1
|
Klupp EM, Knobling B, Franke G, Belmar Campos C, Maurer PM, Knobloch JK. Activity of antimicrobial examination gloves under realistic conditions: challenge not fulfilled. Antimicrob Resist Infect Control 2023; 12:116. [PMID: 37876020 PMCID: PMC10599005 DOI: 10.1186/s13756-023-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Antimicrobial materials or surfaces are advertised as part of infection prevention bundles. However, the efficacy of such antimicrobial surfaces has not been sufficiently investigated in hospitals. In this study, the antimicrobial activity of examination gloves with light-activated antimicrobial properties against Gram-positive microorganisms was investigated modelling real live conditions. METHOD In a standardized experimental set-up with dry and realistic contamination, the antimicrobial properties of gloves claiming light dependent antimicrobial activity against Gram-positive organisms were tested in comparison with conventional examination gloves. All gloves were contaminated through a standardized activity of the test persons for construction with contaminated building blocks. For contamination suspensions of Enterococcus faecium ATCC 6057, Acinetobacter baumannii (outbreak strain), methicillin resistant Staphylococcus aureus ATCC 43300 or E. faecium (VRE) patient isolate were dried on the surfaces. After the standardized activity, the gloves were held for 10 min in the light present in the room (bright conditions) and the grade of contamination was determined subsequently by quantitative culture. In one experimental series gloves were held in a dark box after contamination as a control (dark conditions). RESULTS The light intensity in all experiments under bright conditions was significantly above the limit value specified by the manufacturer for the activation of antimicrobial properties (> 500 lx). The mean values for experiments with antimicrobial active and non-active gloves were 955 and 935 lx, respectively. As claimed by the manufacture, the gloves showed no sufficient efficacy against A. baumannii under bright conditions. Against Gram-positive microorganisms such as E. faecium, E. faecium (VRE) and methicillin resistant S. aureus the gloves showed only very low antimicrobial activity with a reduction factor < 1 log10 even after 10 min in bright conditions. Interestingly, comparable results for experiments with A. baumannii and E. faecium were shown under dark conditions. CONCLUSION The lack of activity of the active principle against Gram-negative microorganisms could be confirmed. The reduction factors of > 4 log10 within 5 min for Gram-positive microorganisms claimed for the product using a standard test procedure (ASTM D7907) could not be confirmed in a realistic experimental test set-up even after 10 min of light exposure. The effectiveness against Gram-positive microorganisms should be further investigated under realistic (dry) conditions, including patient care. At this stage, the use of supposedly antimicrobial gloves should not be recommended, as the belief in their efficacy may encourage the misuse of gloves.
Collapse
Affiliation(s)
- Eva-Maria Klupp
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Birte Knobling
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Gefion Franke
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Cristina Belmar Campos
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Philipp M Maurer
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Johannes K Knobloch
- Department for Infection Prevention and Control, Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| |
Collapse
|
2
|
Lovato MJ, Del Valle LJ, Puiggalí J, Franco L. Performance-Enhancing Materials in Medical Gloves. J Funct Biomater 2023; 14:349. [PMID: 37504844 PMCID: PMC10381443 DOI: 10.3390/jfb14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Medical gloves, along with masks and gowns, serve as the initial line of defense against potentially infectious microorganisms and hazardous substances in the health sector. During the COVID-19 pandemic, medical gloves played a significant role, as they were widely utilized throughout society in daily activities as a preventive measure. These products demonstrated their value as important personal protection equipment (PPE) and reaffirmed their relevance as infection prevention tools. This review describes the evolution of medical gloves since the discovery of vulcanization by Charles Goodyear in 1839, which fostered the development of this industry. Regarding the current market, a comparison of the main properties, benefits, and drawbacks of the most widespread types of sanitary gloves is presented. The most common gloves are produced from natural rubber (NR), polyisoprene (IR), acrylonitrile butadiene rubber (NBR), polychloroprene (CR), polyethylene (PE), and poly(vinyl chloride) (PVC). Furthermore, the environmental impacts of the conventional natural rubber glove manufacturing process and mitigation strategies, such as bioremediation and rubber recycling, are addressed. In order to create new medical gloves with improved properties, several biopolymers (e.g., poly(vinyl alcohol) and starch) and additives such as biodegradable fillers (e.g., cellulose and chitin), reinforcing fillers (e.g., silica and cellulose nanocrystals), and antimicrobial agents (e.g., biguanides and quaternary ammonium salts) have been evaluated. This paper covers these performance-enhancing materials and describes different innovative prototypes of gloves and coatings designed with them.
