1
|
Nguyen HT, Tuan AN, Thi TAD, Van KT, Le-Nhat-Thuy G, Thi PH, Thi QGN, Thi CB, Quang HT, Van Nguyen T. Synthesis, in vitro Α-Glucosidase, and acetylcholinesterase inhibitory activities of novel Indol-Fused Pyrano[2,3-D]Pyrimidine compounds. Bioorg Med Chem Lett 2024; 98:129566. [PMID: 38008338 DOI: 10.1016/j.bmcl.2023.129566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
In this study, new indol-fused pyrano[2,3-d]pyrimidines were designed and synthesized. These products were obtained in moderate to good yields and their structures were assigned by NMR, MS, and IR analysis. Afterwards, the biological important of the products was highlighted by evaluating in vitro for α-glucosidase inhibitory activity as well as acetylcholinesterase (AChE) inhibitory activity. Eleven products revealed substantial inhibitory activity against α-glucosidase enzyme, among which, two most potent products 11d,e were approximately 93-fold more potent than acarbose as a standard antidiabetic drug. Besides that, product 11k exhibited good AChE inhibition. The substituents on the 5-phenyl ring, attached to the pyran ring, played a critical role in inhibitory activities. The biological potencies have provided an opportunity to further investigations of indol-fused pyrano[2,3-d]pyrimidines as potential anti-diabetic agents.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Anh Nguyen Tuan
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ket Tran Van
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Military Technology Academy, 236 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cham Ba Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hung Tran Quang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
2
|
Lang DK, Kaur R, Arora R, Saini B, Arora S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anticancer Agents Med Chem 2020; 20:2150-2168. [DOI: 10.2174/1871520620666200705214917] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 01/14/2023]
Abstract
Background:
Cancer is spreading all over the world, and it is becoming the leading cause of major
deaths. Today’s most difficult task for every researcher is to invent a new drug that can treat cancer with minimal
side effects. Many factors, including pollution, modern lifestyle and food habits, exposure to oncogenic
agents or radiations, enhanced industrialization, etc. can cause cancer. Treatment of cancer is done by various
methods that include chemotherapy, radiotherapy, surgery and immunotherapy in combination or singly along
with kinase inhibitors. Most of the anti-cancer drugs use the concept of kinase inhibition.
Objective:
The number of drugs being used in chemotherapy has heterocycles as their basic structure in spite of
various side effects. Medicinal chemists are focusing on nitrogen-containing heterocyclic compounds like pyrrole,
pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimidazole,
etc. as the key building blocks to develop active biological compounds. The aim of this study is to attempt
to compile a dataset of nitrogen-containing heterocyclic anti-cancer drugs.
Methods:
We adopted a structural search on notorious journal publication websites and electronic databases
such as Bentham Science, Science Direct, PubMed, Scopus, USFDA, etc. for the collection of peer-reviewed
research and review articles for the present review. The quality papers were retrieved, studied, categorized into
different sections, analyzed and used for article writing.
Conclusion:
As per FDA databases, nitrogen-based heterocycles in the drug design are almost 60% of unique
small-molecule drugs. Some of the nitrogen-containing heterocyclic anti-cancer drugs are Axitinib, Bosutinib,
Cediranib, Dasatanib (Sprycel®), Erlotinib (Tarceva®), Gefitinib (Iressa®), Imatinib (Gleevec®), Lapatinib (Tykerb
®), Linifanib, Sorafenib (Nexavar®), Sunitinib (Sutent®), Tivozanib, etc. In the present review, we shall focus
on the overview of nitrogen-containing heterocyclic active compounds as anti-cancer agents.
