1
|
Alzarka B, Charnaya O, Gunay-Aygun M. Diseases of the primary cilia: a clinical characteristics review. Pediatr Nephrol 2025; 40:611-627. [PMID: 39340573 DOI: 10.1007/s00467-024-06528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Ciliopathies encompass a broad spectrum of diseases stemming from dysfunction of the primary (non-motile) cilia, present on almost all cells in the human body. These disorders include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, and multisystem ciliopathies such as Joubert, Meckel, Bardet-Biedl, Alström, oral-facial-digital syndromes, and skeletal ciliopathies. The majority of these ciliopathies are associated with fibrocystic kidney disease resulting in progressive kidney dysfunction. In addition, many ciliopathies are associated with extra-renal manifestations including congenital hepatic fibrosis, retinal dystrophy, obesity, and brain and skeletal anomalies. The diagnoses may be challenging due to their overlapping clinical features and molecular heterogeneity. To date, over 190 genes encoding proteins that localize to the primary cilia have been identified as disease-causing. This review will discuss the clinical features of the most frequently encountered disorders of primary cilia.
Collapse
Affiliation(s)
- Bakri Alzarka
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga Charnaya
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meral Gunay-Aygun
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| |
Collapse
|
2
|
Esteve-Garcia A, Sau C, Padró-Miquel A, Català-Mora J, Aguilera C, Cobos E. Expanding the Clinical Spectrum of CEP290 Variants: A Case Report on Non-Syndromic Retinal Dystrophy with a Mild Phenotype. Genes (Basel) 2024; 15:1584. [PMID: 39766851 PMCID: PMC11675463 DOI: 10.3390/genes15121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Biallelic pathogenic variants in the CEP290 gene are typically associated with severe, early-onset inherited retinal dystrophies (IRDs) in both syndromic and non-syndromic forms. This study explores the phenotypic variability of non-syndromic IRDs associated with CEP290 variants, focusing on two siblings with biallelic variants, one of whom exhibits a remarkably mild phenotype, thereby expanding the clinical spectrum. Methods: Whole-exome sequencing (WES) and mRNA analysis were performed to identify and characterize CEP290 variants in the siblings. Comprehensive ophthalmologic evaluations assessed retinal function and disease progression. Results: Two CEP290 variants, a frameshift (c.955del, p.(Ser319LeufsTer16)) and a missense (c.5777G>C, p.(Arg1926Pro)), were identified in trans in both siblings. Despite sharing the same genetic variants, the sister exhibited significantly preserved retinal function, while the brother presented with a more severe, progressive retinal dystrophy. Conclusions: This study broadens the phenotypic spectrum of non-syndromic CEP290-related IRDs, demonstrating variability in disease severity ranging from mild to severe. These findings highlight the importance of personalized monitoring and tailored management strategies based on individual clinical presentations of CEP290-related IRDs.
Collapse
Affiliation(s)
- Anna Esteve-Garcia
- Clinical Genetics Unit, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (A.E.-G.); (C.S.)
- PhD Program in Genetics, Faculty of Biology SED of Medicine and Health Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Sau
- Clinical Genetics Unit, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (A.E.-G.); (C.S.)
| | - Ariadna Padró-Miquel
- Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Jaume Català-Mora
- Department of Ophthalmology, SJD Barcelona Children’s Hospital, Esplugues de Llobregat, 08950 Barcelona, Spain;
- The Hereditary Retinal Dystrophies Unit, Ophthalmology Departments at SJD Barcelona Children’s Hospital and University Hospital of Bellvitge, 08950 Barcelona, Spain
| | - Cinthia Aguilera
- Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Estefania Cobos
- The Hereditary Retinal Dystrophies Unit, Ophthalmology Departments at SJD Barcelona Children’s Hospital and University Hospital of Bellvitge, 08950 Barcelona, Spain
- Department of Ophthalmology, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
3
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Malka S, Biswas P, Berry AM, Sangermano R, Ullah M, Lin S, D'Antonio M, Jestin A, Jiao X, Quinodoz M, Sullivan L, Gardner JC, Place EM, Michaelides M, Kaminska K, Mahroo OA, Schiff E, Wright G, Cancellieri F, Vaclavik V, Santos C, Rehman AU, Mehrotra S, Azhar Baig HM, Iqbal M, Ansar M, Santos LC, Sousa AB, Tran VH, Matsui H, Bhatia A, Naeem MA, Akram SJ, Akram J, Riazuddin S, Ayuso C, Pierce EA, Hardcastle AJ, Riazuddin SA, Frazer KA, Hejtmancik JF, Rivolta C, Bujakowska KM, Arno G, Webster AR, Ayyagari R. Substitution of a single non-coding nucleotide upstream of TMEM216 causes non-syndromic retinitis pigmentosa and is associated with reduced TMEM216 expression. Am J Hum Genet 2024; 111:2012-2030. [PMID: 39191256 PMCID: PMC11393691 DOI: 10.1016/j.ajhg.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.
Collapse
Affiliation(s)
- Samantha Malka
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Pooja Biswas
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anne-Marie Berry
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Siying Lin
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Matteo D'Antonio
- Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Aleksandr Jestin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Lori Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Emily M Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Department of Ophthalmology, St Thomas' Hospital, London, UK; Section of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Genevieve Wright
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal; Faculdade de Ciências Médicas, NMS, FCM, NOVA Medical School, Universidade NOVA de Lisboa, 7 iNOVA4Health, Lisboa, Portugal
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hafiz Muhammad Azhar Baig
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Muhammad Iqbal
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ansar
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi 74200, Pakistan
| | | | - Ana Berta Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Lisboa Norte (CHULN), Lisboa, Portugal; Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Lisboa, Portugal
| | - Viet H Tran
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Hiroko Matsui
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anjana Bhatia
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Javed Akram
- Allama Iqbal Medical Research Center, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan; Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Gavin Arno
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Greenwood Genetic Center, Greenwood, SC, USA
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
5
|
Serpieri V, Mortarini G, Loucks H, Biagini T, Micalizzi A, Palmieri I, Dempsey JC, D'Abrusco F, Mazzotta C, Battini R, Bertini ES, Boltshauser E, Borgatti R, Brockmann K, D'Arrigo S, Nardocci N, Fischetto R, Agolini E, Novelli A, Romano A, Romaniello R, Stanzial F, Signorini S, Strisciuglio P, Gana S, Mazza T, Doherty D, Valente EM. Recurrent, founder and hypomorphic variants contribute to the genetic landscape of Joubert syndrome. J Med Genet 2023; 60:885-893. [PMID: 36788019 PMCID: PMC10447400 DOI: 10.1136/jmg-2022-108725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.
