1
|
Gimenez da Rocha D, Burch MO, Aparecida Teixeira Soares L, Bertolino JR, Bergamasco Galastri AL, Antunes D, Mamoni RL, Vieira Ponte E. Trajectory of the response to bronchodilator and respiratory outcomes in adults with asthma-like symptoms. Monaldi Arch Chest Dis 2025. [PMID: 40099403 DOI: 10.4081/monaldi.2025.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/09/2025] [Indexed: 03/19/2025] Open
Abstract
In the real world, health professionals need to care for individuals with asthma-like symptoms who have a persistently negative bronchodilator response (BDR). Little is known about the evolution of symptoms and lung function of these individuals because they are usually excluded from studies on asthma. The aim of this study was to evaluate whether individuals with asthma-like symptoms but with a persistently negative BDR have a different evolution of symptoms and lung function compared to individuals with asthma proven by positive BDR. This prospective cohort study included adults with asthma-like symptoms. Individuals participated in two visits 12 months apart. They responded to questionnaires and underwent a spirometry test. In individuals without airway obstruction in the first visit, those with asthma-like symptoms and persistently negative BDR were less likely to lose forced expiratory volume in the first second during follow-up or progress to airway obstruction at the final visit compared to individuals with asthma proven by positive BDR. Among individuals with airway obstruction at baseline, those with asthma-like symptoms and persistently negative BDR were less likely to resolve the airway obstruction during follow-up compared to individuals with asthma proven by positive BDR. In individuals with proven asthma, the emergence or persistence of positive BDR during follow-up was accompanied by a worsening of asthma outcomes compared to the remission of positive BDR. Thus, BRD is an accessible marker of disease progression in individuals with asthma-like symptoms. In individuals with asthma proven by positive BDR, the trend in BDR was associated with the evolution of symptoms and lung function.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Antunes
- Department of Internal Medicine, Jundiaí School of Medicine
| | | | | |
Collapse
|
2
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
3
|
Donátová K, Mladá M, Lopušná K, Baran F, Betáková T. Changes in the Expression of Proteins Associated with Neurodegeneration in the Brains of Mice after Infection with Influenza A Virus with Wild Type and Truncated NS1. Int J Mol Sci 2024; 25:2460. [PMID: 38473707 DOI: 10.3390/ijms25052460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Recently, a specific link between IAV infection and neurodegenerative disease progression has been established. The non-structural NS1 protein of IAV regulates viral replication during infection and antagonizes host antiviral responses, contributing to influenza virulence. In the present study, we have prepared a mouse lung-to-lung adapted to the NS1-truncated virus (NS80ad). Transcriptome analysis of the gene expression in the lungs revealed that infection with wild-type A/WSN/33 (WSN), NS80, and NS80ad viruses resulted in different regulation of genes involved in signaling pathways associated with the cell proliferation, inflammatory response, and development of neurodegenerative diseases. NS1 protein did not influence the genes involved in the RIG-I-like receptor signaling pathway in the brains. Lethal infection with IAVs dysregulated expression of proteins associated with the development of neurodegenerative diseases (CX3CL1/Fractalkine, Coagulation factor III, and CD105/Endoglin, CD54/ICAM-1, insulin-like growth factor-binding protein (IGFBP)-2, IGFBP-5, IGFBP-6, chitinase 3-like 1 (CHI3L1), Myeloperoxidase (MPO), Osteopontin (OPN), cystatin C, and LDL R). Transcription of GATA3 mRNA was decreased, and expression of MPO was inhibited in the brain infected with NS80 and NS80ad viruses. In addition, the truncation of NS1 protein led to reduced expression of IGFBP-2, CHI3L1, MPO, and LDL-R proteins in the brains. Our results indicate that the influenza virus influences the expression of proteins involved in brain function, and this might occur mostly through the NS1 protein. These findings suggest that the abovementioned proteins represent a promising target for the development of potentially effective immunotherapy against neurodegeneration.
Collapse
Affiliation(s)
- Karin Donátová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Miriam Mladá
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Filip Baran
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Tatiana Betáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
4
|
Vaes RDW, van Bijnen AA, Damink SWMO, Rensen SS. Pancreatic Tumor Organoid-Derived Factors from Cachectic Patients Disrupt Contractile Smooth Muscle Cells. Cancers (Basel) 2024; 16:542. [PMID: 38339292 PMCID: PMC10854749 DOI: 10.3390/cancers16030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with pancreatic cancer often suffer from cachexia and experience gastrointestinal symptoms that may be related to intestinal smooth muscle cell (SMC) dysfunction. We hypothesized that pancreatic tumor organoids from cachectic patients release factors that perturb the SMC's contractile characteristics. Human visceral SMCs were exposed to conditioned medium (CM) from the pancreatic tumor organoid cultures of cachectic (n = 2) and non-cachectic (n = 2) patients. Contractile proteins and markers of inflammation, muscle atrophy, and proliferation were evaluated by qPCR and Western blot. SMC proliferation and migration were monitored by live cell imaging. The Ki-67-positive cell fraction was determined in the intestinal smooth musculature of pancreatic cancer patients. CM from the pancreatic tumor organoids of cachectic patients did not affect IL-1β, IL-6, IL-8, MCP-1, or Atrogin-1 expression. However, CM reduced the α-SMA, γ-SMA, and SM22-α levels, which was accompanied by a reduced SMC doubling time and increased expression of S100A4, a Ca2+-binding protein associated with the synthetic SMC phenotype. In line with this, Ki-67-positive nuclei were increased in the intestinal smooth musculature of patients with a low versus high L3-SMI. In conclusion, patient-derived pancreatic tumor organoids release factors that compromise the contractile SMC phenotype and increase SMC proliferation. This may contribute to the frequently observed gastrointestinal motility problems in these patients.
Collapse
Affiliation(s)
- Rianne D. W. Vaes
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Annemarie A. van Bijnen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Chen X, Zhou H, Hou T, Lu J, Wang J, Zhou L, Zhao Y, Liu Y, Wang J, Liang X, Chen C. The dual-targeting mechanism of an anti-inflammatory diarylheptanoid from Curcuma zedoaria (Christm.) Roscoe with the capacity for β2-adrenoreceptor agonism and NLRP3 inhibition. Chem Biol Interact 2023; 386:110771. [PMID: 37866489 DOI: 10.1016/j.cbi.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by symptoms of shortness of breath and chronic inflammation. Curcuma zedoaria (Christm.) Roscoe is a well-documented traditional medical herb that is frequently used in the treatment of COPD. Previously, we identified a diarylheptanoid compound (1-(4-hydroxy-5-methoxyphenyl)-7-(4,5-dihydroxyphenyl)-3,5-dihydroxyheptane; abbreviated as HMDD) from this herb that exhibited potent agonistic activity on β2-adrenergic receptors (β2 adrenoreceptor) that are present on airway smooth muscle cells. In this work, we used chemically synthesized HMDD compound, and confirmed its bioactivity on β2 adrenoreceptors. Then by a proteomics study and anti-inflammatory evaluation detections, we found that HMDD downregulated the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway and suppressed the NLRP3 receptor expression in RAW264.7 macrophages and in a COPD model in A549 lung carcinoma cells. HMDD also decreased nitric oxide production levels, and impacted other interleukins and the phosphorylation of NF-κB and ERK pathways. We performed molecular docking of HMDD on β2 adrenoreceptor and NLRP3 protein models. This work reports the anti-inflammatory effects of HMDD and suggests a dual-targeting mechanism of β2-adrenoreceptor agonism and NLRP3 inhibition. Such a mechanism scientifically supports the clinical uses of Curcuma zedoaria (Christm.) Roscoe in treating COPD, as it can simultaneously relieve persistent breathlessness and inflammation. HMDD can be considered as a potential non-steroidal anti-inflammatory drug in novel therapy design for the treatment of COPD and other inflammatory diseases.