Collapse
Affiliation(s)
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Zhang D, Kanakkanthara A. Beyond the Paclitaxel and Vinca Alkaloids: Next Generation of Plant-Derived Microtubule-Targeting Agents with Potential Anticancer Activity. Cancers (Basel) 2020; 12:cancers12071721. [PMID: 32610496 PMCID: PMC7407961 DOI: 10.3390/cancers12071721] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/31/2023] Open
Abstract
Plants are an important source of chemically diverse natural products that target microtubules, one of the most successful targets in cancer therapy. Colchicine, paclitaxel, and vinca alkaloids are the earliest plant-derived microtubule-targeting agents (MTAs), and paclitaxel and vinca alkaloids are currently important drugs used in the treatment of cancer. Several additional plant-derived compounds that act on microtubules with improved anticancer activity are at varying stages of development. Here, we move beyond the well-discussed paclitaxel and vinca alkaloids to present other promising plant-derived MTAs with potential for development as anticancer agents. Various biological and biochemical aspects are discussed. We hope that the review will provide guidance for further exploration and identification of more effective, novel MTAs derived from plant sources.
Collapse
Affiliation(s)
- Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (D.Z.); (A.K.)
| | - Arun Kanakkanthara
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (D.Z.); (A.K.)
| |
Collapse
|
4
|
Jasmer DP, Rosa BA, Tyagi R, Bulman CA, Beerntsen B, Urban JF, Sakanari J, Mitreva M. De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLoS Negl Trop Dis 2020; 14:e0007942. [PMID: 32453724 PMCID: PMC7274465 DOI: 10.1371/journal.pntd.0007942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A. suum, exocytosis was identified as a high priority pathway, and predicted inhibitors of exocytosis were tested using the large roundworm (Ascaris suum larval stages), a filarial worm (Brugia pahangi adult and L3), a whipworm (Trichuris muris adult), and the non-parasitic nematode Caenorhabditis elegans. 10 of 13 inhibitors were found to cause rapid immotility in A. suum L3 larvae, and five inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods. Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell biology as a useful resource to develop novel anthelmintic strategies.
Collapse
Affiliation(s)
- Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Joseph F Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, Maryland, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Synthesis and Evaluation of Antimicrobial Activities of Novel N-Substituted Indole Derivatives. J CHEM-NY 2020. [DOI: 10.1155/2020/4358453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indole motifs are one of the most significant scaffolds in the discovery of new drugs. We have described a synthesis of new N-substituted indole derivatives (1-3), and their in vitro antimicrobial activities were investigated. The synthesis of titled compounds has been demonstrated by utilizing commercially available starting materials. The antibacterial and antifungal activities were performed using new strains of bacteria Staphylococcus aureus, Escherichia coli, and Candida albicans using the disc diffusion method. Notably, the compound 4-(1-(2-(1H-indol-1-yl) ethoxy) pentyl)-N,N-dimethyl aniline (1) was found to be most potent than the other analogues (2 and 3), which has shown higher inhibition than the standard drug chloramphenicol.
Collapse
|
6
|
Duan YT, Sangani CB, Liu W, Soni KV, Yao Y. New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics. Curr Top Med Chem 2019; 19:972-994. [DOI: 10.2174/1568026619666190603094439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.
Collapse
Affiliation(s)
- Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal V. Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Yongfang Yao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Bakherad Z, Safavi M, Fassihi A, Sadeghi-Aliabadi H, Bakherad M, Rastegar H, Saeedi M, Ghasemi JB, Saghaie L, Mahdavi M. Design and Synthesis of Novel Cytotoxic Indole-Thiosemicarbazone Derivatives: Biological Evaluation and Docking Study. Chem Biodivers 2019; 16:e1800470. [PMID: 30845369 DOI: 10.1002/cbdv.201800470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
In this work, two novel series of indole-thiosemicarbazone derivatives were designed, synthesized, and evaluated for their cytotoxic activity against MCF-7, A-549, and Hep-G2 cell lines in comparison to etoposide and colchicine as the reference drugs. Generally, the synthesized compounds showed better cytotoxicity towards A-549 and Hep-G2 than MCF-7. Among them, (2E)-2-{[2-(4-chlorophenyl)-1H-indol-3-yl]methylidene}-N-(4-methoxyphenyl)hydrazinecarbothioamide (8l) was found to be the most potent compound against A-549 and Hep-G2, at least three times more potent than etoposide. The morphological analysis by the acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that compound 8l induced apoptosis in A-549 cells. Moreover, molecular docking methodology was exploited to elucidate the details of molecular interactions of the studied compounds with putative targets.