Collapse
Affiliation(s)
| | - Giulia Mortarini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hailey Loucks
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ilaria Palmieri
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Fulvio D'Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Eugen Boltshauser
- Departement of Pediatric Neurology, University Children's Hospital Zürich, Zurich, Switzerland
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Knut Brockmann
- Interdisciplinary Pediatric Centre for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Centre, Georg August University, Göttingen, Germany
| | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "C Besta", Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "C Besta", Milan, Italy
| | - Rita Fischetto
- Clinical Genetics Unit, Department of Pediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alfonso Romano
- Section of Pediatrics, Department of Medical Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bozen, Bozen, Italy
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Strisciuglio
- Section of Pediatrics, Department of Medical Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Moreno-Leon L, Quezada-Ramirez MA, Bilsbury E, Kiss C, Guerin A, Khanna H. Prenatal phenotype analysis and mutation identification of a fetus with meckel gruber syndrome. Front Genet 2022; 13:982127. [PMID: 36061204 PMCID: PMC9437271 DOI: 10.3389/fgene.2022.982127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Ciliopathies are a class of inherited severe human disorders that occur due to defective formation or function of cilia. The RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein1-like) gene encodes for a ciliary protein involved in regulating cilia formation and function. Mutations in RPGRIP1L cause ciliopathies associated with severe embryonic defects, such as Meckel-Gruber Syndrome (MKS). Here we report RPGRIP1L mutation analysis in a family diagnosed with MKS. The clinical manifestations of the fetus included thoraco-lumbar open neural tube defect with associated Chiari type II malformation and hydrocephalus, bilateral club feet, and single right kidney/ureter. Analysis of the parental DNA samples revealed that the father carried a previously reported mutation R1236C/+ whereas the mother had a novel splice site mutation IVS6+1 G > A/+ in RPGRIP1L. The splice site mutation resulted in the exclusion of in-frame exon 6 of RPGRIP1L (RPGRIP1L-∆Ex6) but expressed a stable protein in fibroblasts derived from the parents’ skin biopsies. The GFP-RPGRIP1L-∆Ex6 mutant protein exhibited relatively reduced ciliary localization in transiently-transfected cultured RPE-1 cells. Taken together, this study identifies a novel RPGRIP1L variant RPGRIP1L-∆Ex6, which in combination with RPGRIP1L-R1236C is associated with MKS. We also suggest that the deletion of exon 6 of RPGRIP1L leads to reduced ciliary localization of RPGRIP1L, indicating a plausible mechanism of associated disease.
Collapse
Affiliation(s)
- Laura Moreno-Leon
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Marco A. Quezada-Ramirez
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Evan Bilsbury
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Courtney Kiss
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Andrea Guerin
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Hemant Khanna
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: Hemant Khanna, ,
| |
Collapse
|
7
|
Lange KI, Best S, Tsiropoulou S, Berry I, Johnson CA, Blacque OE. Interpreting ciliopathy-associated missense variants of uncertain significance (VUS) in Caenorhabditis elegans. Hum Mol Genet 2022; 31:1574-1587. [PMID: 34964473 PMCID: PMC9122650 DOI: 10.1093/hmg/ddab344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Zhang P, Wu B, Wang Y, Ren Y, Li G, Qan Y, Lei C, Wang H. Identification of Pathogenic Variants in RPGRIP1L with Meckel Syndrome and Preimplantation Genetic Testing in a Chinese Family. Reprod Sci 2022; 29:2200-2207. [PMID: 35233738 DOI: 10.1007/s43032-022-00898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Meckel syndrome (MKS, OMIM:249000) is a severe multiorgan dysplastic lethal ciliopathy with extreme genetic heterogeneity. Defects in RPGRIP1L are the cause of MKS type 5 (MKS5, OMIM:611561). However, only six different variants have been reported in eight MKS5 cases with biallelic variants. Here, we describe the case of a Chinese family with recurrent fetal malformations. The proband was a 14-week gestation fetus with occipital encephalocele, polycystic kidneys, polydactyly, and single ventricular heart. Trio whole-exome sequencing was performed, and two novel compound heterozygous variants of RPGRIP1L (c.427C > T, p.Gln143Ter and c.1351-11A > G) were identified. cDNA studies of the splicing variant demonstrated a reading-frame shift with a subsequent premature stop codon (p.Glu451Serfs*6). After the proband was diagnosed with MKS5, the couple chose preimplantation genetic testing for monogenic disorders (PGT-M) and prenatal genetic diagnosis (PND) to prevent the transmission of pathogenic variants, which led to a successful pregnancy recently. In summary, we have identified two novel variants of RPGRIP1L in a Chinese family, which expand the variant spectrum of MKS5. Furthermore, we have described the successful application of PGT-M and PND in this family. These techniques could assist couples with a genetic predisposition in avoiding the transmission of genetic diseases to their offspring.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yunyun Ren
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Qan
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Prenatal Diagnosis Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. .,Department of Genetics, Shanghai JiAi Genetics & IVF Institute, Shanghai, China.
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Barroso‐Gil M, Olinger E, Ramsbottom SA, Molinari E, Miles CG, Sayer JA. Update of genetic variants in CEP120 and CC2D2A-With an emphasis on genotype-phenotype correlations, tissue specific transcripts and exploring mutation specific exon skipping therapies. Mol Genet Genomic Med 2021; 9:e1603. [PMID: 33486889 PMCID: PMC8683696 DOI: 10.1002/mgg3.1603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein. METHODS We systematically reviewed and annotated genetic variants and clinical presentations reported in CEP120- and CC2D2A-associated disease and we combined in silico and ex vivo approaches to study tissue-specific transcripts and identify molecular targets for exon skipping. RESULTS We confirmed more severe clinical presentations associated with truncating CC2D2A mutations. We identified and confirmed basal exon skipping in the kidney, with possible relevance for organ-specific disease manifestations. Finally, we proposed a multimodal approach to classify exons amenable to exon skipping. By mapping reported variants, 14 truncating mutations in 7 CC2D2A exons were identified as potentially rescuable by targeted exon skipping, an approach that is already in clinical use for other inherited human diseases. CONCLUSION Genotype-phenotype correlations for CC2D2A support the deleteriousness of null alleles and CC2D2A, but not CEP120, offers potential for therapeutic exon skipping approaches.