Collapse
Affiliation(s)
- Xiufang Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, Zhejiang, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China.
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Jinli Lu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Jun Wang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Liangliang Zhou
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Yaopeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, Jiangxi, China
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
6
|
Zhang C, Xu H, Netto KG, Sokulsky LA, Miao Y, Mo Z, Meng Y, Du Y, Wu C, Han L, Zhang L, Liu C, Zhang G, Li F, Yang M. Inhibition of γ-glutamyl transferase suppresses airway hyperresponsiveness and airway inflammation in a mouse model of steroid resistant asthma exacerbation. Front Immunol 2023; 14:1132939. [PMID: 37377967 PMCID: PMC10292800 DOI: 10.3389/fimmu.2023.1132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.
Collapse
Affiliation(s)
- Cancan Zhang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huisha Xu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keilah G. Netto
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Leon A. Sokulsky
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yiyan Miao
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Mo
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Meng
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Du
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chengyong Wu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyou Han
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Japan
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Garrison AT, Bignold RE, Wu X, Johnson JR. Pericytes: The lung-forgotten cell type. Front Physiol 2023; 14:1150028. [PMID: 37035669 PMCID: PMC10076600 DOI: 10.3389/fphys.2023.1150028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pericytes are a heterogeneous population of mesenchymal cells located on the abluminal surface of microvessels, where they provide structural and biochemical support. Pericytes have been implicated in numerous lung diseases including pulmonary arterial hypertension (PAH) and allergic asthma due to their ability to differentiate into scar-forming myofibroblasts, leading to collagen deposition and matrix remodelling and thus driving tissue fibrosis. Pericyte-extracellular matrix interactions as well as other biochemical cues play crucial roles in these processes. In this review, we give an overview of lung pericytes, the key pro-fibrotic mediators they interact with, and detail recent advances in preclinical studies on how pericytes are disrupted and contribute to lung diseases including PAH, allergic asthma, and chronic obstructive pulmonary disease (COPD). Several recent studies using mouse models of PAH have demonstrated that pericytes contribute to these pathological events; efforts are currently underway to mitigate pericyte dysfunction in PAH by targeting the TGF-β, CXCR7, and CXCR4 signalling pathways. In allergic asthma, the dissociation of pericytes from the endothelium of blood vessels and their migration towards inflamed areas of the airway contribute to the characteristic airway remodelling observed in allergic asthma. Although several factors have been suggested to influence this migration such as TGF-β, IL-4, IL-13, and periostin, recent evidence points to the CXCL12/CXCR4 pathway as a potential therapeutic target. Pericytes might also play an essential role in lung dysfunction in response to ageing, as they are responsive to environmental risk factors such as cigarette smoke and air pollutants, which are the main drivers of COPD. However, there is currently no direct evidence delineating the contribution of pericytes to COPD pathology. Although there is a lack of human clinical data, the recent available evidence derived from in vitro and animal-based models shows that pericytes play important roles in the initiation and maintenance of chronic lung diseases and are amenable to pharmacological interventions. Therefore, further studies in this field are required to elucidate if targeting pericytes can treat lung diseases.
Collapse
Affiliation(s)
- Annelise T. Garrison
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Rebecca E. Bignold
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xinhui Wu
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jill R. Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
8
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Mainguy-Seers S, Beaudry F, Fernandez-Prada C, Martin JG, Lavoie JP. Neutrophil Extracellular Vesicles and Airway Smooth Muscle Proliferation in the Natural Model of Severe Asthma in Horses. Cells 2022; 11:3347. [PMID: 36359743 PMCID: PMC9653818 DOI: 10.3390/cells11213347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Extracellular vesicles (EVs) contribute to intercellular communication through the transfer of their rich cargo to recipient cells. The EVs produced by LPS-stimulated neutrophils from healthy humans and horses increase airway smooth muscle (ASM) proliferation, but the roles of neutrophil EVs in asthma are largely unexplored. The aim of this study was to determine whether neutrophil-derived EVs isolated during the remission or exacerbation of asthma influence ASM proliferation differentially. Peripheral blood neutrophils were collected during remission and exacerbation in eight horses affected by severe asthma. The cells were cultured (±LPS), and their EVs were isolated by ultracentrifugation and characterized by laser scattering microscopy and proteomic analysis. The proliferation of ASM co-incubated with EVs was monitored in real time by electrical impedance. Two proteins were significantly upregulated during disease exacerbation in neutrophil EVs (MAST4 and Lrch4), while LPS stimulation greatly altered the proteomic profile. Those changes involved the upregulation of neutrophil degranulation products, including proteases known to induce myocyte proliferation. In agreement with the proteomic results, EVs from LPS-stimulated neutrophils increased ASM proliferation, without an effect of the disease status. The inhalation of environmental LPS could contribute to asthma pathogenesis by activating neutrophils and leading to ASM hyperplasia.
Collapse
Affiliation(s)
- Sophie Mainguy-Seers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Francis Beaudry
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - James G. Martin
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
10
|
Gu W, Lei J, Zhu H, Xiao Y, Zhang Z, Zhao L. Effect of the BMPR-II-SMAD3/MRTF pathway on proliferation and migration of ASMCs and the mechanism in asthma. Mol Biol Rep 2022; 49:9283-9296. [PMID: 36008606 PMCID: PMC9515032 DOI: 10.1007/s11033-022-07764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Background A variety of smooth muscle-specific genes and proteins, including SMAD3, BMPR-II, and MRTF, are involved in airway remodeling in asthma. As a receptor of bone morphogenetic protein (BMP) signaling, BMPR-II has important roles in airway remodeling in asthma. However, the underlying mechanism of BMPR-II in airway smooth muscle cells (ASMCs) in asthma remains incomplete. Methods Wistar rats were intraperitoneally injected with ovalbumin antigen suspension and aluminium hydroxide and, stimulated with ovalbumin nebulized inhalation to constructed asthma model. Primary ASMCs were isolated with collagenase I and identified by testing the α-SMA expression. Quantitative polymerase chain reaction (qPCR) and western blot assay were employed to detect the gene expression. CCK8, Transwell and Fluo-4 A assays were introduced to measure the cell viability, migration and intracellular Ca2+. Co-Immunoprecipitation (Co-IP) assay was applied to test the interaction among proteins. Results First, we observed significant increases in BMPR-II in asthmatic rat model and ASMCs at both the mRNA and protein levels. Second, we observed that silencing of siBMPR-II inhibited proliferation, migratory capacity and intracellular Ca2+ concentration in ASMCs. Furthermore, our study demonstrated that siBMPR-II inhibited the Smad3 expression and overexpression promoted the bioactivity of ASMCs. In addition, this study showed that p-Smad3 could interacted with MRTF and siMRTF inhibits the bioactivity of ASMCs. Finally, our results revealed BMPR-II-SMAD3/MRTF pathway affected the bioactivity of ASMCs. Conclusions This study indicates that the BMPR-II-SMAD3/MRTF signaling pathway is involved in the process of ASMCs remodeling, providing novel avenues for the identification of new therapeutic modalities.
