1
|
Sawada K, Kikuya S, Shiga Y, Kawaguchi T, Tani S. A Component of the Septation Initiation Network Complex, SepL, Participates in the Cellobiose-Responsive Expression of Cellulolytic Enzyme Genes in Aspergillus aculeatus. J Basic Microbiol 2025; 65:e2400266. [PMID: 39618037 DOI: 10.1002/jobm.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 05/04/2025]
Abstract
The production of cellulolytic enzymes in Aspergillus aculeatus is regulated at transcriptional levels in response to inducers and various physiological signals. In this study, we identified that a component of the septation initiation network complex, SepL, a putative protein kinase, was involved in the expression of carbohydrate-active enzyme (CAZyme) encoding genes. The deletion of sepL (ΔsepL) in A. aculeatus resulted in a deficiency in both septation and conidiation and sensitivity to Congo red. These phenotypes of ΔsepL are conserved in Aspergillus. In addition to the conserved function of SepL in Aspergillus, we found that SepL in A. aculeatus was necessary for the inducible expression of the CAZyme genes in response to cellobiose, whereas the inducible expression of these genes in response to 1,4-β-mannobiose was significantly reduced but not abolished. Combining the results of the present functional analysis of SepL with previous evidence that the expression of the CAZyme genes, which is responsive to both cellobiose and 1,4-β-mannobiose, is regulated by a transcription factor ManR in A. aculeatus, indicates that SepL in A. aculeatus is involved in the selective expression of the cellobiose-responsive CAZyme genes under the control of ManR.
Collapse
Affiliation(s)
- Kazumi Sawada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
| | - Saki Kikuya
- Department of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
| | - Yui Shiga
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| |
Collapse
|
2
|
Tani S, Hirose S, Kawaguchi T. Combinational manipulation of transcription factors, CreA and ClbR, is a viable strategy to improve cellulolytic enzyme production in Aspergillus aculeatus. J Biosci Bioeng 2024; 138:361-368. [PMID: 39168730 DOI: 10.1016/j.jbiosc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The production of cellulolytic enzymes in response to inducible carbon sources is mainly regulated at the transcriptional level in filamentous fungi. We have identified a cellobiose-response regulator (ClbR) controlling the expression of cellulolytic enzyme-encoding genes in Aspergillus aculeatus. However, the engineering potential of combining the deletion of transcriptional repressors with the overexpression of transcriptional activators to enhance enzyme production has not been analyzed. Here, we investigated the effect of the deletion of the transcriptional repressor creA and the overexpression of the transcriptional activator clbR in enzyme production in A. aculeatus. Here, we verified that a combination of creA deletion and clbR overexpression (Δc&OE) improved cellulase, β-1,4-xylanase, and β-glucosidase production. Cellulase and β-1,4-xylanase production increased 3.4- and 8.0-fold in Δc&OE compared with the host strain (MR12) at 96-h incubation, respectively. β-Glucosidase production in ΔcreA and Δc&OE increased approximately 5.0-fold compared with that in MR12 at 240-h incubation. Transcriptional analysis revealed that the increase in enzyme production was due to increased expression of cellobiohydrolase, endo-β-1,4-glucanase, β-1,4-xylanase, and β-glucosidase 1 (bgl1). Interestingly, bgl1 expression in ΔcreA increased in a dose-dependent manner in response to glucose. Thus, combinational manipulation of transcription factors improved cellulase, xylanase, and β-glucosidase production in A. aculeatus.
Collapse
Affiliation(s)
- Shuji Tani
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan.
| | - Shinya Hirose
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan
| |
Collapse
|
3
|
Kobayashi N, Katayama R, Minamoto K, Kawaguchi T, Tani S. C-terminus of serine-arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus. Int Microbiol 2024; 27:91-100. [PMID: 37195349 DOI: 10.1007/s10123-023-00373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The serine-arginine protein kinase-like protein, SrpkF, was identified as a regulator for the cellulose-responsive induction of cellulase genes in Aspergillus aculeatus. To analyze various aspects of SrpkF function, we examined the growth of the control strain (MR12); C-terminus deletion mutant, which produced SrpkF1-327 (ΔCsrpkF); whole gene-deletion mutant of srpkF (ΔsrpkF), srpkF overexpressing strain (OEsprkF); and the complemented strain (srpkF+) under various stress conditions. All test strains grew normally on minimal medium under control, high salt (1.5 M KCl), and high osmolality (2.0 M sorbitol and 1.0 M sucrose). However, only ΔCsrpkF showed reduced conidiation on 1.0 M NaCl media. Conidiation of ΔCsrpkF on 1.0 M NaCl media was reduced to 12% compared with that of srpkF+. Further, when OEsprkF and ΔCsrpkF were pre-cultured under salt stress conditions, germination under salt stress conditions was enhanced in both strains. By contrast, deletion of srpkF did not affect hyphal growth and conidiation under the same conditions. We then quantified the transcripts of the regulators involved in the central asexual conidiation pathway in A. aculeatus. The findings revealed that the expression of brlA, abaA, wetA, and vosA was reduced in ΔCsrpkF under salt stress. These data suggest that in A. aculeatus, SrpkF regulates conidiophore development. The C-terminus of SrpkF seems to be important for regulating SrpkF function in response to culture conditions such as salt stress.