Collapse
Affiliation(s)
- Miguel Barroso‐Gil
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Eric Olinger
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Simon A. Ramsbottom
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Elisa Molinari
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Colin G. Miles
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - John A. Sayer
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Renal ServicesThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle Upon TyneUK
- NIHR Newcastle Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
10
|
Liu Y, Wang H, Jin X, Shao Q, Pan Q. Molecular Diagnosis and Prenatal Phenotype Analysis of Eight Fetuses With Ciliopathies. Front Genet 2021; 12:705808. [PMID: 34675960 PMCID: PMC8523853 DOI: 10.3389/fgene.2021.705808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Human ciliopathies are hereditary conditions caused by variants in ciliary-associated genes. Ciliopathies are often characterized by multiple system defects. However, it is not easy to make a definite diagnosis in the prenatal period only based on the imageology. In this report, eight new prenatal cases from five unrelated families diagnosed with ciliopathies were systematically examined. The clinical manifestations of these fetuses showed such prenatal diagnostic features as occipital encephalocele, and polydactyly and polycystic kidneys. Situs inversus caused by CPLANE1 variant was first reported. In Family 1 and Family 3, homozygous variants of CPLANE1 and NPHP4 caused by consanguineous marriage and uniparental disomy were detected by whole-exome sequencing, respectively. In Family 2, Family 4 and Family 5, compound heterozygotes of TMEM67 and DYNC2H1 including two novel missense variants and one novel nonsense variant were identified. The distribution of pathogenic missense variants along TMEM67 gene mainly clustered in the extracellular cysteine rich region, extracellular area with unknown structure, and the transmembrane regions. Genotype-phenotype relationship between CPLANE1 and TMEM67 genes was concluded. This report describes new clinical manifestations and novel variants in CPLANE1, TMEM67, NPHP4, and DYNC2H1.
Collapse
Affiliation(s)
- Yuefang Liu
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Xin Jin
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| | - Qiong Pan
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
11
|
Brunetti-Pierri R, Karali M, Testa F, Cappuccio G, Onore ME, Romano F, De Rosa G, Tedeschi E, Brunetti-Pierri N, Banfi S, Simonelli F. Mild Clinical Presentation of Joubert Syndrome in a Male Adult Carrying Biallelic MKS1 Truncating Variants. Diagnostics (Basel) 2021; 11:diagnostics11071218. [PMID: 34359301 PMCID: PMC8303764 DOI: 10.3390/diagnostics11071218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic variants in the MKS1 gene are responsible for a ciliopathy with a wide spectrum of clinical manifestations ranging from Meckel and Joubert syndrome (JBTS) to Bardet-Biedl syndrome, and involving the central nervous system, liver, kidney, skeleton, and retina. We report a 39-year-old male individual presenting with isolated Retinitis Pigmentosa (RP), as assessed by full ophthalmological evaluation including Best-Corrected Visual Acuity measurements, fundus examination, Goldmann Visual Field test, and full-field Electroretinography. A clinical exome identified biallelic nonsense variants in MKS1 that prompted post-genotyping investigations for systemic abnormalities of ciliopathy. Brain magnetic resonance imaging revealed malformations of the posterior cranial fossa with the ‘molar tooth sign’ and cerebellar folia dysplasia, which are both distinctive features of JBTS. No other organ or skeletal abnormalities were detected. This case illustrates the power of clinical exome for the identification of the mildest forms of a disease spectrum, such as a mild JBTS with RP in the presented case of an individual carrying biallelic truncating variants in MKS1.
Collapse
Affiliation(s)
- Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
- Correspondence:
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Maria Elena Onore
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Francesca Romano
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Giuseppe De Rosa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
- Department of Translational Medicine, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| |
Collapse
|
12
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
13
|
David O, Eskin-Schwartz M, Ling G, Dolgin V, Kristal E, Benkowitz E, Osyntsov L, Gradstein L, Birk OS, Loewenthal N, Yerushalmi B. Pituitary stalk interruption syndrome broadens the clinical spectrum of the TTC26 ciliopathy. Clin Genet 2020; 98:303-307. [PMID: 32617964 DOI: 10.1111/cge.13805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
Ciliopathies are a heterogeneous group of disorders, related to abnormal ciliary function. Severe biliary ciliopathy, caused by bi-allelic mutations in TTC26, has been recently described in the context of a syndrome of polydactyly and severe neonatal cholestasis, with brain, kidney and heart involvement. Pituitary involvement has not been previously reported for patients with this condition. Pituitary stalk interruption syndrome (PSIS) is a congenital anomaly of the pituitary gland, diagnosed by characteristic MRI findings. We now describe four patients with TTC26 ciliopathy due to a homozygous c.695A>G p.Asn232Ser mutation and delineate PSIS as a novel clinical feature of this disorder, highlighting an important role of TTC26 in pituitary development.