Collapse
Affiliation(s)
- Wenbo Gu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiahui Lei
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - He Zhu
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yali Xiao
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhenping Zhang
- People's Hospital of Zhongmu, Zhengzhou, China.,Henan Provincial People's Hospital, Zhengzhou, China
| | - Limin Zhao
- Zhengzhou University People's Hospital, Zhengzhou, China. .,Henan Provincial People's Hospital, Zhengzhou, China. .,Henan Univerity People's Hospital, Zhengzhou, China. .,Department of Respiratory Medicine, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), No. 7 Weiwu Road, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [PMID: 35189469 DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Mohammad Afzal Khan
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Talal Shamma
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Altuhami
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Dieter Clemens Broering
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
12
|
Jurkeviciute E, Januskevicius A, Rimkunas A, Palacionyte J, Malakauskas K. α 4β 1 and α Mβ 2 Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. J Pers Med 2021; 11:jpm11090829. [PMID: 34575607 PMCID: PMC8467456 DOI: 10.3390/jpm11090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022] Open
Abstract
Eosinophilic inflammation is one of the main pathophysiological features in asthma. Two subtypes of eosinophils exist in the lung and systemic circulation: lung-resident eosinophils (rEOS) and inflammatory eosinophils (iEOS). We evaluated the expression of α4β1 and αMβ2 integrins of eosinophil subtypes and their influence on airway smooth muscle (ASM) cell proliferation and viability in asthma. We included 16 severe non-allergic eosinophilic asthma (SNEA) patients, 13 steroid-free, non-severe allergic asthma (AA) patients, and 12 healthy control subjects (HS). For AA patients, a bronchial allergen challenge with Dermatophagoides pteronyssinus was performed. The eosinophil subtypes were distinguished using magnetic bead-labeled antibodies against surface CD62L, and individual combined cell cultures were prepared with ASM cells. The integrins gene expression was analyzed by a quantitative real-time polymerase chain reaction. Proliferation was assessed by the Alamar blue assay, and viability by annexin V and propidium iodide staining. rEOS-like cells were characterized by the relatively higher gene expression of the β1 integrin subunit, whereas iEOS-like cells were characterized by the αM and β2 integrin subunits. The inclusion of either eosinophil subtypes in co-culture significantly increased the proliferation of ASM cells, and the effect of rEOS-like cells was stronger than iEOS-like cells (p < 0.05). Furthermore, rEOS-like cells had a more pronounced effect on reducing ASM cell apoptosis compared to that of iEOS-like cells (p < 0.05). Lastly, the bronchial allergen challenge significantly enhanced only the iEOS-like cells’ effect on ASM cell proliferation and viability in AA patients (p < 0.05). These findings highlight the different expression of α4β1 and αMβ2 integrins on distinct eosinophil subtypes in asthma. Therefore, rEOS-like cells have a stronger effect in stimulating ASM cell proliferation and viability; however, contact with specific allergens mainly enhances pro-proliferative iEOS-like cell properties.
Collapse
Affiliation(s)
- Egle Jurkeviciute
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Correspondence: ; Tel.: +370-653-61275
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
13
|
Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol 2021; 147:1983-1995. [PMID: 34092351 DOI: 10.1016/j.jaci.2021.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
The airway smooth muscle (ASM) cell plays a central role in the pathogenesis of asthma and constitutes an important target for treatment. These cells control muscle tone and thus regulate the opening of the airway lumen and air passage. Evidence indicates that ASM cells participate in the airway hyperresponsiveness as well as the inflammatory and remodeling processes observed in asthmatic subjects. Therapeutic approaches require a comprehensive understanding of the structure and function of the ASM in both the normal and disease states. This review updates current knowledge about ASM and its effects on airway narrowing, remodeling, and inflammation in asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
14
|
Chetty A, Nielsen HC. Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. J Asthma Allergy 2021; 14:539-556. [PMID: 34079293 PMCID: PMC8164696 DOI: 10.2147/jaa.s280247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle (ASM) cell dysfunction is an important component of several obstructive pulmonary diseases, particularly asthma. External stimuli such as allergens, dust, air pollutants, and change in environmental temperatures provoke ASM cell hypertrophy, proliferation, and migration without adequate mechanistic controls. ASM cells can switch between quiescent, migratory, and proliferative phenotypes in response to extracellular matrix proteins, growth factors, and other soluble mediators. While some aspects of airway hypertrophy and remodeling could have beneficial effects, in many cases these contribute to a clinical phenotype of difficult to control asthma. In this review, we discuss the factors responsible for ASM hypertrophy and proliferation in asthma, focusing on cytokines, growth factors, and ion transporters, and discuss existing and potential approaches that specifically target ASM hypertrophy to reduce the ASM mass and improve asthma symptoms. The goal of this review is to highlight strategies that appear ready for translational investigations to improve asthma therapy.
Collapse
Affiliation(s)
- Anne Chetty
- Tufts Medical Center, Tufts University, Boston, MA, USA
| | | |
Collapse
|
15
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
16
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Kim TM, Paudel KR, Kim DW. Eriobotrya japonica leaf extract attenuates airway inflammation in ovalbumin-induced mice model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112082. [PMID: 31310829 DOI: 10.1016/j.jep.2019.112082] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eriobotrya japonica leaves has a very long history of medicinal use as an anti-inflammatory and antitussive agent for bronchial inflammation. AIM OF THE STUDY The aim of this study was to evaluate the anti-inflammatory activities of Eriobotrya japonica (EJ) leaf water extract in an ovalbumin (OVA)-induced murine asthma model and human tracheal smooth muscle cell (HTSMC). MATERIALS AND METHODS Mice were sensitized by intra peritoneal OVA and challenged with nebulized OVA. EJ extract was administered orally at various dose. Bronchoalveolar lavage fluid (BALF) was quantified for nitric oxide (NO), eosinophil peroxidase (EPO), interleukin (IL)-4, IL-13 level and immunoglobulin (Ig) E was quantified in serum. Lung tissue sections were stained with hematoxylin and eosin for assessment of inflammatory cell infiltration whereas mucus production and goblet cell hyperplasia were studied by periodic acid schiff staining. Western blot was done for analysis of pERK1/2 expression and NFκB translocation in HTSMC whereas iNOS and COX-2 expression in RAW264.7 cell. RESULTS EJ significantly reduced the levels of BALF's NO, EPO, MMPs, IL-4, IL-13, and serum IgE. It also decreases inflammatory cell infiltration and mucus production. EJ also attenuated the proliferation of HTSMC, inhibits overexpression of ERK 1/2 and translocation of NFκB in HTSMC as well as iNOS and COX-2 expression in RAW 264.7 cell. CONCLUSION Present study suggest that, EJ effectively protects against allergic airway inflammation thus possessing potential therapeutic option for allergic asthma management.
