1
|
Repurposing drugs targeting epidemic viruses. Drug Discov Today 2022; 27:1874-1894. [DOI: 10.1016/j.drudis.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
2
|
Yu Z, Wang Y, Liu L, Zhang X, Jiang S, Wang B. Apoptosis Disorder, a Key Pathogenesis of HCMV-Related Diseases. Int J Mol Sci 2021; 22:ijms22084106. [PMID: 33921122 PMCID: PMC8071541 DOI: 10.3390/ijms22084106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Yashuo Wang
- College of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Lili Liu
- Department of Basic Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
- Correspondence: ; Tel.: +86-136-8532-6203
| |
Collapse
|
3
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
4
|
Jiang CM, Liu X, Li CX, Qian HC, Chen D, Lai CQ, Shen LR. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. J Zhejiang Univ Sci B 2018; 19:960-972. [PMID: 30507079 PMCID: PMC6305251 DOI: 10.1631/jzus.b1800257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.
Collapse
Affiliation(s)
- Chen-min Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Xin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Chun-xue Li
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Hao-cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Di Chen
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| | - Chao-qiang Lai
- USDA ARS Nutritional Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, the United States
| | - Li-rong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China
| |
Collapse
|
5
|
Jones RP. Roles for Cytomegalovirus in Infection, Inflammation, and Autoimmunity. INFECTION AND AUTOIMMUNITY 2015:319-357. [DOI: 10.1016/b978-0-444-63269-2.00068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Gable J, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev 2014; 114:11382-412. [PMID: 25275644 PMCID: PMC4254030 DOI: 10.1021/cr500255e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan
E. Gable
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
- Graduate
Group in Biophysics, University of California,
San Francisco, 600 16th
Street, San Francisco, California 94158-2280, United States
| | - Timothy M. Acker
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| | - Charles S. Craik
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| |
Collapse
|