Collapse
Affiliation(s)
- Odeya David
- Pediatric Endocrinology Unit, Soroka University Medical Center, Beer-Sheva, Israel.,Saban Pediatric Medical Center for Israel, Soroka University Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Eskin-Schwartz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Genetics Institute at Soroka University Medical Center and the Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Galina Ling
- Saban Pediatric Medical Center for Israel, Soroka University Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Gastroenterology Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Vadim Dolgin
- Genetics Institute at Soroka University Medical Center and the Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Kristal
- Saban Pediatric Medical Center for Israel, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ela Benkowitz
- Radiology Department, Soroka Medical Center, Beer-Sheva, Israel
| | - Lidia Osyntsov
- Institute of Pathology, Soroka Medical Center, Beer-Sheva, Israel
| | - Libe Gradstein
- Genetics Institute at Soroka University Medical Center and the Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Ophthalmology Clinic, Southern District, Clalit Health Services, Beer-sheva, Israel
| | - Ohad S Birk
- Genetics Institute at Soroka University Medical Center and the Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases, at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka University Medical Center, Beer-Sheva, Israel.,Saban Pediatric Medical Center for Israel, Soroka University Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Saban Pediatric Medical Center for Israel, Soroka University Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Gastroenterology Unit, Soroka University Medical Center, Beer-Sheva, Israel
| |
Collapse
|
14
|
Bui TPH, Nguyen NT, Ngo VD, Nguyen HN, Ly TTH, Do HD, Huynh MT. Novel compound heterozygous TMEM67 variants in a Vietnamese family with Joubert syndrome: a case report. BMC MEDICAL GENETICS 2020; 21:18. [PMID: 32000717 PMCID: PMC6993522 DOI: 10.1186/s12881-020-0962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022]
Abstract
Background Joubert syndrome is a genetically heterogeneous autosomal recessive ciliopathy characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles and a deep interpeduncular fossa, known as “molar tooth sign” associated with hypotonia, respiratory control disturbances and abnormal eye movements. To date, pathogenic variants in over 35 genes are known to cause autosomal recessive Joubert Syndrome, while one gene is associated with X-linked recessive inheritance. Case presentation We describe here a non-consanguineous Vietnamese family with Joubert syndrome, a fetus and 10-year-old developmentally delayed boy. Ultrasonography showed ventriculomegaly at 26 + 6 weeks of gestation in the fetus. The 10-year-old-boy was diagnosed with cerebral palsy of unknown origin. Clinical physical examination at the age of 10, he showed clinical features of Joubert syndrome including typical facial dysmorphism, ataxia, severe psychomotor delay, oculomotor apraxia and molar tooth sign on brain MRI. Whole exome sequencing analysis identified a novel compound heterozygous c.725A > G p.Asn242Ser and c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant in the proband and the affected fetus. These two variants were inherited from each parent and confirmed by Sanger sequencing. The variant c.725A > G p.Asn242Ser was previously documented in patients with JS, the novel splice-site c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant produced an aberrant transcript with the loss of four nucleotides of exon 03. Conclusion This study confirms the diagnosis of Joubert syndrome in a Vietnamese family and expands the mutational spectrum of TMEM67 sequence variations. We also highlight the importance of molecular approaches to unravel underlying mechanisms of human genetic disorders. Early precise diagnosis could help provide further accurate genetic counseling for recurrence-risk assessment, future diagnostic option, management as well as treatment guidance for rare disorders.
Collapse
Affiliation(s)
- Thi Phuong Hoa Bui
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Ngoc Tu Nguyen
- Fetal Medicine Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Van Doan Ngo
- Diagnostic Imaging Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Hoai-Nghia Nguyen
- Center for Molecular Medicine, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Thi Thanh Ha Ly
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Huy Duong Do
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Minh-Tuan Huynh
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam.
| |
Collapse
|
15
|
|
16
|
Zhang R, Chen S, Han P, Chen F, Kuang S, Meng Z, Liu J, Sun R, Wang Z, He X, Li Y, Guan Y, Yue Z, Li C, Kumar Dey S, Zhu Y, Banerjee S. Whole exome sequencing identified a homozygous novel variant in CEP290 gene causes Meckel syndrome. J Cell Mol Med 2019; 24:1906-1916. [PMID: 31840411 PMCID: PMC6991682 DOI: 10.1111/jcmm.14887] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
Meckel syndrome (MKS) is a pre‐ or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo‐occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35‐years‐old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715*) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild‐type CEP290 protein of 290 KD. Hence, it is a loss‐of‐function variant. We also found that the mutant cilium appears longer in length than the wild‐type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Shaoyun Chen
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Peng Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Fangfang Chen
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Shan Kuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zhuo Meng
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Junnian Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Ruliang Sun
- Department of Pathology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Zhiwei Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaohong He
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Yong Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuanning Guan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Chen Li
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Kolkata, India.,Brainware University, Barasat, India
| | - Yuanfang Zhu
- Division of Maternal-Fetal Medicine, Bao'an Women and Children's Hospital, Jinan University, Shenzhen, China
| | - Santasree Banerjee
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Brainware University, Barasat, India
| |
Collapse
|
17
|
Wheway G, Lord J, Baralle D. Splicing in the pathogenesis, diagnosis and treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194433. [PMID: 31698098 DOI: 10.1016/j.bbagrm.2019.194433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
18
|
Kim YJ, Kim J. Therapeutic perspectives for structural and functional abnormalities of cilia. Cell Mol Life Sci 2019; 76:3695-3709. [PMID: 31147753 PMCID: PMC11105626 DOI: 10.1007/s00018-019-03158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Ciliopathies are a group of hereditary disorders that result from structural or functional abnormalities of cilia. Recent intense research efforts have uncovered the genetic bases of ciliopathies, and our understanding of the assembly and functions of cilia has been improved significantly. Although mechanism-specific therapies for ciliopathies have not yet received regulatory approval, the use of innovative therapeutic modalities such as oligonucleotide therapy, gene replacement therapy, and gene editing in addition to symptomatic treatments are expected to provide valid treatment options in the near future. Moreover, candidate chemical compounds for developing small molecule drugs to treat ciliopathies have been identified. This review introduces the key features of cilia and ciliopathies, and summarizes the advances as well as the challenges that remain with the development of therapies for treating ciliopathies.
Collapse
Affiliation(s)
- Yong Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Tan K, Liu P, Pang L, Yang W, Hou F. A human ciliopathy with polycystic ovarian syndrome and multiple subcutaneous cysts: A rare case report. Medicine (Baltimore) 2018; 97:e13531. [PMID: 30558011 PMCID: PMC6320131 DOI: 10.1097/md.0000000000013531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Ciliopathies is a group of clinically and genetically overlapping disorders due to cilia abnormalities and multiple organ systems are involved in. PATIENT CONCERNS We present a young female patient who showed renal function impairment, Caroli syndrome (CS), liver cirrhosis, polycystic ovarian syndrome, and multiple subcutaneous cysts. DIAGNOSES The patient was diagnosed with ciliopathy according to the clinical manifestations and whole-genome sequencing. INTERVENTIONS She received treatment of intravenous albumin, polyene phosphatidyl choline, furosemide, and antisterone. OUTCOMES The patient showed clinical improvement in her edema and liver tests, and ultrasonography revealed that the ascites had disappeared. Unfortunately, the edema relapsed a year later. The patient received the same treatment as before, and there was clinical improvement of the edema. Since the family cannot afford liver and kidney transplantation, the patient only accepted symptomatic treatment. LESSONS Polycystic ovarian syndrome and multiple subcutaneous cysts have never before been reported to be associated with ciliopathy. This finding could remind doctors to consider the possibility of ciliopathy disease for patients suffering from similar conditions. In addition, the phenotype of the patient differs from those of patients reported with the same mutations, which also reminds doctors that the clinical manifestation of a given mutation may show patient-specific differences. This case report extends the phenotypic spectrum of ciliopathy, and these findings might represent a new ciliopathy syndrome, which could facilitate the diagnosis of ciliopathies.