Collapse
Affiliation(s)
- Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Kentaro Minamoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
| |
Collapse
|
4
|
Kunitake E, Kawaguchi T, Tani S. Independent, cooperative regulation of cellulolytic genes by paralogous transcription factors ClbR and ClbR2 in Aspergillus aculeatus. Biosci Biotechnol Biochem 2024; 88:212-219. [PMID: 37947258 DOI: 10.1093/bbb/zbad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The cellobiose-responsive regulator ClbR, a Zn(II)2Cys6 binuclear-cluster transcription factor, is a positive regulator of carbohydrate-active enzyme (CAZyme) genes responsive to cellulose in Aspergillus aculeatus. Because Zn(II)2Cys6 transcription factors tend to dimerize with proteins of the same family, we searched for a counterpart of ClbR and identified ClbR2, which is 42% identical to ClbR, as an interacting partner of ClbR by yeast two-hybrid screening. Genetic analyses suggested that ClbR and ClbR2 cooperatively regulate the expression of CAZyme genes in response to cellulose and 1,4-β-mannobiose in A. aculeatus. CAZyme genes under the control of the transcription factor ManR were regulated by ClbR and ClbR2, whereas those controlled by the transcription factor XlnR were regulated by ClbR, but not ClbR2. These findings suggest that ClbR participates in multiple regulatory pathways in A. aculeatus by altering an interacting factor.
Collapse
Affiliation(s)
- Emi Kunitake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University , Sakai, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University , Sakai, Japan
| |
Collapse
|
5
|
A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus. Appl Microbiol Biotechnol 2023; 107:785-795. [PMID: 36625911 DOI: 10.1007/s00253-022-12337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
In order to figure out the induction mechanisms of glycoside hydrolase genes in Aspergillus aculeatus, we screened approximately 9,000 transfer DNA (T-DNA)-inserted mutants for positive regulators involved in the induction. Since the mutants possess the orotidine 5'-monophosphate decarboxylase gene as a reporter gene to monitor the cellulose-responsive expression of the cellobiohydrolase I gene (cbhI), candidate strains were isolated by counterselection against 5-fluoroorotic acid (5-FOA). One 5-FOA-resistant mutant harboring the T-DNA at the uge5 locus showed reduced cellulose utilization and cbhI expression. A. aculeatus Uge5 is homologous to Aspergillus fumigatus uge5 (Afu5g10780; E-value, 0.0; identities, 93%), which catalyzes the conversion of uridine diphosphate (UDP)-glucose to UDP-galactopyranose. The uge5 deletion mutant in A. aculeatus (Δuge5) showed reduced conidium formation on minimal media supplemented with galactose, locust bean gum (LBG), and guar gum as a carbon source. β-1,4-Endoglucanase and β-1,4-mannanase production in submerged culture containing LBG was reduced to 10% and 6% of the control strain at day 5, respectively, but no difference was observed in cultures containing wheat bran. The expression of major cellulolytic and mannolytic genes in the presence of mannobiose in Δuge5 was reduced to less than 15% of the control strain, while cellobiose-responsive expression was only modestly reduced at early inducing time points. Since all test genes were controlled by a transcription factor ManR, these data demonstrate that Uge5 is involved in inducer-dependent selective expression of genes controlled via ManR. KEY POINTS: • UDP-glucose 4-epimerase (Uge5) regulates expression of glycosyl hydrolase genes. • ManR regulates both cellobiose- and mannobiose-responsive expression. • Uge5 plays a key role in mannobiose-responsive expression.
