the median S100B value was 0.18 (IQR = 0.12-0.34) and in the ones with SIHEs, the median was 0.11 (IQR = 0.10-1.16) (p > 0.05). The discriminatory power of S100B in the ROC analysis was 0.399 (95% CI = 0.079-0.720; p > 0.05). CONCLUSION S100B cannot be considered as an effective diagnostic tool in the prediction or exclusion of SIHE in older patients with mHIs taking LDA prophylaxis.
Collapse
Affiliation(s)
- Lukas Ernstbrunner
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria
| | - Gundobert Korn
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria
| | | | - Alexander Auffarth
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria
| | - Mark Tauber
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria .,c Department of Shoulder and Elbow Surgery , Atos Clinic , Munich , Germany
| | - Herbert Resch
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria
| | - Philipp Moroder
- a Department of Traumatology and Sports Injuries , Paracelsus Medical University , Salzburg , Austria
| |
Collapse
|
39
|
Ryb GE, Dischinger PC, Auman KM, Kufera JA, Cooper CC, Mackenzie CF, Kane RL. S-100β does not predict outcome after mild traumatic brain injury. Brain Inj 2014; 28:1430-5. [PMID: 24911665 DOI: 10.3109/02699052.2014.919525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the usefulness of S-100β, a marker for central nervous system damage, in the prediction of long-term outcomes after mild traumatic brain injury (MTBI) Hypothesis: Mid- and long-term outcomes of MTBI (i.e. 3, 6 and 12 months post-injury and return-to-work or school (RTWS)) may be predicted based on pre-injury and injury factors as well as S-100β. METHODS MTBI subjects without abnormal brain computed tomography requiring intervention, focal neurological deficits, seizures, amnesia > 24 hours and severe or multiple injuries were recruited at a level I trauma centre. Admission S-100β measurements and baseline Concussion Symptom Checklist were obtained. Symptoms and RTWS were re-assessed at follow-up visits (3-10 days and 3, 6 and 12 months). Outcomes included number of symptoms and RTWS at follow-up. Chi-square tests, linear and logistic regression models were used and p < 0.05 was considered statistically significant. RESULTS One hundred and fifty of 180 study subjects had S-100β results. Eleven per cent were unable to RTWS at 12 months. S-100β levels were not associated with post-concussive symptomatology at follow-up. In addition, no association was found between S-100β levels and RTWS. CONCLUSION Amongst MTBI patients, S-100β levels are not associated with prolonged post-concussive syndrome or the inability to RTWS.
Collapse
Affiliation(s)
- Gabriel E Ryb
- National Study Center for Trauma and Emergency Medical Systems
| | | | | | | | | | | | | |
Collapse
|