Collapse
Affiliation(s)
- Zohreh Bakherad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, 33535-111, Tehran, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Mohammad Bakherad
- School of Chemistry, Shahrood University of Technology, 3619995161, Shahrood, Iran
| | - Hossein Rastegar
- Food and Drug Control Laboratories, Food and Drug Laboratory Research Center, MOE and ME, 1113615911, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 14176, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, 14176, Tehran, Iran
| | - Jahan B Ghasemi
- Drug Design in Silico Lab, Chemistry Faculty, School of Sciences, University of Tehran, 1417614418, Teheran, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 1417653761, Tehran, Iran
| |
Collapse
|
8
|
Bakherad Z, Safavi M, Fassihi A, Sadeghi-Aliabadi H, Bakherad M, Rastegar H, Ghasemi JB, Sepehri S, Saghaie L, Mahdavi M. Anti-cancer, anti-oxidant and molecular docking studies of thiosemicarbazone indole-based derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03765-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur J Med Chem 2018; 162:612-630. [PMID: 30476825 DOI: 10.1016/j.ejmech.2018.10.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/02/2023]
Abstract
We report structure-activity relationships of 1-arylsulfonyl indoline based benzamides. The benzamide (9) exhibits striking tubulin inhibition with an IC50 value of 1.1 μM, better than that of combretastain A-4 (3), and substantial antiproliferative activity against a variety of cancer cells, including MDR-positive cell lines with an IC50 value of 49 nM (KB), 79 nM (A549), 63 nM (MKN45), 64 nM (KB-VIN10), 43 nM (KB-S15), and 46 nM (KB-7D). Dual inhibitory potential of compound 9 was found as it demonstrated significant inhibitory potential against HDAC1, 2 and 6 in comparison to MS-275 (6). Some key interactions of 9 with the amino acid residues of the active site of tubulin and with amino acid residues of HDAC 1 isoform have been figured out by molecular modeling. Compound 9 also demonstrated significant in vivo efficacy in the human non-small cell lung cancer A549 xenograft model as well as B-cell lymphoma BJAB xenograft tumor model.
Collapse
|
10
|
Panda P, Nayak S, Bhakta S, Mohapatra S, Murthy TR. Design and synthesis of (Z/E)-2-phenyl/H-3-styryl-2H-chromene derivatives as antimicrotubule agents. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1520-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Mphahlele MJ, Parbhoo N. Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization. Pharmaceuticals (Basel) 2018; 11:ph11020059. [PMID: 29891753 PMCID: PMC6027433 DOI: 10.3390/ph11020059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5a⁻h were prepared and evaluated for potential antigrowth effect in vitro against human lung cancer (A549) and cervical cancer (HeLa) cells and for the potential to inhibit tubulin polymerization. The corresponding intermediates, namely, the 3-unsubstituted 7-acetyl-2-aryl-5-bromoindole 2a⁻d and 7-acetamido-2-aryl-5-bromoindole 4a⁻d were included in the assays in order to correlate both structural variations and cytotoxicity. No cytotoxicity was observed for compounds 2a⁻d and their 3-trifluoroacetyl⁻substituted derivatives 5a⁻d against both cell lines. The 7-acetamido derivatives 4⁻d exhibited modest cytotoxicity against both cell lines. All of the 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5e⁻h were found to be more active against both cell lines when compared to the chemotherapeutic drug, Melphalan. The most active compound, 5g, induced programmed cell death (apoptosis) in a caspase-dependent manner for both A549 and HeLa cells. Compounds 5e⁻h were found to significantly inhibit tubulin polymerization against indole-3-carbinol and colchicine as reference standards. Molecular docking of 5g into the colchicine-binding site suggests that the compounds bind to tubulin by different type of interactions including pi-alkyl, amide-pi stacked and alkyl interactions as well as hydrogen bonding with the protein residues to elicit anticancer activity.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Nishal Parbhoo
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|
12
|