Collapse
Affiliation(s)
- Kangan Tan
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Peng Liu
- Department of Cardiology, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia
| | - Lili Pang
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Wanna Yang
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Fengqin Hou
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
- Department of Infectious Diseases, Peking University International Hospital, China
| |
Collapse
|
20
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
21
|
Jana SC, Mendonça S, Machado P, Werner S, Rocha J, Pereira A, Maiato H, Bettencourt-Dias M. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat Cell Biol 2018; 20:928-941. [PMID: 30013109 DOI: 10.1038/s41556-018-0132-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
Abstract
Cilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism, Drosophila melanogaster. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.
Collapse
Affiliation(s)
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Patologia e Imunologia Molecular (IPATIMUP), Universidade do Porto, Porto, Portugal.,Portugal and Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Pedro Machado
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Sascha Werner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jaqueline Rocha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
| | - António Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
22
|
König JC, Titieni A, Konrad M. Network for Early Onset Cystic Kidney Diseases-A Comprehensive Multidisciplinary Approach to Hereditary Cystic Kidney Diseases in Childhood. Front Pediatr 2018; 6:24. [PMID: 29497606 PMCID: PMC5819567 DOI: 10.3389/fped.2018.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
Hereditary cystic kidney diseases comprise a complex group of genetic disorders representing one of the most common causes of end-stage renal failure in childhood. The main representatives are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome, and hepatocyte nuclear factor-1beta nephropathy. Within the last years, genetic efforts have brought tremendous progress for the molecular understanding of hereditary cystic kidney diseases identifying more than 70 genes. Yet, genetic heterogeneity, phenotypic variability, a lack of reliable genotype-phenotype correlations and the absence of disease-specific biomarkers remain major challenges for physicians treating children with cystic kidney diseases. To tackle these challenges comprehensive scientific approaches are urgently needed that match the ongoing "revolution" in genetics and molecular biology with an improved efficacy of clinical data collection. Network for early onset cystic kidney diseases (NEOCYST) is a multidisciplinary, multicenter collaborative combining a detailed collection of clinical data with translational scientific approaches addressing the genetic, molecular, and functional background of hereditary cystic kidney diseases. Consisting of seven work packages, including an international registry as well as a biobank, NEOCYST is not only dedicated to current scientific questions, but also provides a platform for longitudinal clinical surveillance and provides precious sources for high-quality research projects and future clinical trials. Funded by the German Federal Government, the NEOCYST collaborative started in February 2016. Here, we would like to introduce the rationale, design, and objectives of the network followed by a short overview on the current state of progress.
Collapse
Affiliation(s)
- Jens Christian König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Andrea Titieni
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | | |
Collapse
|
23
|
Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, Tysoe C, Jones G, Gunning AC, Lango Allen H, Bradley L, Brady AF, Carley H, Carmichael J, Castle B, Cilliers D, Cox H, Deshpande C, Dixit A, Eason J, Elmslie F, Fry AE, Fryer A, Holder M, Homfray T, Kivuva E, McKay V, Newbury‐Ecob R, Parker M, Savarirayan R, Searle C, Shannon N, Shears D, Smithson S, Thomas E, Turnpenny PD, Varghese V, Vasudevan P, Wakeling E, Baple EL, Ellard S. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. Prenat Diagn 2018; 38:33-43. [PMID: 29096039 PMCID: PMC5836855 DOI: 10.1002/pd.5175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.
Collapse
|
24
|
Shi Y, Su Y, Lipschutz JH, Lobo GP. Zebrafish as models to study ciliopathies of the eye and kidney. CLINICAL NEPHROLOGY AND RESEARCH 2017; 1:6-9. [PMID: 29553143 PMCID: PMC5851006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cilia are highly-conserved organelles projecting from the cell surface of nearly every cell type in vertebrates. Ciliary proteins have essential functions in human physiology, particularly in signaling and organ development. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that characteristically include, retinal degeneration, renal disease and cerebral anomalies. The terminology "Ciliopathies" refers to inherited human disorders caused by genetic mutations in ciliary genes, leading to cilia dysfunctions that form an important and ever expanding multi-organ disease spectrum. Ciliopathies are a diverse class of congenital diseases, with twenty-four recognized syndromes caused by mutations in at least ninety different genes. In order to start to dissect the phenotypes of each disease associated with ciliary dysfunction it is necessary to understand the mechanisms underlying the phenotype using suitable animal models. Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies, with a focus on ciliopathies affecting the eye and the kidney.
Collapse
Affiliation(s)
- Yi Shi
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA,Eye Hospital, Tianjin Medical University, Tianjin, 300384, China
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Joshua H. Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA,Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA,Correspondence: Glenn P Lobo, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA, Tel: 843-876-2371;
| |
Collapse
|
25
|
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017; 241:294-309. [PMID: 27859258 DOI: 10.1002/path.4843] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 00143, Rome, Italy
| |
Collapse
|
26
|
Stayner C, Poole CA, McGlashan SR, Pilanthananond M, Brauning R, Markie D, Lett B, Slobbe L, Chae A, Johnstone AC, Jensen CG, McEwan JC, Dittmer K, Parker K, Wiles A, Blackburne W, Leichter A, Leask M, Pinnapureddy A, Jennings M, Horsfield JA, Walker RJ, Eccles MR. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci Rep 2017; 7:1601. [PMID: 28487520 PMCID: PMC5431643 DOI: 10.1038/s41598-017-01519-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023] Open
Abstract
Meckel syndrome (MKS) is an inherited autosomal recessive hepatorenal fibrocystic syndrome, caused by mutations in TMEM67, characterized by occipital encephalocoele, renal cysts, hepatic fibrosis, and polydactyly. Here we describe an ovine model of MKS, with kidney and liver abnormalities, without polydactyly or occipital encephalocoele. Homozygous missense p.(Ile681Asn; Ile687Ser) mutations identified in ovine TMEM67 were pathogenic in zebrafish phenotype rescue assays. Meckelin protein was expressed in affected and unaffected kidney epithelial cells by immunoblotting, and in primary cilia of lamb kidney cyst epithelial cells by immunofluorescence. In contrast to primary cilia of relatively consistent length and morphology in unaffected kidney cells, those of affected cyst-lining cells displayed a range of short and extremely long cilia, as well as abnormal morphologies, such as bulbous regions along the axoneme. Putative cilia fragments were also consistently located within the cyst luminal contents. The abnormal ciliary phenotype was further confirmed in cultured interstitial fibroblasts from affected kidneys. These primary cilia dysmorphologies and length control defects were significantly greater in affected cells compared to unaffected controls. In conclusion, we describe abnormalities involving primary cilia length and morphology in the first reported example of a large animal model of MKS, in which we have identified TMEM67 mutations.
