1
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Bodelón A, Fablet M, Siqueira de Oliveira D, Vieira C, García Guerreiro MP. Impact of Heat Stress on Transposable Element Expression and Derived Small RNAs in Drosophila subobscura. Genome Biol Evol 2023; 15:evad189. [PMID: 37847062 PMCID: PMC10627563 DOI: 10.1093/gbe/evad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families. However, the actual magnitude of this stress on the whole genome and the factors involved in these genomic changes are still unclear. We studied mRNAs and small RNAs in gonads of two Drosophila subobscura populations, considered a good model to study adaptation to temperature changes. In control conditions, we found that a few genes and TE families were differentially expressed between populations, pointing out their putative involvement in the adaptation of populations to their different environments. Under heat stress, sex-specific changes in gene expression together with a trend toward overexpression, mainly of heat shock response-related genes, were observed. We did not observe large changes of TE expression nor small RNA production due to stress. Only population and sex-specific expression changes of some TE families (mainly retrotransposons), or the amounts of siRNAs and piRNAs, derived from specific TE families were observed, as well as the piRNA production from some piRNA clusters. Changes in small RNA amounts and TE expression could not be clearly correlated, indicating that other factors as chromatin modulation could also be involved. This work provides the first whole transcriptomic study including genes, TEs, and small RNAs after a heat stress in D. subobscura.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut universitaire de France, Paris, France
| | - Daniel Siqueira de Oliveira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Sioson VA, Kim M, Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed Eng Lett 2021; 11:217-233. [PMID: 34350049 PMCID: PMC8316527 DOI: 10.1007/s13534-021-00199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The CRISPR-based genome editing technology has opened extremely useful strategies in biological research and clinical therapeutics, thus attracting great attention with tremendous progress in the past decade. Despite its robust potential in personalized and precision medicine, the CRISPR-based gene editing has been limited by inefficient in vivo delivery to the target cells and by safety concerns of viral vectors for clinical setting. In this review, recent advances in tailored nanoparticles as a means of non-viral delivery vector for CRISPR/Cas systems are thoroughly discussed. Unique characteristics of the nanoparticles including controllable size, surface tunability, and low immune response lead considerable potential of CRISPR-based gene editing as a translational medicine. We will present an overall view on essential elements in CRISPR/Cas systems and the nanoparticle-based delivery carriers including advantages and challenges. Perspectives to advance the current limitations are also discussed toward bench-to-bedside translation in engineering aspects.
Collapse
Affiliation(s)
- Victor Aaron Sioson
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Minjong Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Jinmyoung Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
4
|
Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. NATURE PLANTS 2019; 5:26-33. [PMID: 30531940 PMCID: PMC6366555 DOI: 10.1038/s41477-018-0320-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 05/02/2023]
Abstract
Retrotransposons have played an important role in the evolution of host genomes1,2. Their impact is mainly deduced from the composition of DNA sequences that have been fixed over evolutionary time2. Such studies provide important 'snapshots' reflecting the historical activities of transposons but do not predict current transposition potential. We previously reported sequence-independent retrotransposon trapping (SIRT) as a method that, by identification of extrachromosomal linear DNA (eclDNA), revealed the presence of active long terminal repeat (LTR) retrotransposons in Arabidopsis3. However, SIRT cannot be applied to large and transposon-rich genomes, as found in crop plants. We have developed an alternative approach named ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for such situations. ALE-seq reveals sequences of 5' LTRs of eclDNAs after two-step amplification: in vitro transcription and subsequent reverse transcription. Using ALE-seq in rice, we detected eclDNAs for a novel Copia family LTR retrotransposon, Go-on, which is activated by heat stress. Sequencing of rice accessions revealed that Go-on has preferentially accumulated in Oryza sativa ssp. indica rice grown at higher temperatures. Furthermore, ALE-seq applied to tomato fruits identified a developmentally regulated Gypsy family of retrotransposons. A bioinformatic pipeline adapted for ALE-seq data analyses is used for the direct and reference-free annotation of new, active retroelements. This pipeline allows assessment of LTR retrotransposon activities in organisms for which genomic sequences and/or reference genomes are either unavailable or of low quality.
Collapse
Affiliation(s)
- Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai, China.
| | - Matthias Benoit
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Matthijs Oosterbeek
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Radachowka 37, Kolbiel, Poland.
| |
Collapse
|