Collapse
Affiliation(s)
- Tae-Muk Kim
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, 58554, Republic of Korea
| | - Dong-Wook Kim
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, 58554, Republic of Korea.
| |
Collapse
|
19
|
Wei F, Hao Y. TRIP6 accelerates the proliferation and migration of fetal airway smooth muscle cells by enhancing YAP activation. Int Immunopharmacol 2020; 82:106366. [PMID: 32151960 DOI: 10.1016/j.intimp.2020.106366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
The thyroid receptor interactor protein 6 (TRIP6) has emerged as a key regulator for the proliferation and migration of various cells. However, whether TRIP6 is involved in regulating the proliferation and migration of airway smooth muscle (ASM) cells in the progression of pediatric asthma remains undetermined. The present study investigated the function of TRIP6 in regulating the proliferation and migration of fetal ASM cells induced by tumor necrosis factor (TNF)-α in vitro. The results revealed that TRIP6 expression was significantly upregulated in TNF-α-stimulated ASM cells. Loss-of-function experiments demonstrated that the knockdown of TRIP6 markedly suppressed TNF-α-proliferation and migration of ASM cells. By contrast, overexpression of TRIP6 had the opposite effect. In-depth research uncovered that TNF-α stimulation promoted the activation of yes-associated protein (YAP), which could be significantly reversed by TRIP6 silencing. Moreover, inactivation of YAP significantly reversed the promotion effect of TRIP6 overexpression on TNF-α-induced ASM cell proliferation and migration. Overall, these results reveal that upregulation of TRIP6 contributes to the proliferation and migration of fetal ASM cells by enhancing YAP activation, highlighting the importance of the TRIP6/YAP axis in the airway remodeling of pediatric asthma.
Collapse
Affiliation(s)
- Fan Wei
- Department of Pediatrics, Xi'an High-Tech Hospital, 16 Unity South Road, Xi'an 710075, China
| | - Yanqing Hao
- Department of Pediatrics, Xi'an Daxing Hospital, 353 North Road of Municipal Labor, Xi'an 710016, China.
| |
Collapse
|
20
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Guo X, Zheng M, Pan R, Zang B, Gao J, Ma H, Jin M. Hydroxysafflor yellow A (HSYA) targets the platelet-activating factor (PAF) receptor and inhibits human bronchial smooth muscle activation induced by PAF. Food Funct 2019; 10:4661-4673. [PMID: 31292579 DOI: 10.1039/c9fo00896a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydroxysafflor yellow A (HSYA) is the main active ingredient of edible plant safflower. HSYA has demonstrated anti-inflammatory effects. The inflammatory response is the key mechanism responsible for asthma, and the pro-inflammatory platelet-activating factor (PAF) is known to play a role in the pathology of bronchial asthma. In this study, we stimulated human bronchial smooth muscle cells (HBSMCs) with PAF and examined the effects of HSYA on the resulting asthma-related process. PAF stimulation induced HBSMC activation, induced proliferation, increased expression of the pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and activated asthma-related signaling pathways. All these effects were significantly inhibited by treatment with HSYA (9, 27, 81 μmol L-1). The effects of HSYA were prevented by the addition of a PAF receptor (PAFR) antagonist or by PAFR gene silencing with small interfering RNA. These results suggest that HSYA may inhibit PAF-induced activation of HBSMCs by targeting the PAFR. Overall, these findings provide evidence that HSYA can be applied as a potential therapeutic agent in the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Xinjing Guo
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Chaoyang District, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gao ZX, Liu D, Liu LL, Lin LR, Tong ML, Niu JJ, Yang TC. Recombinant Treponema pallidum protein Tp47 promotes the migration and adherence of THP-1 cells to human dermal vascular smooth muscle cells by inducing MCP-1 and ICAM-1 expression. Exp Cell Res 2019; 381:150-162. [PMID: 31075255 DOI: 10.1016/j.yexcr.2019.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Vascular inflammation is a complex and multifactorial pathophysiological process that plays a crucial role in all stages of syphilis and is responsible for tissue damage. Little is known about the interactions of infiltrating immunocytes with human dermal vascular smooth muscle cells (HDVSMCs) in arterioles during the immunopathogenesis of syphilis. The Treponema pallidum subsp. pallidum membrane protein Tp47 is considered a major inducer of inflammation initiation and development. In this study, we demonstrated that Tp47 promoted the migration and adhesion of THP-1 cells to HDVSMCs. Furthermore, Tp47 increased monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression levels in a dose- and time-dependent manner. The migration and adhesion of THP-1 cells to HDVSMCs were significantly suppressed by anti-MCP-1 and anti-ICAM-1 neutralizing antibodies, respectively. Further studies revealed that treatment of HDVSMCs with Tp47 activated the PI3K/Akt, p38 MAPK and NF-κB signalling pathways. Inhibition of PI3K/Akt, p38 MAPK and NF-κB suppressed the MCP-1 and ICAM-1 expression induced by Tp47. In addition, the migration and adhesion of THP-1 cells to Tp47-treated HDVSMCs were significantly decreased by pretreatment with PI3K/Akt, p38 MAPK and NF-κB inhibitors. These findings demonstrate that Tp47 promotes the migration and adherence of THP-1 cells to HDVSMCs by inducing MCP-1 and ICAM-1 expression, which is mediated by activation of the PI3K/Akt, p38 MAPK and NF-κB pathways. This study provides a novel potential therapeutic strategy for controlling the vascular inflammatory response in syphilis patients.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
23
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
24
|
刘 慧, 刘 嘉, 彭 美, 黎 玉, 李 春. [Effect of acupuncture on TGF-β1/Smads pathway in mice with airway remodeling mic]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1372-1377. [PMID: 30514688 PMCID: PMC6744113 DOI: 10.12122/j.issn.1673-4254.2018.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of acupuncture on TGF-β1/Smads signaling pathway in the lung tissue of mice with airway remodeling. METHODS Thirty specific pathogen-free mice were randomly divided into blank group, model group and acupuncture group (n=10). Mouse models of asthma were established in the model group and the acupuncture group, and the mice in the latter group received 7 acupuncture therapies (at bilateral Fei Shu, Da Zhui and Zu Sanli, 20 min each time) every other day, starting on the 10th day after the modeling. At 24 h after the last acupuncture, the mice were subjected to inhalation of 1% OVA for 3 days, and 24 h after the last challenge, the mice were given methacholine chloride (Mch) inhalation at different concentrations for measurement of lung resistance using a noninvasive stroke volume meter. HE staining was used to observe the pathological changes in the lung tissues, and TGF-β1 levels in the the bronchoalveolar lavage fluid (BALF) and serum were detected using ELISA; Western blotting was used to detect the differential protein expressions in the airway smooth muscles between the two groups. The airway smooth muscle cells were isolated from the mice in the acupuncture group and treated with a TGF- β1 inhibitor (LY2157299), and the relative expressions of type-Ⅰ and Smads proteins were detected using Western blotting. RESULTS The mice in the model showed obvious tracheal fistula with airway pathologies including lumen narrowing, bronchial mucosa thickening, dissociation of the epithelial cells, and thickening of the alveolar septum and airway smooth muscles. These pathological changes were obviously milder in the acupuncture group. The asthmatic mice exhibited significantly increased lung resistance in positive correlation with Mch concentration. Serum TGF-β1 level was significantly elevated in asthmatic mice (P < 0.05); TGF-β1 levels in the serum and BALF were significantly lower in the acupuncture group than in the model group (P < 0.05). In the model group, the expressions of α-SMA, TGF-β1 and Smads in the airway smooth muscles were significantly higher than those in the other two groups (both P < 0.05). In cultured airway smooth muscle cells, the expressions of type-Ⅰ and Smads were significantly higher in cells treated with LY2157299 than in the control cells (P>0.05). CONCLUSIONS Acupuncture can inhibit airway remodeling by inhibiting the expression of airway TGF-β1 and down-regulating the expression of Smads and α-SMA to reduce airway inflammatory response. Airway expressions of type-Ⅰ and Smads proteins remain high after inhibiting TGF-β1. Acupuncture may control asthma progression through the TGF-β1/Smads pathway.