Gaikwad R, Amin SA, Adhikari N, Ghorai S, Jha T, Gayen S. Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1094-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Synthesis, anticancer evaluation and molecular docking studies of bis(indolyl) triazinones, Nortopsentin analogs. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-017-0372-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Synthesis of diverse amide linked bis-indoles and indole derivatives bearing coumarin-based moiety: cytotoxicity and molecular docking investigations. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2103-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Yao YF, Wang ZC, Wu SY, Li QF, Yu C, Liang XY, Lv PC, Duan YT, Zhu HL. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem Pharmacol 2017; 137:10-28. [DOI: 10.1016/j.bcp.2017.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
|
16
|
Chougala BM, S S, Holiyachi M, Naik NS, Shastri LA, Dodamani S, Jalalpure S, Dixit SR, Joshi SD, Sunagar VA. Microwave Synthesis of Coumarinyl Substituted Pyridine Derivatives as Potent Anticancer Agents and Molecular Docking Studies. ChemistrySelect 2017. [DOI: 10.1002/slct.201700358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Samundeeswari S
- Department of Chemistry; Karnatak University; Dharwad 580 003, Karnataka India
| | - Megharaja Holiyachi
- Department of Chemistry; Karnatak University; Dharwad 580 003, Karnataka India
| | - Nirmala S. Naik
- Department of Chemistry; Karnatak University; Dharwad 580 003, Karnataka India
| | - Lokesh A. Shastri
- Department of Chemistry; Karnatak University; Dharwad 580 003, Karnataka India
| | - Suneel Dodamani
- Dr. Prabhakar Kore Basic Science Research Center; KLE University; Belagavi 590010, Karnataka India
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Center; KLE University; Belagavi 590010, Karnataka India
- KLE University's College of Pharmacy; Nehru Nagar; Belagavi 590010, Karnataka India
| | - Sheshagiri R Dixit
- S.E.T's College of Pharmacy; Sangolli Rayanna Nagar; Dharwad 580002, Karnataka India
| | - Shrinivas D. Joshi
- S.E.T's College of Pharmacy; Sangolli Rayanna Nagar; Dharwad 580002, Karnataka India
| | - Vinay A Sunagar
- Department of Chemistry; G.S.S. College; Belagavi, Karnataka India
| |
Collapse
|
17
|
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Kumar D, Malik F, Bedi PMS, Jain S. 2,4-Diarylpyrano[3,2-c]chromen-5(4H)-ones as Antiproliferative Agents. Chem Pharm Bull (Tokyo) 2017; 64:399-409. [PMID: 27150472 DOI: 10.1248/cpb.c15-00958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, a series of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-ones were synthesised and evaluated as antiproliferative agents. The compounds were evaluated against a panel of human cancer cell lines. CH-1 exhibited significant cytoxicity against HCT 116 cell lines with an IC50 value of 1.4 and 4.3 µM against "MiaPaCa-2" cell lines. The compound CH-1 was found to induce apoptosis as evidenced by phase contrast microscopy, Hoechst 33258 staining and mitochondrial membrane potential (MMP) loss. The cell phase distribution studies indicated that the apoptotic population increased from 10.22% in the control sample to 57.19% in a sample treated with 20 µM compound CH-1.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University
| | | | | | | |
Collapse
|
19
|
Samundeeswari S, Kulkarni MV, Joshi SD, Dixit SR, Jayakumar S, Ezhilarasi RM. Synthesis and Human Anticancer Cell Line Studies on Coumarin-β
-carboline Hybrids as Possible Antimitotic Agents. ChemistrySelect 2016. [DOI: 10.1002/slct.201601020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Samundeeswari
- Department of Studies in Chemistry; Karnatak University, Pavate Nagar, Dharwad; 580003,Karnataka India
| | - Manohar V. Kulkarni
- Department of Studies in Chemistry; Karnatak University, Pavate Nagar, Dharwad; 580003,Karnataka India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry; S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad-; 580002, Karnataka India
| | - Sheshagiri R. Dixit
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry; S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad-; 580002, Karnataka India
| | - Srinivasan Jayakumar
- Department of chemistry; Gurunanak college Velacheri; Chennai- 600042, Tamilnadu India
| | - R. M. Ezhilarasi
- Department of chemistry; Gurunanak college Velacheri; Chennai- 600042, Tamilnadu India
| |
Collapse
|
20
|
Jaroch K, Karolak M, Górski P, Jaroch A, Krajewski A, Ilnicka A, Sloderbach A, Stefański T, Sobiak S. Combretastatins: In vitro structure-activity relationship, mode of action and current clinical status. Pharmacol Rep 2016; 68:1266-1275. [PMID: 27686966 DOI: 10.1016/j.pharep.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