Collapse
Affiliation(s)
- C Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - C A Poole
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,150 Warren Street, Wanaka, 9305, New Zealand
| | - S R McGlashan
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - M Pilanthananond
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - D Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - B Lett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L Slobbe
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Chae
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A C Johnstone
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - C G Jensen
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - J C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - K Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - K Parker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Wiles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - W Blackburne
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Jennings
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - J A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
27
|
Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel-Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances. Front Pediatr 2017; 5:244. [PMID: 29209597 PMCID: PMC5701918 DOI: 10.3389/fped.2017.00244] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive congenital anomaly syndrome caused by mutations in genes encoding proteins that are structural or functional components of the primary cilium. Conditions that are caused by mutations in ciliary genes are collectively termed the ciliopathies, and MKS represents the most severe condition in this group of disorders. The primary cilium is a microtubule-based organelle, projecting from the apical surface of vertebrate cells. It acts as an "antenna" that receives and transduces chemosensory and mechanosensory signals, but also regulates diverse signaling pathways, such as Wnt and Shh, that have important roles during embryonic development. Most MKS proteins localize to a distinct ciliary compartment called the transition zone (TZ) that regulates the trafficking of cargo proteins or lipids. In this review, we provide an up-to-date summary of MKS clinical features, molecular genetics, and clinical diagnosis. MKS has a highly variable phenotype, extreme genetic heterogeneity, and displays allelism with other related ciliopathies such as Joubert syndrome, presenting significant challenges to diagnosis. Recent advances in genetic technology, with the widespread use of multi-gene panels for molecular testing, have significantly improved diagnosis, genetic counseling, and the clinical management of MKS families. These include the description of some limited genotype-phenotype correlations. We discuss recent insights into the molecular basis of disease in MKS, since the functions of some of the relevant ciliary proteins have now been determined. A common molecular etiology appears to be disruption of ciliary TZ structure and function, affecting essential developmental signaling and the regulation of secondary messengers.
Collapse
Affiliation(s)
- Verity Hartill
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Saghira Malik Sharif
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Gabrielle Wheway
- Faculty of Health and Applied Sciences, Department of Applied Sciences, UWE Bristol, Bristol, United Kingdom
| | - Colin A Johnson
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
28
|
Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E, Al Hashem A, Derar N, Alsharif H, Aldahmesh MA, Alazami AM, Hashem M, Ibrahim N, Abdulwahab FM, Sonbul R, Alkuraya H, Alnemer M, Al Tala S, Al-Husain M, Morsy H, Seidahmed MZ, Meriki N, Al-Owain M, AlShahwan S, Tabarki B, Salih MA, Faquih T, El-Kalioby M, Ueffing M, Boldt K, Logan CV, Parry DA, Al Tassan N, Monies D, Megarbane A, Abouelhoda M, Halees A, Johnson CA, Alkuraya FS. Characterizing the morbid genome of ciliopathies. Genome Biol 2016; 17:242. [PMID: 27894351 PMCID: PMC5126998 DOI: 10.1186/s13059-016-1099-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1099-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Basudha Basu
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nada Derar
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawda Sonbul
- Department of Pediatrics, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatric, Genetic Unit, Armed Forces Hospital Southern Region, Khamis Mushayt, Saudi Arabia
| | - Muneera Al-Husain
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Heba Morsy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Neama Meriki
- Department of Obstetrics and Gynecology, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad AlShahwan
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Tariq Faquih
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed El-Kalioby
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Bioanalytics, Center for Ophthalmology, Eberhard-Karls University Tübingen, 72076, Tübingen, Germany
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Bioanalytics, Center for Ophthalmology, Eberhard-Karls University Tübingen, 72076, Tübingen, Germany
| | - Clare V Logan
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - David A Parry
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Anason Halees
- Health Information Technology Affairs, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Colin A Johnson
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Suzuki T, Miyake N, Tsurusaki Y, Okamoto N, Alkindy A, Inaba A, Sato M, Ito S, Muramatsu K, Kimura S, Ieda D, Saitoh S, Hiyane M, Suzumura H, Yagyu K, Shiraishi H, Nakajima M, Fueki N, Habata Y, Ueda Y, Komatsu Y, Yan K, Shimoda K, Shitara Y, Mizuno S, Ichinomiya K, Sameshima K, Tsuyusaki Y, Kurosawa K, Sakai Y, Haginoya K, Kobayashi Y, Yoshizawa C, Hisano M, Nakashima M, Saitsu H, Takeda S, Matsumoto N. Molecular genetic analysis of 30 families with Joubert syndrome. Clin Genet 2016; 90:526-535. [PMID: 27434533 DOI: 10.1111/cge.12836] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the 'molar tooth sign'. JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole-exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, 9 of 12 CEP290 disease alleles were c.6012-12T>A (75.0%), an allele that has not been reported in non-Japanese populations. Therefore c.6012-12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM138/BBS1, respectively). BBS1 is the causative gene in Bardet-Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.