Collapse
Affiliation(s)
- 慧慧 刘
- 广州中医药大学第一附属医院 麻醉科,广东 广州 510405Department of Anesthesiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 嘉羿 刘
- 中山大学附属孙逸仙医院麻醉科,广东 广州 510120Department of Anesthesiology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Guangzhou 510120, China
| | - 美玉 彭
- 广州中医药大学第一附属医院 麻醉科,广东 广州 510405Department of Anesthesiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 玉辉 黎
- 广州中医药大学第一附属医院 麻醉科,广东 广州 510405Department of Anesthesiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 春桥 李
- 广州中医药大学第一附属医院 耳鼻喉科,广东 广州 510405Department of Otolaryngology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
25
|
GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 2018; 212:93-101. [PMID: 30189218 DOI: 10.1016/j.lfs.2018.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
Abstract
AIMS To explore the role of long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in the cell proliferation of airway smooth muscle cells (ASMCs) in asthma. MATERIALS AND METHODS An asthma rat model was established by ovalbumin sensitization and challenge. The expression of GAS5, miR-10a and BDNF mRNA and protein was determined with qRT-PCR and western blot, separately. The targeting relationship between GAS5 and miR-10a was examined with RNA immunoprecipitation and RNA pull-down assay; the interaction between miR-10a and BDNF was evaluated by luciferase reporter assay. Cell Proliferation Assay (MTS) was used for ASMC proliferation detection. Knock-down of GAS5 was performed in asthmatic rats to determine the effects of GAS5 in vivo. KEY FINDINGS Compared with control group, the inspiratory resistance and expiratory resistance were increased in asthma group; and the expression of GAS5, miR-10a and BDNF was higher, lower and higher, respectively. The expression of GAS5 and miR-10a was elevated and repressed, respectively, by platelet-derived growth factor-BB (PDGF-BB). GAS5 functioned as a bait of miR-10a. GAS5 regulates BDNF expression through miR-10a. PDGF-BB promotes the cell proliferation of ASMCs through miR-10a/BDNF. Knock-down of GAS5 significantly decreased airway hyperresponsiveness in asthmatic rats. SIGNIFICANCE The lncRNA GAS5/miR-10a/BDNF regulatory axis played an important role in promoting ASMCs proliferation, thus contributing to asthma.
Collapse
|
26
|
Tumor Necrosis Factor-α Initiates miRNA-mRNA Signaling Cascades in Obstruction-Induced Bladder Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1847-1864. [DOI: 10.1016/j.ajpath.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
|
27
|
Anderson JA, Lamichhane S, Vierhout T, Engebretson D. Determining the cross-talk between smooth muscle cells and macrophages on a cobalt-chromium stent material surface using an in vitro postimplantation coculture model. J Biomed Mater Res A 2017; 106:673-685. [PMID: 29047206 DOI: 10.1002/jbm.a.36271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023]
Abstract
Smooth muscle cells (SMCs) and macrophages are important cellular components involved in the development of complications following the implantation of cardiovascular devices. This leads to various disorders such as restenosis, chronic inflammation, and may ultimately result in device failure. In this study, we developed a postimplant stent coculture model using different ratios of SMCs and macrophages seeded on to cobalt-chromium alloy. The macrophages had an increased affinity to the coculture surfaces, which resulted in decreased SMC attachment to the alloy surfaces at the initial time point. Once adhered, the macrophages spread freely and displayed advanced stages of inflammation at 48 h when cocultured with SMCs. This resulted in an increased secretion of proinflammatory cytokines (tumor necrosis factor alpha, monocyte chemotactic protein 1, interleukin [IL]-6, and IL-8) by 48 h in the coculture samples with the greatest increase observed with the high number of macrophages. Therefore, the increased levels of proinflammatory cytokines promoted the growth of SMCs in coculture to a greater extent than when the SMCs were culture alone. Thus, this study demonstrated the constant cross-talk between SMCs and macrophages occurring on the postimplant stent surface. Similar coculture models can be used to test the biocompatibility of drugs and biomaterials at possible postimplantation scenarios. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 673-685, 2018.
Collapse
Affiliation(s)
- Jordan A Anderson
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Sujan Lamichhane
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Thomas Vierhout
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Daniel Engebretson
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| |
Collapse
|
28
|
Yu Z, Wang Y, Qin L, Chen H. Functional Cooperation between KCa3.1 and TRPV4 Channels in Bronchial Smooth Muscle Cell Proliferation Associated with Chronic Asthma. Front Pharmacol 2017; 8:559. [PMID: 28970794 PMCID: PMC5609593 DOI: 10.3389/fphar.2017.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
Abstract
Airway smooth muscle cells (SMC) proliferation contributes to the airways remodeling and irreversible airway obstruction during severe asthma, but the mechanisms of airway SMC proliferation are poorly understood. Intracellular Ca2+ levels play an important role in regulating cell proliferation. We have previously reported KCa3.1 channels regulated human bronchial smooth muscle (HBSM) cells proliferation via the Ca2+ influx as a consequence of membrane hyperpolarization. However, the role of potassium channels KCa3.1 in airway remodeling as well as the mechanism for extracellular Ca2+ influx induced by the activation of KCa3.1 remains unknown. Here we demonstrated that KCa3.1 channels deficiency attenuated airway remodeling, airway inflammation, and airway hyperresponsiveness (AHR) in a mouse model of chronic asthma. The gene expressions of repressor element 1-silencing transcription factor (REST) and c-Jun, two transcriptional regulators of KCa3.1 channels, were correlated negatively or positively with KCa3.1 channels expressions both in vivo and in vitro using real-time PCR and Western blot analyses. RNAi-mediated knockdown or pharmacological blockade of KCa3.1 and TRPV4 significantly attenuated HBSM cells proliferation. Using confocal imaging and custom data analysis software, blockade of TRPV4 decreased the Ca2+ influx induced by 1-EBIO-mediated KCa3.1 activation. Double-labeled staining showed that KCa3.1 and TRPV4 channels colocalized in HBSM cells. These results demonstrate that KCa3.1 channels regulate the proliferation phenotype of HBSM cells via TRPV4 channels in the process of chronic asthma, making it a potential therapeutic target to treat chronic asthma.