For the first time combretastatins were isolated from African willow tree Combretum Caffrum. Subsequent studies have shown the impact of combretastatin A4 phosphate, a water-soluble prodrug, on endothelial cells in tumor vascular system. The same effect was not observed in the vascular system. This selectivity is associated with combretastatins mechanism of action: binding to colchicine domain of microtubules, which affects the cytoskeleton functionality of immature endothelial cells. At the same time, combretastatins directly induce cell death via apoptosis and/or mitotic catastrophe pathways. The combination of both elements makes combretastatin an anticancer compound of high efficiency. The cis-configuration is crucial for its biological activity. To date, many derivatives were synthesized. The attempts to resolve spontaneous isomerization to less active trans-stilbene derivative are still in progress. This issue seems to be overcome by incorporation of the ethene bridge with heterocyclic moiety in combretastatins structure. This modification retains the cis-configuration and prevents isomerization. Nevertheless, combretastatin A4 phosphate disodium is still the most potent compound of this group. The combination therapy, which is the most effective treatment, includes combretastatin A4 phosphate (CA4P) and conventional chemotherapeutics and/or radiotherapy. CA4P is relatively well tolerated giving adverse events of moderate severity, which includes: nausea, vomiting, headache, and tumor pain. The aforementioned effects subside on the day of drug administration or on the following day.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Maciej Karolak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Górski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Alina Jaroch
- Department and Institute of Nutrition and Dietetics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland; Department and Clinic of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Anna Sloderbach
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Stefański
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland; Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Stanisław Sobiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
21
|
Sreenivasulu R, Sujitha P, Jadav SS, Ahsan MJ, Kumar CG, Raju RR. Synthesis, antitumor evaluation, and molecular docking studies of indole–indazolyl hydrazide–hydrazone derivatives. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1750-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Singh H, Kumar M, Nepali K, Gupta MK, Saxena AK, Sharma S, Bedi PMS. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur J Med Chem 2016; 116:102-115. [PMID: 27060762 DOI: 10.1016/j.ejmech.2016.03.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/15/2022]
Abstract
Keeping in view the confines allied with presently accessible antitumor agents and success of C5-curcuminoid based bifunctional hybrids as novel antitubulin agnets, molecular hybrids of C5-curcuminoid and coumarin tethered by triazole ring have been synthesized and investigated for in-vitro cytotoxicity against THP-1, COLO-205, HCT-116 and PC-3 human tumor cell lines. The results revealed that the compounds A-2 to A-9, B-2, B-3, B-7 showed significant cytotoxic potential against THP-1, COLO-205 and HCT-116 cell lines, while the PC-3 cell line among these was found to be almost resistant. Structure activity relationship revealed that the nature of Ring X and the length of carbon-bridge (n) connecting triazole ring with coumarin moiety considerably influence the activity. Methoxy substituted phenyl ring as Ring X and two carbon-bridges were found to be the ideal structural features. The most potent compounds (A-2, A-3 and A-7) were further tested for tubulin polymerization inhibition. Compound A-2 was found to significantly inhibit the tubulin polymerization (IC50 = 0.82 μM in THP-1 tumor cells). The significant cytotoxicity and tubulin polymerization inhibition by A-2 was further rationalized by docking studies where it was docked at the curcumin binding site of tubulin.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Mandeep Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish K Gupta
- Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - Ajit K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
23
|