Collapse
Affiliation(s)
- T Suzuki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Y Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - A Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - A Inaba
- Yokohama City University Medical Center, Children's Medical Center, Yokohama, Japan
| | - M Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - S Ito
- Department of Pediatrics, Graduate school of Medicine, Yokohama City University, Yokohama, Japan
| | - K Muramatsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - S Kimura
- Kumamoto City Child Development Support Center, Kumamoto, Japan
| | - D Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Hiyane
- Division of Child Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Okinawa, Japan
| | - H Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - K Yagyu
- Department of Child and Adolescent Psychiatry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - H Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - M Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Fueki
- Division of Rehabilitation, Nagano Children's Hospital, Nagano, Japan
| | - Y Habata
- Department of Pediatric Rehabilitation, Hokkaido Medical Center for Child Health and Rehabilitation, Hokkaido, Japan
| | - Y Ueda
- Nire-no-kai Children's Clinic, Hokkaido, Japan
| | - Y Komatsu
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Y Shitara
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - K Ichinomiya
- Department of Neonatology, Gunma Children's Medical Center, Gunma, Japan
| | - K Sameshima
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Y Tsuyusaki
- Division of Neurology, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - K Kurosawa
- Division of Medical Genetics, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Y Kobayashi
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan.,Academic Renal Unit, School of Clinical Science, University of Bristol, Bristol, UK
| | - C Yoshizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - M Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - S Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
30
|
Kang HG, Lee HK, Ahn YH, Joung JG, Nam J, Kim NKD, Ko JM, Cho MH, Shin JI, Kim J, Park HW, Park YS, Ha IS, Chung WY, Lee DY, Kim SY, Park WY, Cheong HI. Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. Exp Mol Med 2016; 48:e251. [PMID: 27491411 PMCID: PMC5007639 DOI: 10.1038/emm.2016.63] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Nephronophthisis-related ciliopathy (NPHP-RC) is a common genetic cause of end-stage renal failure during childhood and adolescence and exhibits an autosomal recessive pattern of inheritance. Genetic diagnosis is quite limited owing to genetic heterogeneity in NPHP-RC. We designed a novel approach involving the step-wise screening of Sanger sequencing and targeted exome sequencing for the genetic diagnosis of 55 patients with NPHP-RC. First, five NPHP-RC genes were analyzed by Sanger sequencing in phenotypically classified patients. Known pathogenic mutations were identified in 12 patients (21.8%); homozygous deletions of NPHP1 in 4 juvenile nephronophthisis patients, IQCB1/NPHP5 mutations in 3 Senior–Løken syndrome patients, a CEP290/NPHP6 mutation in 1 Joubert syndrome patient, and TMEM67/MKS3 mutations in 4 Joubert syndrome patients with liver involvement. In the remaining undiagnosed patients, we applied targeted exome sequencing of 34 ciliopathy-related genes to detect known pathogenic mutations in 7 (16.3%) of 43 patients. Another 18 likely damaging heterozygous variants were identified in 13 NPHP-RC genes in 18 patients. In this study, we report a variety of pathogenic and candidate mutations identified in 55 patients with NPHP-RC in Korea using a step-wise application of two genetic tests. These results support the clinical utility of targeted exome sequencing to resolve the issue of allelic and genetic heterogeneity in NPHP-RC.
Collapse
Affiliation(s)
- Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Kyung Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaeyong Nam
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hye Won Park
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Seo Park
- Department of Pediatrics, Asian Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, College of Medicine, Inje University, Busan Paik Hospital, Busan, Republic of Korea
| | - Dae-Yeol Lee
- Department of Pediatrics, College of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Su Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
31
|
Drivas TG, Wojno AP, Tucker BA, Stone EM, Bennett J. Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis. Sci Transl Med 2016; 7:291ra97. [PMID: 26062849 DOI: 10.1126/scitranslmed.aaa5370] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic pleiotropy, the phenomenon by which mutations in the same gene result in markedly different disease phenotypes, has proven difficult to explain with traditional models of disease pathogenesis. We have developed a model of pleiotropic disease that explains, through the process of basal exon skipping, how different mutations in the same gene can differentially affect protein production, with the total amount of protein produced correlating with disease severity. Mutations in the centrosomal protein of 290 kDa (CEP290) gene are associated with a spectrum of phenotypically distinct human diseases (the ciliopathies). Molecular biologic examination of CEP290 transcript and protein expression in cells from patients carrying CEP290 mutations, measured by quantitative polymerase chain reaction and Western blotting, correlated with disease severity and corroborated our model. We show that basal exon skipping may be the mechanism underlying the disease pleiotropy caused by CEP290 mutations. Applying our model to a different disease gene, CC2D2A (coiled-coil and C2 domains-containing protein 2A), we found that the same correlations held true. Our model explains the phenotypic diversity of two different inherited ciliopathies and may establish a new model for the pathogenesis of other pleiotropic human diseases.
Collapse
Affiliation(s)
- Theodore G Drivas
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam P Wojno
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 50309, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 50309, USA. Howard Hughes Medical Institute, Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA 50309, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Knopp C, Rudnik-Schöneborn S, Eggermann T, Bergmann C, Begemann M, Schoner K, Zerres K, Ortiz Brüchle N. Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Mol Cell Probes 2015; 29:299-307. [DOI: 10.1016/j.mcp.2015.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 01/23/2023]
|
33
|
Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone. Sci Rep 2015; 5:14096. [PMID: 26365165 PMCID: PMC4568515 DOI: 10.1038/srep14096] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022] Open
Abstract
The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.
Collapse
|
34
|
Vertii A, Bright A, Delaval B, Hehnly H, Doxsey S. New frontiers: discovering cilia-independent functions of cilia proteins. EMBO Rep 2015; 16:1275-87. [PMID: 26358956 DOI: 10.15252/embr.201540632] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison Bright
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
35
|
Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, Paschaki M, Pedraza M, Métin C, Durand B, Schneider-Maunoury S. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet 2015; 24:4997-5014. [PMID: 26071364 DOI: 10.1093/hmg/ddv221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.
Collapse
Affiliation(s)
- Christine Laclef
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Isabelle Anselme
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Laurianne Besse
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Martin Catala
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and Fédération de Neurologie, Groupe hospitalier Pitié-Salpêtrière-APHP, F-75013 Paris, France
| | - Aurélien Palmyre
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Dominique Baas
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Marie Paschaki
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Maria Pedraza
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Christine Métin
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| |
Collapse
|
36
|
Barisic I, Boban L, Loane M, Garne E, Wellesley D, Calzolari E, Dolk H, Addor MC, Bergman JEH, Braz P, Draper ES, Haeusler M, Khoshnood B, Klungsoyr K, Pierini A, Queisser-Luft A, Rankin J, Rissmann A, Verellen-Dumoulin C. Meckel-Gruber Syndrome: a population-based study on prevalence, prenatal diagnosis, clinical features, and survival in Europe. Eur J Hum Genet 2015; 23:746-752. [PMID: 25182137 PMCID: PMC4795048 DOI: 10.4103/ajns.ajns_139_17barisic 10.1038/ejhg.2014.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 12/05/2024] Open
Abstract
Meckel-Gruber Syndrome is a rare autosomal recessive lethal ciliopathy characterized by the triad of cystic renal dysplasia, occipital encephalocele and postaxial polydactyly. We present the largest population-based epidemiological study to date using data provided by the European Surveillance of Congenital Anomalies (EUROCAT) network. The study population consisted of 191 cases of MKS identified between January 1990 and December 2011 in 34 European registries. The mean prevalence was 2.6 per 100,000 births in a subset of registries with good ascertainment. The prevalence was stable over time, but regional differences were observed. There were 145 (75.9%) terminations of pregnancy after prenatal diagnosis, 13 (6.8%) fetal deaths, 33 (17.3%) live births. In addition to cystic kidneys (97.7%), encephalocele (83.8%) and polydactyly (87.3%), frequent features include other central nervous system anomalies (51.4%), fibrotic/cystic changes of the liver (65.5% of cases with post mortem examination) and orofacial clefts (31.8%). Various other anomalies were present in 64 (37%) patients. As nowadays most patients are detected very early in pregnancy when liver or kidney changes may not yet be developed or may be difficult to assess, none of the anomalies should be considered obligatory for the diagnosis. Most cases (90.2%) are diagnosed prenatally at 14.3 ± 2.6 (range 11-36) gestational weeks and pregnancies are mainly terminated, reducing the number of LB to one-fifth of the total prevalence rate. Early diagnosis is important for timely counseling of affected couples regarding the option of pregnancy termination and prenatal genetic testing in future pregnancies.