Collapse
Affiliation(s)
- Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanxia Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lu Qin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
29
|
Ojiaku CA, Yoo EJ, Panettieri RA. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-442. [PMID: 27854509 DOI: 10.1165/rcmb.2016-0307tr] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Edwin J Yoo
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
30
|
Wang W, Qu X, Dang X, Shang D, Yang L, Li Y, Xu D, Martin JG, Hamid Q, Liu J, Chang Y. Human β-defensin-3 induces IL-8 release and apoptosis in airway smooth muscle cells. Clin Exp Allergy 2017; 47:1138-1149. [PMID: 28437599 DOI: 10.1111/cea.12943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human airway smooth muscle cells (ASMCs) may have a pro-inflammatory role through the release of inflammatory mediators. Increasing evidence indicates that human β-defensins (HBDs) are related to pathogenesis of asthma. OBJECTIVES To examine the plasma level of HBD-1, HBD-2 and HBD-3 in asthmatic patients and the expression of their mouse orthologues in the lung tissue of a mouse model of chronic severe asthma. Further to investigate the effect of HBD-3 on the release of the pro-inflammatory cytokine IL-8 and to explore the mechanisms. METHODS The plasma levels of HBD-1, HBD-2 and HBD-3 from 34 healthy controls and 25 asthmatic patients were determined by ELISA. The expression of mouse β-defensins MBD-1, MBD-3 and MBD-14 in the lung tissue of asthmatic mice was detected by Western blot. The ASMCs were cultured with HBD-3 for 24 hour, and then the supernatant level of IL-8 was evaluated by ELISA and the cell viability was examined by WST-1 assay. The signalling pathway was investigated with blocking antibodies or pharmacological inhibitors. RESULTS The plasma levels of HBD-1 and HBD-3 were elevated in asthmatic patients, and the expression of MBD-14, the mouse orthologue for HBD-3, was increased in asthmatic mice. HBD-3-induced IL-8 production in a CCR6 receptor-specific manner and was dependent on multiple signalling pathways. Moreover, HBD-3-induced cell apoptosis concurrently, which was dependent on the ERK1/2 MAPK pathway. Mitochondrial ROS regulated both HBD-3-induced IL-8 production and cell apoptosis. CONCLUSIONS AND CLINICAL RELEVANCE These observations provide clear evidence of an important new mechanism for the promotion of airway inflammation and tissue remodelling with potential relevance for the treatment of asthma.
Collapse
Affiliation(s)
- W Wang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - X Qu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - X Dang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - D Shang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - L Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Li
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - D Xu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J G Martin
- Meakins-Christie Laboratories and Respiratory Division, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Q Hamid
- Meakins-Christie Laboratories and Respiratory Division, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - J Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Chang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Huang F, Cheng H, Zhang YT, Ju YH, Li YN. Early Postnatal Exposure to Cigarette Smoke Leads to Later Airway Inflammation in Asthmatic Mice. PLoS One 2017; 12:e0171021. [PMID: 28135326 PMCID: PMC5279757 DOI: 10.1371/journal.pone.0171021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Asthma is one of the most common airway inflammatory diseases. In most cases, asthma development is related to ubiquitous harmful environmental exposure factors in early-life. Previous studies have indicated that smoking can promote asthma development and increase the difficulty of asthma control. The aim of this study was to determine the effects of early-life CS exposure on ovalbumin (OVA)-sensitized asthmatic mice. Methods Pathological and immunological functions were analyzed in an adult asthma mice model in which mice were sensitized with OVA combined with early-life CS exposure. Results Mice exposed to CS for only 5 weeks demonstrated significantly reduced pulmonary compliance, increased airway inflammation, and augmented cellular and humoral immune responses. In addition, CS inhalation was sufficient to facilitate OVA sensitization and challenge asthmatic development. Meanwhile, CS exposure amplified regulatory T cell-mediated immunity inhibition, but still did not offset the increased effector T cell-mediated inflammatory response. Conclusion Early-life CS exposure is significantly associated with later pulmonary injury and aggravation of T-cell immunologic derangement in asthmatic mice.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Hang Cheng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yu-Tong Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yang-Hua Ju
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China.,Department of Molecular Biology, Basic Medical College of Jilin University, Changchun, PR China
| |
Collapse
|
32
|
Chen W, Lu C, Hirota C, Iacucci M, Ghosh S, Gui X. Smooth Muscle Hyperplasia/Hypertrophy is the Most Prominent Histological Change in Crohn's Fibrostenosing Bowel Strictures: A Semiquantitative Analysis by Using a Novel Histological Grading Scheme. J Crohns Colitis 2017; 11:92-104. [PMID: 27364949 DOI: 10.1093/ecco-jcc/jjw126] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The simplistically and ambiguously termed 'fibrostenosis' of bowel is a hallmark of severe Crohn's disease [CD] and a major contributor to medical treatment failure. Non-invasive imaging assessment and novel medical therapy targeting this condition are under investigation, which particularly requires a better understanding of the underlying histological basis. METHODS We analysed 48 patients with stricturing Crohn's ileitis or/and colitis that required surgical resection. The most representative sections of the fibrostenotic, non-stenotic and uninvolved regions were reviewed for histological analysis. For each layer of bowel wall (mucosa including muscularis mucosae [MU], submucosa [SM], muscularis propria [MP], subserosal adventitia [SS]), histological abnormalities were evaluated individually, including active and chronic inflammation, fibrosis, smooth muscle hyperplasia or hypertrophy, neuronal hypertrophy and adipocyte proliferation. A novel semiquantitative histological grading scheme was created. RESULTS The most significant histopathological features characterizing the stricturing intestines were smooth muscle hyperplasia of SM, hypertrophy of MP and chronic inflammation. The muscular alteration was predominant in all layers. The overall muscular hyperplasia/hypertrophy was positively correlated with chronic inflammation and negatively correlated with fibrosis, whereas SM muscular hyperplasia was also associated with MU active inflammation. Similar changes, to a lesser extent, occurred in the adjacent non-stenotic inflamed bowel as well. CONCLUSIONS In CD-associated 'fibrostenosis', it is the smooth muscle hyperplasia/hypertrophy that contributes most to the stricturing phenotype, whereas fibrosis is less significant. The 'inflammation-smooth muscle hyperplasia axis' may be the most important in the pathogenesis of Crohn's strictures.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Cathy Lu
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christina Hirota
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marietta Iacucci
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Subrata Ghosh
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xianyong Gui
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada .,Calgary Laboratory Services, Calgary, AB, Canada
| |
Collapse
|
33
|