Sharma S, Gupta MK, Saxena AK, Bedi PMS. Triazole linked mono carbonyl curcumin-isatin bifunctional hybrids as novel anti tubulin agents: Design, synthesis, biological evaluation and molecular modeling studies. Bioorg Med Chem 2015; 23:7165-80. [PMID: 26515041 DOI: 10.1016/j.bmc.2015.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/13/2022]
Abstract
Keeping in view the limitations associated with currently available anticancer drugs, molecular hybrids of mono carbonyl curcumin and isatin tethered by triazole ring have been synthesized and evaluated for in vitro cytotoxicity against THP-1, COLO-205, HCT-116, A549, HeLa, CAKI-I, PC-3, MiaPaca-2 human cancer cell lines. The results revealed that the compounds SA-1 to SA-9, SB-2, SB-3, SB-4, SB-7 and SC-2 showed a good range of IC50 values against THP-1, COLO-205, HCT-116 and PC-3 cell lines, while the other four cell lines among these were found to be almost resistant. Structure activity relationship revealed that the nature of Ring X and substitution at position R influences the activity. Methoxy substituted phenyl ring as Ring X and H as R were found to be the ideal structural features. The most potent compounds (SA-2, SA-3, SA-4, SA-7) were further tested for tubulin inhibition. Compound SA-2 was found to significantly inhibit the tubulin polymerization (IC50=1.2 μM against HCT-116). Compound SA-2, moreover, lead to the disruption of microtubules as confirmed by immunofluorescence technique. The significant cytotoxicity and tubulin inhibition by SA-2 was streamlined by molecular modeling studies where it was docked at the curcumin binding site of tubulin.
Collapse
Affiliation(s)
- Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish K Gupta
- Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - Ajit K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
24
|
Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015; 2015:690916. [PMID: 26484003 PMCID: PMC4592889 DOI: 10.1155/2015/690916] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.
Collapse
|
25
|
Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box. Molecules 2015; 20:16852-91. [PMID: 26389876 PMCID: PMC6331900 DOI: 10.3390/molecules200916852] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.
Collapse
|
26
|
Recent developments in tubulin polymerization inhibitors: An overview. Eur J Med Chem 2014; 87:89-124. [DOI: 10.1016/j.ejmech.2014.09.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
|
27
|
Sharma S, Kaur C, Budhiraja A, Nepali K, Gupta MK, Saxena AK, Bedi PMS. Chalcone based azacarboline analogues as novel antitubulin agents: design, synthesis, biological evaluation and molecular modelling studies. Eur J Med Chem 2014; 85:648-60. [PMID: 25128667 DOI: 10.1016/j.ejmech.2014.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/27/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
The present study involves the design of a series of 3-aryl-9-acetyl-pyridazino[3,4-b]indoles as constrained chalcone analogues. A retrosynthetic route was proposed for the synthesis of target compounds. All the synthesized compounds were evaluated for in-vitro cytotoxicity against THP-1, COLO-205, HCT-116 and A-549 human cancer cell lines. The results indicated that 2a, 3a, 5a and 6a possessed significant cytotoxic potential with an IC50 value ranging from 1.13 to 5.76 μM. Structure activity relationship revealed that the nature of both Ring A and Ring B influences the activity. Substitution of methoxy groups on the phenyl ring (Ring A) and unsubstituted phenyl ring (Ring B) were found to be the preferred structural features. The most potent compound 2a was further tested for tubulin inhibition. Compound 2a was found to significantly inhibit the tubulin polymerization (IC50 value - 2.41 μM against THP-1). Compound 2a also caused disruption of microtubule assembly as evidenced by Immunoflourescence technique. The significant cytotoxicity and tubulin inhibition by 2a was rationalized by molecular modelling studies. The most potent structure was docked at colchicine binding site (PDB ID-1SA0) and was found to be stabilized in the cavity via various hydrophobic and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charanjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhishek Budhiraja
- Faculty of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Manish K Gupta
- Molecular Modeling and Pharmacoinformatics Lab, Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab 143005, India; Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - A K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - P M S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
28
|
|