Collapse
|
6
|
Yoshimura Y, Kobayashi Y, Kawaguchi T, Tani S. Improvement of cellulosic biomass-degrading enzyme production by reducing extracellular protease production in <i>Aspergillus aculeatus</i>. J GEN APPL MICROBIOL 2022; 68:143-150. [DOI: 10.2323/jgam.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuko Yoshimura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Yuri Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
7
|
Katayama R, Kobayashi N, Kawaguchi T, Tani S. Serine-arginine protein kinase-like protein, SrpkF, stimulates both cellobiose-responsive and D-xylose-responsive signaling pathways in Aspergillus aculeatus. Curr Genet 2021; 68:143-152. [PMID: 34453575 DOI: 10.1007/s00294-021-01207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus aculeatus produces cellulolytic enzymes in the presence of their substrates. We screened a library of 12,000 A. aculeatus T-DNA-inserted mutants to identify a regulatory factor involved in the expression of their enzyme genes in response to inducers. We found one mutant that reduced the expression of FIII-avicelase (chbI) in response to cellulose. T-DNA was inserted into a putative protein kinase gene similar to AN10082 in A. nidulans, serine-arginine protein kinase F, SrpkF. Fold increases in srpkF gene expression in response to various carbon sources were 2.3 (D-xylose), 44 (Avicel®), 59 (Bacto™ Tryptone), and 98 (no carbon) compared with D-glucose. Deletion of srpkF in A. aculeatus resulted in a significant reduction in cellulose-responsive expression of chbI, hydrocellulase (cel7b), and FIb-xylanase (xynIb) genes at an early induction phase. Further, the srpkF-overexpressing strain showed upregulation of the srpkF gene from four- to nine-fold higher than in the control strain. srpkF overexpression upregulated cbhI and cel7b in response to cellobiose and the FI-carboxymethyl cellulase gene (cmc1) and xynIb in response to D-xylose. However, the srpkF deletion did not affect the expression of xynIb in response to D-xylose due to the less expression of srpkF under the D-xylose condition. Our data demonstrate that SrpkF is primarily involved in cellulose-responsive expression, though it has a potential to stimulate gene expression in response to both cellobiose and D-xylose in A. aculeatus.
Collapse
Affiliation(s)
- Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
8
|
Arnesen JA, Hoof JB, Kildegaard HF, Borodina I. Genome Editing of Eukarya. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Tsumura R, Sawada K, Kunitake E, Sumitani JI, Kawaguchi T, Tani S. A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol 2021; 105:1535-1546. [PMID: 33481069 DOI: 10.1007/s00253-021-11110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Various carbohydrate-active enzymes in Aspergillus are produced in response to physiological inducers, which is regulated at the transcriptional level. To elucidate the induction mechanisms in Aspergillus, we screened for new regulators involved in cellulose-responsive induction from approximately 10,000 Aspergillus aculeatus T-DNA-inserted mutants. We constructed the T-DNA-inserted mutant library using the host strain harboring the orotidine 5'-monophosphate decarboxylase gene (pyrG) under the control of the FIII-avicelase gene (cbhI) promoter. Thus, candidate mutants deficient in cellulose-responsive induction were positively screened via counter selection against 5-fluoroorotic acid (5-FOA). Among less than two hundred 5-FOA-resistant mutants, one mutant that the T-DNA inserted into the AasepM locus reduced the cbhI expression in response to cellulose. Since AaSepM is similar to Schizosaccharomyces pombe Cdc14p (E-value, 2e-20; identities, 33%), which is a component of the septation initiation network (SIN)-complex, we constructed an AasepM deletion mutant (ΔAasepM). We analyzed the expression of cellulase and xylanase genes in response to cellulose, septation, and conidiation in ΔAasepM. The AasepM deletion leads to delayed septation and decreased formation of the conidium chain in A. aculeatus but does not affect hyphal growth on minimal media. We also confirmed AaSepM's involvement in multiple cellulose-responsive signaling pathways of cellulase and xylanase genes under the control of the ManR-dependent, XlnR-dependent, and ManR- and XlnR-independent signaling pathways. KEY POINTS : • A new regulator for cellulolytic gene expression has been identified. • AaSepM is involved in septation and conidiation in A. aculeatus. • AasepM is involved in multiple cellulose-responsive signaling pathways.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Kazumi Sawada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Emi Kunitake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.,Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Jun-Ichi Sumitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
| |
Collapse
|
10
|
Son YE, Park HS. Genetic Manipulation and Transformation Methods for Aspergillus spp. MYCOBIOLOGY 2020; 49:95-104. [PMID: 37970179 PMCID: PMC10635212 DOI: 10.1080/12298093.2020.1838115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2023]
Abstract
Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
12
|
