1
|
Zhang Y, Fang M, Li S, Xu H, Ren J, Tu L, Zuo B, Yao W, Liang G. BTApep-TAT peptide inhibits ADP-ribosylation of BORIS to induce DNA damage in cancer. Mol Cancer 2022; 21:158. [PMID: 35918747 PMCID: PMC9344678 DOI: 10.1186/s12943-022-01621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brother of regulator of imprinted sites (BORIS) is expressed in most cancers and often associated with short survival and poor prognosis in patients. BORIS inhibits apoptosis and promotes proliferation of cancer cells. However, its mechanism of action has not been elucidated, and there is no known inhibitor of BORIS. METHODS A phage display library was used to find the BORIS inhibitory peptides and BTApep-TAT was identified. The RNA sequencing profile of BTApep-TAT-treated H1299 cells was compared with that of BORIS-knockdown cells. Antitumor activity of BTApep-TAT was evaluated in a non-small cell lung cancer (NSCLC) xenograft mouse model. BTApep-TAT was also used to investigate the post-translational modification (PTM) of BORIS and the role of BORIS in DNA damage repair. Site-directed mutants of BORIS were constructed and used for investigating PTM and the function of BORIS. RESULTS BTApep-TAT induced DNA damage in cancer cells and suppressed NSCLC xenograft tumor progression. Investigation of the mechanism of action of BTApep-TAT demonstrated that BORIS underwent ADP ribosylation upon double- or single-strand DNA damage. Substitution of five conserved glutamic acid (E) residues with alanine residues (A) between amino acids (AAs) 198 and 228 of BORIS reduced its ADP ribosylation. Inhibition of ADP ribosylation of BORIS by a site-specific mutation or by BTApep-TAT treatment blocked its interaction with Ku70 and impaired the function of BORIS in DNA damage repair. CONCLUSIONS The present study identified an inhibitor of BORIS, highlighted the importance of ADP ribosylation of BORIS, and revealed a novel function of BORIS in DNA damage repair. The present work provides a practical method for the future screening or optimization of drugs targeting BORIS.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shouye Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, 311258, Zhejiang, China
| | - Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wanxin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Guang Liang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China. .,College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
3
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
4
|
Jay A, Reitz D, Namekawa SH, Heyer WD. Cancer testis antigens and genomic instability: More than immunology. DNA Repair (Amst) 2021; 108:103214. [PMID: 34481156 PMCID: PMC9196322 DOI: 10.1016/j.dnarep.2021.103214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Cancer testis antigens or genes (CTA, CTG) are predominantly expressed in adult testes while silenced in most or all somatic tissues with sporadic expression in many human cancers. Concerted misexpression of numerous CTA/CTGs is rarely observed. This finding argues against the germ cell theory of cancer. A surprising number of CTA/CTGs are involved in meiotic chromosome metabolism and specifically in meiotic recombination. Recent discoveries with a group of CTGs established that their misexpression in somatic cells results in genomic instability by interfering with homologous recombination (HR), a DNA repair pathway for complex DNA damage such as DNA double-stranded breaks, interstrand crosslinks, and single-stranded DNA gaps. HR-deficient tumors have specific vulnerabilities and show synthetic lethality with inhibition of polyADP-ribose polymerase, opening the possibility that expression of CTA/CTGs that result in an HR-defect could be used as an additional biomarker for HR status. Here, we review the repertoire of CTA/CTGs focusing on a cohort that functions in meiotic chromosome metabolism by interrogating relevant cancer databases and discussing recent discoveries.
Collapse
Affiliation(s)
- Ash Jay
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616-8665, USA.
| |
Collapse
|
5
|
Gantchev J, Martínez Villarreal A, Gunn S, Zetka M, Ødum N, Litvinov IV. The ectopic expression of meiCT genes promotes meiomitosis and may facilitate carcinogenesis. Cell Cycle 2020; 19:837-854. [PMID: 32223693 DOI: 10.1080/15384101.2020.1743902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer meiomitosis is defined as the concurrent activation of both mitotic and meiotic machineries in neoplastic cells that confer a selective advantage together with increased genomic instability. MeiCT (meiosis-specific cancer/testis) genes that perform specialized functions in the germline events required for the first meiotic division are ectopically expressed in several cancers. Here we describe the expression profiles of meiCT genes and proteins across a number of cancers and review the proposed mechanisms that increase aneuploidy and elicit reduction division in polyploid cells. These mechanisms are centered on the overexpression and function of meiCT proteins in cancers under various conditions that includes a response to genotoxic stress. Since meiCT genes are transcriptionally repressed in somatic cells, their target offers a promising therapeutic approach with limited toxicity to healthy tissues. Throughout the review, we provide a detailed description of the roles for each gene in the context of meiosis and we discuss proposed functions and outcomes resulting from their ectopic reactivation in cancer.