Rao SS, Mu Q, Zeng Y, Cai PC, Liu F, Yang J, Xia Y, Zhang Q, Song LJ, Zhou LL, Li FZ, Lin YX, Fang J, Greer PA, Shi HZ, Ma WL, Su Y, Ye H. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy 2016; 47:176-189. [PMID: 27649066 DOI: 10.1111/cea.12805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodelling. Airway remodelling with excessive deposition of extracellular matrix (ECM) and larger smooth muscle mass are correlated with increased airway responsiveness and asthma severity. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodelling. However, the role of calpain in airway smooth muscle remodelling remains unknown. OBJECTIVE To investigate the role of calpain in asthmatic airway remodelling as well as the underlying mechanism. METHODS The mouse asthma model was made by ovalbumin sensitization and challenge. Calpain conditional knockout mice were studied in the model. Airway smooth muscle cells (ASMCs) were isolated from smooth muscle bundles in airway of rats. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma were selected to treated ASMCs. Collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs were analysed. RESULTS Inhibition of calpain using calpain knockout mice attenuated airway smooth muscle remodelling in mouse asthma models. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma increased collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs, which were blocked by the calpain inhibitor MDL28170. Moreover, MDL28170 reduced cytokine-induced increases in Rictor protein, which is the most important component of mammalian target of rapamycin complex 2 (mTORC2). Blockage of the mTORC2 signal pathway prevented cytokine-induced phosphorylation of Akt, collagen-I synthesis, and cell proliferation of ASMCs and attenuated airway smooth muscle remodelling in mouse asthma models. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that calpain mediates cytokine-induced collagen-I synthesis and proliferation of ASMCs via the mTORC2/Akt signalling pathway, thereby regulating airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- S-S Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Mu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P-C Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-J Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-L Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F-Z Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y-X Lin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Fang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P A Greer
- Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - H-Z Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - W-L Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Y Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - H Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| |
Collapse
|
34
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS. Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology. J Cell Physiol 2016; 232:1053-1068. [PMID: 27474898 DOI: 10.1002/jcp.25508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Long-term exposure to cigarette smoke (CS) triggers airway hyperreactivity and remodeling, effects that involve airway smooth muscle (ASM). We previously showed that CS destabilizes the networked morphology of mitochondria in human ASM by regulating the expression of mitochondrial fission and fusion proteins via multiple signaling mechanisms. Emerging data link regulation of mitochondrial morphology to cellular structure and function. We hypothesized that CS-induced changes in ASM mitochondrial morphology detrimentally affect mitochondrial function, leading to CS effects on contractility and remodeling. Here, ASM cells were exposed to 1% cigarette smoke extract (CSE) for 48 h to alter mitochondrial fission/fusion, or by inhibiting the fission protein Drp1 or the fusion protein Mfn2. Mitochondrial function was assessed via changes in bioenergetics or altered rates of proliferation and apoptosis. Our results indicate that both exposure to CS and inhibition of mitochondrial fission/fusion proteins affect mitochondrial function (i.e., energy metabolism, proliferation, and apoptosis) in ASM cells. In vivo, the airways in mice chronically exposed to CS are thickened and fibrotic, and the expression of proteins involved in mitochondrial function is dramatically altered in the ASM of these mice. We conclude that CS-induced changes in mitochondrial morphology (fission/fusion balance) correlate with mitochondrial function, and thus may control ASM proliferation, which plays a central role in airway health. J. Cell. Physiol. 232: 1053-1068, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Robert Vassallo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
36
|
Kim RY, Rae B, Neal R, Donovan C, Pinkerton J, Balachandran L, Starkey MR, Knight DA, Horvat JC, Hansbro PM. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunology 2016; 5:e91. [PMID: 27525064 PMCID: PMC4973321 DOI: 10.1038/cti.2016.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Brittany Rae
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Rachel Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - James Pinkerton
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Lohis Balachandran
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| |
Collapse
|
37
|
Knobloch J, Yanik SD, Körber S, Stoelben E, Jungck D, Koch A. TNFα-induced airway smooth muscle cell proliferation depends on endothelin receptor signaling, GM-CSF and IL-6. Biochem Pharmacol 2016; 116:188-99. [PMID: 27422754 DOI: 10.1016/j.bcp.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Pathological proliferation of human airway smooth muscle cells (HASMCs) causes hyperplasia in chronic lung diseases. Signaling pathways that link airway inflammation to HASMC proliferation might provide therapeutic targets for the prevention of airway remodeling and chronic lung diseases. Endothelin-1 (ET-1) signals via endothelin-A- and B-receptors (ETAR, ETBR) to perpetuate HASMC-associated and TNFα-dependent inflammatory processes. HYPOTHESIS endothelin receptor antagonists (ERAs) suppress HASMC proliferation induced by inflammatory cytokines. HASMCs were stimulated ex vivo with cytokines in the presence or absence of ERAs (ETAR-specific/selective: BQ123, ambrisentan; ETBR-specific: BQ788; non-selective: bosentan, macitentan, ACT-132577) or cytokine-blocking antibodies. Cell counts, DNA-synthesis (BrdU-incorporation assay), cytokine production (ELISA) and ETBR expression (whole-genome microarray data, western blot) were analyzed. ET-1-induced HASMC proliferation and DNA-synthesis were reduced by protein kinase inhibitors and ETAR-specific/selective ERAs but not by BQ788. TNFα-induced HASMC proliferation and DNA-synthesis were reduced by all ERAs. TNFα induced ET-1 and ETBR expression. TNFα- and ET-1-induced GM-CSF releases were both reduced by BQ123 and BQ788. TNFα- and ET-1-induced IL-6 releases were both reduced by BQ123 but not by BQ788. Combined but not single blockade of GM-CSF-receptor-α-chain and IL-6 reduced TNFα- and ET-1-induced HASMC proliferation and DNA-synthesis. Combined but not single treatment with GM-CSF and IL-6 induced HASMC proliferation and DNA-synthesis in the presence of ET-1. In conclusion, TNFα induces HASMC proliferation via ET-1/GM-CSF/IL-6. ETBR requires up-regulation by TNFα to mediate ET-1 effects on HASMC proliferation. This signaling cascade links airway inflammation to HASMC-associated remodeling processes and is sensitive to ERAs. Therefore, ERAs could prevent inflammation-induced airway smooth muscle hyperplasia.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany.
| | - Sarah Derya Yanik
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Sandra Körber
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Erich Stoelben
- Thoracic Surgery, Lungenklinik, Hospital of Cologne, University Witten/Herdecke, Germany
| | - David Jungck
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Andrea Koch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| |
Collapse
|
38
|
Khan MA. Dynamics of airway response in lung microsections: a tool for studying airway-extra cellular matrix interactions. J Biomed Sci 2016; 23:43. [PMID: 27176036 PMCID: PMC4865010 DOI: 10.1186/s12929-016-0263-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
The biological configuration of extracellular matrix (ECM) plays a key role in how mechanical interactions of the airway with its parenchymal attachments affect the dynamics of airway responses in different pulmonary disorders including asthma, emphysema and chronic bronchitis. It is now recognized that mechanical interactions between airway tissue and ECM play a key regulatory role on airway physiology and kinetics that can lead to the reorganization and remodeling of airway connective tissue. A connective tissue is composed of airway smooth muscle cells (ASM) and the ECM, which includes variety of glycoproteins and therefore the extent of interactions between ECM and ASM affects airway dynamics during exacerbations of major pulmonary disorders. Measurement of the velocity and magnitude of airway closure or opening provide important insights into the functions of the airway contractile apparatus and the interactions with its surrounding connective tissues. This review highlights suitability of lung microsection technique in studying measurements of airway dynamics (narrowing/opening) and associated structural distortions in airway compartments.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabiana.