Collapse
Affiliation(s)
- María José Lovato
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Lourdes Franco
- Departament d'Enginyeria Química, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', c/Pasqual i Vila s/n, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Antimicrobial Efficacy of Trushield™ Gloves: an In vitro Experimentation-Based Review. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Paosen S, Lethongkam S, Wunnoo S, Lehman N, Kalkornsurapranee E, Septama AW, Voravuthikunchai SP. Prevention of nosocomial transmission and biofilm formation on novel biocompatible antimicrobial gloves impregnated with biosynthesized silver nanoparticles synthesized using Eucalyptus citriodora leaf extract. Biotechnol J 2021; 16:e2100030. [PMID: 34102004 DOI: 10.1002/biot.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022]
Abstract
Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of five logs when tested against all standard strains and most clinical isolates (p < 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001). AgNPs-coated gloves reduced microbial adhesion of mixed-species biofilms. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells. The highly efficacious AgNPs-coated gloves potentially provide additional protection against transmission of healthcare-associated infections.
Collapse
Affiliation(s)
- Supakit Paosen
- Division of Biological Science, Faculty of Science I Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Sakkarin Lethongkam
- Division of Biological Science, Faculty of Science I Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Suttiwan Wunnoo
- Division of Biological Science, Faculty of Science I Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Nussana Lehman
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | - Abdi Wira Septama
- Research Center for Chemistry, Kawasan Puspitek Serpong, Indonesian Institute of Sciences, Tangerang Selatan, Indonesia
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science I Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
5
|
Lee SY, Chan EL, Chan HH, Li CCK, Ooi ZH, Koh RY, Liew YK. ANTIMICROBIAL AGENTS AND ANTI-ADHESION MATERIALS FOR MEDICAL AND SURGICAL GLOVES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Healthcare-associated infections (HAIs) can be common in healthcare settings, such as the intensive care unit and surgical sites, if proper precautions are not followed. Although traditional techniques are encouraged, such as educating the public and healthcare workers to practice proper handwashing or to double glove, they have not been fully effective in combating HAIs. The use of surface-modified antimicrobial gloves may be an alternative approach to prevent the transmission of pathogens between healthcare workers and patients. This paper gives a comprehensive review of strategies to produce antimicrobial gloves. The chemistry of some potential chemically synthesized antimicrobial agents and nature-inspired superhydrophobic surfaces are discussed. The principles of killing microbes must be understood to effectively select these materials and to design and fabricate surfaces for the reduction of bacterial adhesion. Also, current company trends and technologies are presented for gloves proven to effectively kill bacteria. Such glove use, when coupled with in-depth research on diverse surgical procedures and medical examinations, could ease the burden of HAIs.
Collapse
Affiliation(s)
- Siang Yin Lee
- Latex Science and Technology Unit (USTL), Technology and Engineering Division (BTK), RRIM Sungai Buloh Research Station, Malaysian Rubber Board (MRB), 47000 Sungai Buloh, Selangor, Malaysia
| | - E-Lyn Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Claire Chong Khai Li
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Zhe Hooi Ooi
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Penso-Assathiany D, Duong TA. Wearing of examination gloves and hygiene practice among dermatologists: A national survey. Ann Dermatol Venereol 2017; 145:240-244. [PMID: 29195665 DOI: 10.1016/j.annder.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Touch is essential for dermatologists. Differences in practice, such as whether or not to wear examination gloves, may be seen among dermatologists. To investigate this approach and its associated factors, we conducted a national survey to study hygiene measures and the wearing of gloves among dermatologists, e.g. wearing a coat, hand washing between patient visits, hand shaking and past history of infectious disease transmitted by patients. The context and circumstances in which gloves were worn was studied. RESULTS Four hundred and seventy-four dermatologists responded to the survey (median age: 52 years). Most dermatologists reported wearing examination gloves as follows: always (21%, n=99), occasionally (76%, n=359), never (3%, n=13). Most physicians reported wearing a coat (91%, n=419) and routinely washing their hands after examination (53%, n=241). A minority of physicians reported shaking hands (36%, n=163). A significant number of dermatologists reporting that they wore examination gloves were younger and female, and these practitioners also washed their hands more frequently. The most common reason cited by dermatologists wearing gloves "occasionally" was patient hygiene (71%, n=256) rather than infectious skin disease (52%, n=186). This practice was ascribable more to concerns by dermatologists about protecting themselves (78%, n=270) rather than protecting patients (51%, n=169). Finally, it was felt that wearing gloves impaired neither the quality of clinical examination (52%, n=173) nor relations with patients (49%, n=160). CONCLUSION Although wearing gloves is not recommended for examining unbroken skin, most of the respondents reported wearing examination gloves during their consultations. Wearing of gloves was associated with more frequent hygiene measures (hand washing, no handshaking) and was based on concern for self-protection.