Shinkawa S, Mitsuzawa S. Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:31. [PMID: 32127918 PMCID: PMC7045521 DOI: 10.1186/s13068-020-1669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies. RESULTS The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes. CONCLUSIONS A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Collapse
Affiliation(s)
- Satoru Shinkawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| | - Shigenobu Mitsuzawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| |
Collapse
|
13
|
CRISPR/Cas9-Mediated Gene Replacement in the Fungal Keratitis Pathogen Fusarium solani var. petroliphilum. Microorganisms 2019; 7:microorganisms7100457. [PMID: 31623147 PMCID: PMC6843433 DOI: 10.3390/microorganisms7100457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal keratitis (FK) is a site-threatening infection of the cornea associated with ocular trauma and contact lens wear. Members of the Fusarium solani species complex (FSSC) are predominant agents of FK worldwide, but genes that support their corneal virulence are poorly understood. As a means to bolster genetic analysis in FSSC pathogens, we sought to employ a CRISPR/Cas9 system in an FK isolate identified as Fusarium petroliphilum. Briefly, this approach involves the introduction of two components into fungal protoplasts: (1) A purified Cas9 protein complexed with guide RNAs that will direct the ribonuclease to cut on either side of the gene of interest, and (2) a “repair template” comprised of a hygromycin resistance cassette flanked by 40 bp of homology outside of the Cas9 cuts. In this way, Cas9-induced double strand breaks should potentiate double homologous replacement of the repair template at the desired locus. We targeted a putative ura3 ortholog since its deletion would result in an easily discernable uracil auxotrophy. Indeed, 10% of hygromycin-resistant transformants displayed the auxotrophic phenotype, all of which harbored the expected ura3 gene deletion. By contrast, none of the transformants from the repair template control (i.e., no Cas9) displayed the auxotrophic phenotype, indicating that Cas9 cutting was indeed required to promote homologous integration. Taken together, these data demonstrate that the in vitro Cas9 system is an easy and efficient approach for reverse genetics in FSSC organisms, including clinical isolates, which should enhance virulence research in these important but understudied ocular pathogens.
Collapse
|
14
|
Fujii T, Inoue H, Ishikawa K, Hoshino T. Deletion Analysis of GH7 Endoglucanase Gene (cel7B) Promoter Region in a Talaromyces cellulolyticus ligD-Disrupted Strain. Appl Biochem Biotechnol 2017; 183:1516-1525. [PMID: 28577191 DOI: 10.1007/s12010-017-2519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Talaromyces cellulolyticus is expected to become an industrial cellulase producer. In this study, we performed deletion analysis of the promoter region of the GH7 endoglucanase gene (cel7B), which encodes one of the major cellulases, using a β-glucuronidase reporter system. To obtain strains that harbor each gene cassette at the same locus, we had to improve the homologous recombination frequency. Hence, the ligD gene, encoding DNA ligase IV, was disrupted by homologous recombination. After that, the introduced pyrF marker gene, encoding orotate phosphoribosyl transferase, was deleted by a marker recycling system. The resultant strain, YDLP, exhibits high homologous recombination frequency. These data suggest that this approach will drastically improve the genetic modification tools of T. cellulolyticus. We obtained 7 strains for reporter analysis using YDLP as the host strain. Reporter analysis revealed that the promoter region between -812 and -612 is important for expression of cel7B. These results imply a relationship between this region and novel transcriptional factors.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Tamotsu Hoshino
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
15
|
Qin X, Li R, Luo X, Lin Y, Feng JX. Deletion of ligD significantly improves gene targeting frequency in the lignocellulolytic filamentous fungus Penicillium oxalicum. Fungal Biol 2017; 121:615-623. [PMID: 28606356 DOI: 10.1016/j.funbio.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
Abstract
To improve the gene targeting frequency (GTF) in the lignocellulolytic filamentous fungus Penicillium oxalicum HP7-1, the non-homologous end-joining (NHEJ) gene ligD was deleted. The obtained PoligD deletion mutant ΔPoligD showed no apparent defect in cellulase production, growth rate, and sensitivity towards osmotic stress and mutagen ethyl methanesulphonate (EMS), while increased sensitivity to high concentrations of methyl methanesulfonate (MMS). Deletion of PoligD gene resulted in significantly increased GTFs at three different loci in P. oxalicum, which are even higher than those in Poku70 deletion mutant. The GTF in ΔPoligD at PoargB (reached 97 %) and PoagaA (reached 90 %) loci increased 5.1- and 1.2-fold compared with that in wild-type strain (WT), while at the Podpp4 locus GTF was up to 27 % in ΔPoligD but close to 0 % in WT, with 0.5 kb homologous flanking regions. Furthermore, the argB and agaA nutritional selection in P. oxalicum was demonstrated and the PoargB and PoagaA genes could be used as selective markers in this fungus. Thus, the PoligD deletion mutant can be an important tool for the functional analysis of genes in P. oxalicum.