| |
Collapse
|
39
|
Dileepan M, Sarver AE, Rao SP, Panettieri RA, Subramanian S, Kannan MS. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 2016; 11:e0150842. [PMID: 26998837 PMCID: PMC4801396 DOI: 10.1371/journal.pone.0150842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/19/2016] [Indexed: 01/25/2023] Open
Abstract
Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anne E. Sarver
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Reynold A. Panettieri
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subbaya Subramanian
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
40
|
Deshpande DA, Dileepan M, Walseth TF, Subramanian S, Kannan MS. MicroRNA Regulation of Airway Inflammation and Airway Smooth Muscle Function: Relevance to Asthma. Drug Dev Res 2015; 76:286-95. [PMID: 26587803 DOI: 10.1002/ddr.21267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic and environmental factors contribute to the onset and severity of asthma. Molecular pathogenesis of asthma involves changes in gene expression by a variety of inflammatory mediators acting in autocrine and paracrine fashion on effector cells of the airways. Transcriptional regulation of gene expression in resident airway cells has been studied extensively. However, protein function in a target cell can be regulated at multiple levels starting from transcription followed by post-transcription, translation, and post-translation steps. In this context, small noncoding RNAs known as microRNAs (miRNAs) have evolved as one of the key regulators of gene expression post-transcriptionally. Most importantly, miRNA expression is dynamic in nature and can be regulated by a variety of external stimuli. Altered expression of individual or a group of miRNAs is thought to contribute to human diseases. Recent studies have implicated differential expression of miRNAs in the lungs during inflammation. Most importantly, advanced biochemical and molecular tools could be used to manipulate miRNA expression thereby effecting functional changes in target cells and organ systems. This review summarizes the current understanding of miRNA in the regulation of airway function in health and disease, and highlights the potential clinical utility of mRNAs as biomarkers of airway diseases and as potential therapeutic targets.
Collapse
Affiliation(s)
- D A Deshpande
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| | - T F Walseth
- Department of Pharmacology, University of Minnesota, MN, USA
| | - S Subramanian
- Department of Surgery, University of Minnesota, MN, USA
| | - M S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| |
Collapse
|
41
|
Khan MA, Assiri AM, Broering DC. Complement mediators: key regulators of airway tissue remodeling in asthma. J Transl Med 2015; 13:272. [PMID: 26289385 PMCID: PMC4544802 DOI: 10.1186/s12967-015-0565-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
The complement mediators are the major effectors of the immune balance, which operates at the interface between the innate and adaptive immunity, and is vital for many immunoregulatory functions. Activation of the complement cascade through the classical, alternative or lectin pathways thus generating opsonins like C3b and C5b, anaphylatoxins C3a and C5a, chemotaxin, and inflammatory mediators, which leads to cellular death. Complement mediators that accelerate the airway remodeling are not well defined; however, an uncontrolled Th2-driven adaptive immune response has been linked to the major pathophysiologic features of asthma, including bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The mechanisms leading to complement mediated airway tissue remodeling, and the effect of therapy on preventing and/or reversing it are not clearly understood. This review highlights complement-mediated inflammation, and the mechanism through it triggers the airway tissue injury and remodeling in the airway epithelium that could serve as potential targets for developing a new drug to rescue the asthma patients.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh, 11211 MBC-03, Kingdom of Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh, 11211 MBC-03, Kingdom of Saudi Arabia.
| | - Dieter Clemens Broering
- Organ Transplant Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
42
|
Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci 2015; 22:58. [PMID: 26198107 PMCID: PMC4511526 DOI: 10.1186/s12929-015-0151-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/25/2015] [Indexed: 12/27/2022] Open
Abstract
The complement system, which contains some of the most potent pro-inflammatory mediators in the tissue including the anaphylatoxins C3a and C5a are the vital parts of innate immunity. Complement activation seems to play a more critical role in tumor development, but little attention has been given to the angiogenic balance of the activated complement mediators and macrophage polarization during tumor progression. The tumor growth mainly supported by the infiltration of M2- tumor-associated macrophages, and high levels of C3a and C5a, whereas M1-macrophages contribute to immune-mediated tumor suppression. Macrophages express a cognate receptors for both C3a and C5a on their cell surface, and specific binding of C3a and C5a affects the functional modulation and angiogenic properties. Activation of complement mediators induce angiogenesis, favors an immunosuppressive microenvironment, and activate cancer-associated signaling pathways to assist chronic inflammation. In this review manuscript, we highlighted the specific roles of complement activation and macrophage polarization during uncontrolled angiogenesis in tumor progression, and therefore blocking of complement mediators would be an alternative therapeutic option for treating cancer.
Collapse
Affiliation(s)
- M Afzal Khan
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - A M Assiri
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - D C Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Complement components as potential therapeutic targets for asthma treatment. Respir Med 2014; 108:543-9. [PMID: 24468195 DOI: 10.1016/j.rmed.2014.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 01/21/2023]
Abstract
Asthma is the most common respiratory disorder, and is characterized by distal airway inflammation and hyperresponsiveness. This disease challenges human health because of its increasing prevalence, severity, morbidity, and the lack of a proper and complete cure. Asthma is characterized by T(H)2-skewed inflammation with elevated pulmonary levels of IL-4, IL-5, and IL-13 levels. Although there are early forays into targeting T(H)2 immunity, less-specific corticosteroid therapy remains the immunomodulator of choice. Innate immune injury mediated by complement components also act as potent mediators of the allergic inflammatory responses and offer a new and exciting possibility for asthma immunotherapy. The complement cascade consists of a number of plasma- and membrane-bound proteins, and the cleavage products of these proteins (C3 and C5) regulate the magnitude of adaptive immune responses. Complement protein are responsible for many pathophysiological features of asthma, including inflammatory cell infiltration, mucus secretion, increases in vascular permeability, and smooth muscle cell contraction. This review highlights the complement-mediated injury during asthma inflammation, and how blockade of active complement mediators may have therapeutic application.
Collapse
|
44
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
45
|
The effects of proresolution of ellagic acid in an experimental model of allergic airway inflammation. Mediators Inflamm 2013; 2013:863198. [PMID: 24376308 PMCID: PMC3860142 DOI: 10.1155/2013/863198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation.
Collapse
|
46
|
Ticconi C, Pietropolli A, Piccione E. Estrogen replacement therapy and asthma. Pulm Pharmacol Ther 2013; 26:617-23. [PMID: 24035822 DOI: 10.1016/j.pupt.2013.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
A growing body of clinical and experimental evidence indicates that female sex hormones, particularly estrogen, have significant effects on normal airway function as well as on respiratory disorders, such as asthma. These effects are very complex and are exerted at several levels, directly on airway reactivity or indirectly through regulation of the immune and inflammatory responses in the lung. They can have relevant clinical implications not only according to the phases of the reproductive life in women, but also in relation to the therapeutical administration of estrogen, as in the case of menopausal hormone therapy. Clinical evidence suggests that administration of estrogen to menopausal women is associated with increased rates of newly diagnosed asthma. Conversely, functional studies show that estrogen can improve objective indexes of respiratory functionality.
Collapse
Affiliation(s)
- Carlo Ticconi
- Academic Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University Tor Vergata, Rome, Italy.
| | | | | |
Collapse
|