Collapse
Affiliation(s)
- D Penso-Assathiany
- Service de dermatologie, hôpital Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| | - T-A Duong
- Service de dermatologie, hôpital Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| |
Collapse
|
7
|
Ali S, Wilson A. Effect of poly-hexamethylene biguanide hydrochloride (PHMB) treated non-sterile medical gloves upon the transmission of Streptococcus pyogenes, carbapenem-resistant E. coli, MRSA and Klebsiella pneumoniae from contact surfaces. BMC Infect Dis 2017; 17:574. [PMID: 28814284 PMCID: PMC5559802 DOI: 10.1186/s12879-017-2661-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/01/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Reduction of accidental contamination of the near-patient environment has potential to reduce acquisition of healthcare-associated infection(s). Although medical gloves should be removed when soiled or touching the environment, compliance is variable. The use of antimicrobial-impregnated medical gloves could reduce the horizontal-transfer of bacterial contamination between surfaces. AIM Determine the activity of antimicrobial-impregnated gloves against common hospital pathogens: Streptococcus pyogenes, carbapenem-resistant E.coli (CREC), MRSA and ESBL-producing Klebsiella pneumoniae. METHODS Fingerpads (~1cm2) of PHMB-treated and untreated gloves were inoculated with 10 μL (~104 colony-forming-units [cfu]) of test-bacteria prepared in heavy-soiling (0.5%BSA), blood or distilled-water (no-soiling) and sampled after 0.25, 1, 10 or 15 min contact-time. Donor surfaces (~1cm2 computer-keys) contaminated with wet/dry inoculum were touched with the fingerpad of treated/untreated gloves and subsequently pressed onto recipient (uncontaminated) computer-keys. RESULTS Approximately 4.50log10cfu of all bacteria persisted after 15 min on untreated gloves regardless of soil-type. In the absence of soiling, PHMB-treated gloves reduced surface-contamination by ~4.5log10cfu (>99.99%) within 10 min of contact-time but only ~2.5log10 (>99.9%) and ~1.0log10 reduction respectively when heavy-soiling or blood was present. Gloves became highly-contaminated (~4.52log10-4.91log10cfu) when handling recently-contaminated computer-keys. Untreated gloves contaminated "recipient" surfaces (~4.5log10cfu) while PHMB-treated gloves transferred fewer bacteria (2.4-3.6log10cfu). When surface contamination was dry, PHMB gloves transferred fewer bacteria (0.3-0.6log10cfu) to "recipient" surfaces than untreated gloves (1.0-1.9log10; P < 0.05). CONCLUSIONS Antimicrobial-impregnated gloves may be useful in preventing dissemination of organisms in the near-patient environment during routine care. However they are not a substitute for appropriate hand-hygiene procedures.
Collapse
Affiliation(s)
- S. Ali
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK
- UCLH Environmental Research Laboratory, University College Hospital, EGA Wing, Level -2, 235 Euston Road, London, NW1 2BU UK
| | - A.P.R. Wilson
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
|
9
|
Antimicrobial efficacy of preoperative skin antisepsis and clonal relationship to postantiseptic skin-and-wound flora in patients undergoing clean orthopedic surgery. Eur J Clin Microbiol Infect Dis 2015; 34:2265-73. [PMID: 26337434 DOI: 10.1007/s10096-015-2478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Nosocomial surgical site infections (SSI) are still important complications in surgery. The underlying mechanisms are not fully understood. The aim of this study was to elucidate the possible role of skin flora surviving preoperative antisepsis as a possible cause of SSI. We conducted a two-phase prospective clinical trial in patients undergoing clean orthopedic surgery at a university trauma center in northern Germany. Quantitative swab samples were taken from pre- and postantiseptic skin and, additionally, from the wound base, wound margin, and the suture of 137 patients. Seventy-four patients during phase I and 63 during phase II were investigated. Microbial growth, species spectrum, and antibiotic susceptibility were analyzed. In phase two, the clonal relationship of strains was additionally analyzed. 18.0 % of the swab samples were positive for bacterial growth in the wound base, 24.5 % in the margin, and 27.3 % in the suture. Only 65.5 % of patients showed a 100 % reduction of the skin flora after antisepsis. The microbial spectrum in all postantiseptic samples was dominated by coagulase-negative staphylococci (CoNS). Clonally related staphylococci were detected in ten patients [nine CoNS, one methicillin-susceptible Staphylococcus aureus (MSSA)]. Six of ten patients were suspected of having transmitted identical clones from skin flora into the wound. Ethanol-based antisepsis results in unexpected high levels of skin flora, which can be transmitted into the wound during surgery causing yet unexplained SSI. Keeping with the concept of zero tolerance, further studies are needed in order to understand the origin of this flora to allow further reduction of SSI.
Collapse
|
10
|
Antimicrobial Sterile Gloves Reduce Pathogen Transmission in an In Vitro Glove Perforation Model. Infect Control Hosp Epidemiol 2015; 36:1249-50. [DOI: 10.1017/ice.2015.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Evaluation of the efficacy of antibacterial medical gloves in the ICU setting. J Hosp Infect 2015; 90:248-52. [DOI: 10.1016/j.jhin.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022]
|