Collapse
Affiliation(s)
- Xiulin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Ruijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Yanmei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
16
|
Tani S, Yuki S, Kunitake E, Sumitani JI, Kawaguchi T. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus. Biosci Biotechnol Biochem 2017; 81:1227-1234. [PMID: 28290772 DOI: 10.1080/09168451.2017.1295800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.
Collapse
Affiliation(s)
- Shuji Tani
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Shota Yuki
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Emi Kunitake
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Jun-Ichi Sumitani
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Takashi Kawaguchi
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| |
Collapse
|
17
|
Chen L, Li Y, Zhang Q, Akhberdi O, Wei D, Pan J, Zhu X. Seamless deletion of a large DNA fragment in the taxol-producing fungus Pestalotiopsis microspora. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Nakazawa T, Tsuzuki M, Irie T, Sakamoto M, Honda Y. Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus. Fungal Biol 2016; 120:1146-55. [PMID: 27567720 DOI: 10.1016/j.funbio.2016.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023]
Abstract
Of all of the natural polymers, lignin, an aromatic heteropolymer in plant secondary cell walls, is the most resistant to biological degradation. White-rot fungi are the only known organisms that can depolymerize or modify wood lignin. Investigating the mechanisms underlying lignin biodegradation by white-rot fungi would contribute to the ecofriendly utilization of woody biomass as renewable resources in the future. Efficient gene disruption, which is generally very challenging in the white-rot fungi, was established in Pleurotus ostreatus (the oyster mushroom). Some of the genes encoding manganese peroxidases, enzymes that are considered to be involved in lignin biodegradation, were disrupted separately, and the phenotype of each single-gene disruptant was analysed. However, it remains difficult to generate multi-gene disruptants in this fungus. Here we developed a new genetic transformation marker in P. ostreatus and demonstrated two marker recycling methods that use counter-selection to generate a multigene disruptant. This study will enable future genetic studies of white-rot fungi, and it will increase our understanding of the complicated mechanisms, which involve various enzymes, including lignin-degrading enzymes, underlying lignin biodegradation by these fungi.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Masami Tsuzuki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Irie
- Environmental Science Graduate School, The University of Shiga Prefecture, Hikone, Shiga, 522-8533, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Huang X, Chen M, Li J, Lu X. Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 2016; 38:1603-10. [DOI: 10.1007/s10529-016-2143-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
|
20
|
Kikukawa H, Sakuradani E, Nakatani M, Ando A, Okuda T, Sakamoto T, Ochiai M, Shimizu S, Ogawa J. Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr Genet 2015; 61:579-89. [PMID: 25782448 DOI: 10.1007/s00294-015-0481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
Abstract
To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute of Technology and Science, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8506, Japan
| | - Masato Nakatani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoyo Okuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaiku Sakamoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Misa Ochiai
- Research Institute, Suntory Global Innovation Center Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, 618-8503, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka, 621-8555, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
21
|
Suzuki K, Inoue H. Recombination and Gene Targeting in Neurospora. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Kunitake E, Kawamura A, Tani S, Takenaka S, Ogasawara W, Sumitani JI, Kawaguchi T. Effects of clbR overexpression on enzyme production in Aspergillus aculeatus vary depending on the cellulosic biomass-degrading enzyme species. Biosci Biotechnol Biochem 2014; 79:488-95. [PMID: 25410617 DOI: 10.1080/09168451.2014.982501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ClbR is a Zn(II)2Cys6 transcriptional activator that controls the expression of cellulase-related genes in response to Avicel and cellobiose in Aspergillus aculeatus. A clbR-overexpressing strain (clbR-OE) that expresses the clbR gene at levels sevenfold higher than the control strain sustainably produced xylanolytic and cellulolytic activities during 10-day cultivation of A. aculeatus, enabling synchronization of xylanolytic and cellulolytic activities at a maximum level. However, clbR overexpression did not simultaneously increase levels of all xylanolytic and cellulolytic enzymes. Peptide mass fingerprint analysis revealed markedly increased production of FIa-xylanase in clbR-OE, whereas expression of FIII-avicelase and FII-carboxymethyl cellulase was unaffected and expression of hydrocellulase was lower in clbR-OE than in the control. Northern blot analysis confirmed that these effects of clbR overexpression on enzyme production were mediated at the transcriptional level. These data suggest that ClbR participates in diverse signaling pathways to control the expression of cellulosic biomass-degrading enzymes in A. aculeatus.
Collapse
Affiliation(s)
- Emi Kunitake
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Osaka , Japan
| | | | | | | | | | | | | |
Collapse
|