Collapse
Affiliation(s)
- Jennifer Gantchev
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | | | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Neils Ødum
- Department of Microbiology and Immunology, The University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
6
|
Lafta IJ, Kudhair BK, Alabid NN. Characterization of the major human STAG3 variants using some proteomics and bioinformatics assays. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
STAG3 is the meiotic component of cohesin and a member of the Cancer Testis Antigen (CTA) family. This gene has been found to be overexpressed in many types of cancer, and recently, its variants have been implicated in other disorders and many human diseases. Therefore, this study aimed to analyze the major variants of STAG3. Western blot (WB) and immunoprecipitation (IP) assays were performed using two different anti-STAG3 antibodies that targeted the relevant protein in MCF-7, T-47D, MDA-MB-468, and MDA-MB-231 breast cancer cells with Jurkat and MCF-10A cells as positive and negative controls, respectively. In silico analyses were searched to study the major isoforms.
Results
WB and IP assays revealed two abundant polypeptides < 191 kDa and ~ 75 kDa in size. Specific bioinformatics tools successfully determined the three-dimensional (3-D) structure, the subcellular localization, and the secondary structures of the isoforms. Furthermore, some of the physicochemical properties of the STAG3 proteins were also determined.
Conclusions
The results of this study revealed the power of applying the biological techniques (WB and IP) with the bioinformatics assays and the possibility of their exploitation in understanding diseased genes. Exploring the major variants of STAG3 at the protein level could help decipher some disorders associated with their occurrence, along with designing drugs effective at least for some relevant diseases.
Collapse
|
7
|
Yi F, Wang Z, Liu J, Zhang Y, Wang Z, Xu H, Li X, Bai N, Cao L, Song X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int J Biol Sci 2017; 13:1092-1099. [PMID: 28924389 PMCID: PMC5599913 DOI: 10.7150/ijbs.21206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC superfamily members, has been explored to function in many activities including chromosome dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can cause defect in the DNA damage repair pathway, which has been strongly associated with tumorigenesis. Here we focus to discuss SMC1's role in genome stability maintenance and tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Abstract
Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1A 6BQ, UK.
| |
Collapse
|
9
|
Song ZJ, Reitman ZJ, Ma ZY, Chen JH, Zhang QL, Shou XF, Huang CX, Wang YF, Li SQ, Mao Y, Zhou LF, Lian BF, Yan H, Shi YY, Zhao Y. The genome-wide mutational landscape of pituitary adenomas. Cell Res 2016; 26:1255-1259. [PMID: 27670697 PMCID: PMC5099864 DOI: 10.1038/cr.2016.114] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zhi-Jian Song
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zachary J Reitman
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA02115, USA
| | - Zeng-Yi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Jian-Hua Chen
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qi-Lin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Xue-Fei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Chuan-Xin Huang
- Shanghai Institute of Immunology & Department of Immunobiology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong-Fei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Shi-Qi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Liang-Fu Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Bao-Feng Lian
- Shanghai Center for Bioinformation Technology (SCBIT), Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Hai Yan
- Department of Pathology, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Yong Shi
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Shanghai Pituitary Tumor Center, Shanghai 200040, China.,State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200040, China.,Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Nielsen AY, Gjerstorff MF. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. Int J Mol Sci 2016; 17:E890. [PMID: 27275820 PMCID: PMC4926424 DOI: 10.3390/ijms17060890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aaraby Yoheswaran Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| |
Collapse
|
11
|
Yant L, Bomblies K. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication. Genes Dev 2015; 29:2405-19. [PMID: 26637526 PMCID: PMC4691946 DOI: 10.1101/gad.271072.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.
Collapse
Affiliation(s)
- Levi Yant
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|