Collapse
Affiliation(s)
- Ingeborg Barisic
- Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ljubica Boban
- Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maria Loane
- EUROCAT Central Registry, University of Ulster, Ulster, Northern Ireland
| | - Ester Garne
- Pediatric Department, Hospital Lillebaelt, Kolding, Denmark
| | - Diana Wellesley
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Elisa Calzolari
- Registro IMER, Unita di Terapia Intensiva Neonatale e Neonatologia, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Helen Dolk
- EUROCAT Central Registry, University of Ulster, Ulster, Northern Ireland
| | - Marie-Claude Addor
- Registre vaudois des anomalies congénitales, Service de génétique médicale, Lausanne, Switzerland
| | - Jorieke EH Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paula Braz
- Departamento de Epidemiologia, Instituto Nacional de Saude Doutor Ricardo Jorge, Lisbon, Portugal
| | - Elizabeth S Draper
- Department of Epidemiology Public Health, University of Leicester, Leicester, UK
| | - Martin Haeusler
- Styrian Malformation Registry, University of Graz, Graz, Austria
| | - Babak Khoshnood
- Paris Registry of Congenital Malformations, INSERM U953, Maternite de Port–Royal, Paris, France
| | - Kari Klungsoyr
- Department of Public Global Health and Primary Health Care, Medical Birth Registry of Norway, Norwegian Institute of Public Health, University of Bergen, Bergen, Norway
| | - Anna Pierini
- CNR Institute of Clinical Physiology, Pisa, Italy
| | | | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Anke Rissmann
- Malformation Monitoring Centre Saxony-Anhalt, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
37
|
TTBK2: a tau protein kinase beyond tau phosphorylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575170. [PMID: 25950000 PMCID: PMC4407412 DOI: 10.1155/2015/575170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.
Collapse
|
38
|
Abdelhamed ZA, Natarajan S, Wheway G, Inglehearn CF, Toomes C, Johnson CA, Jagger DJ. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis Model Mech 2015; 8:527-41. [PMID: 26035863 PMCID: PMC4457033 DOI: 10.1242/dmm.019083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/01/2015] [Indexed: 01/16/2023] Open
Abstract
Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3) cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin) is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2) upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital conditions. Highlighted Article: TMEM67 is a receptor of non-canonical Wnt signalling, implicating the Wnt5a-TMEM67-ROR2 axis during developmental signalling and disruption in ciliopathy disease state.
Collapse
Affiliation(s)
- Zakia A Abdelhamed
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK Department of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, Cairo 11844, Egypt
| | - Subaashini Natarajan
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Gabrielle Wheway
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Christopher F Inglehearn
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Carmel Toomes
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Colin A Johnson
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| |
Collapse
|
39
|
Abstract
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY, 14203, USA
| |
Collapse
|
40
|
Meckel-Gruber Syndrome: a population-based study on prevalence, prenatal diagnosis, clinical features, and survival in Europe. Eur J Hum Genet 2014; 23:746-52. [PMID: 25182137 DOI: 10.1038/ejhg.2014.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 11/08/2022] Open
Abstract
Meckel-Gruber Syndrome is a rare autosomal recessive lethal ciliopathy characterized by the triad of cystic renal dysplasia, occipital encephalocele and postaxial polydactyly. We present the largest population-based epidemiological study to date using data provided by the European Surveillance of Congenital Anomalies (EUROCAT) network. The study population consisted of 191 cases of MKS identified between January 1990 and December 2011 in 34 European registries. The mean prevalence was 2.6 per 100,000 births in a subset of registries with good ascertainment. The prevalence was stable over time, but regional differences were observed. There were 145 (75.9%) terminations of pregnancy after prenatal diagnosis, 13 (6.8%) fetal deaths, 33 (17.3%) live births. In addition to cystic kidneys (97.7%), encephalocele (83.8%) and polydactyly (87.3%), frequent features include other central nervous system anomalies (51.4%), fibrotic/cystic changes of the liver (65.5% of cases with post mortem examination) and orofacial clefts (31.8%). Various other anomalies were present in 64 (37%) patients. As nowadays most patients are detected very early in pregnancy when liver or kidney changes may not yet be developed or may be difficult to assess, none of the anomalies should be considered obligatory for the diagnosis. Most cases (90.2%) are diagnosed prenatally at 14.3 ± 2.6 (range 11-36) gestational weeks and pregnancies are mainly terminated, reducing the number of LB to one-fifth of the total prevalence rate. Early diagnosis is important for timely counseling of affected couples regarding the option of pregnancy termination and prenatal genetic testing in future pregnancies.
Collapse
|
41
|
Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet J Rare Dis 2014; 9:72. [PMID: 24886560 PMCID: PMC4113192 DOI: 10.1186/1750-1172-9-72] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Joubert syndrome is a clinically and genetically heterogeneous ciliopathy characterized by a typical cerebellar and brainstem malformation (the "molar tooth sign"), and variable multiorgan involvement. To date, 24 genes have been found mutated in Joubert syndrome, of which 13 also cause Meckel syndrome, a lethal ciliopathy with kidney, liver and skeletal involvement. Here we describe four patients with mild Joubert phenotypes who carry pathogenic mutations in either MKS1 or B9D1, two genes previously implicated only in Meckel syndrome.
Collapse
|
42
|
Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 2013; 10:96-107. [PMID: 24322779 DOI: 10.4161/org.27375] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.
Collapse
Affiliation(s)
- Amy R Barker
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Rhys Thomas
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| |
Collapse
|