1
|
Athanassiou P, Athanassiou L, Kostoglou-Athanassiou I, Shoenfeld Y. Targeted Cellular Treatment of Systemic Lupus Erythematosus. Cells 2025; 14:210. [PMID: 39937001 PMCID: PMC11816398 DOI: 10.3390/cells14030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease affecting all organ systems. The disease preferentially affects females of childbearing age. It runs a variable course. It may run a mild course that may never lead to severe disease and manifestations from critical organ systems. However, it may also run an undulating course with periods of mild and severe disease. It may run as a mild disease, quickly deteriorating to severe disease and affecting multiple organ systems. Various immune pathways related both to the innate and adaptive immune response are involved in the pathogenesis of SLE. Various drugs have been developed targeting cellular and molecular targets in these pathways. Interferons are involved in the pathogenesis of SLE, and various drugs have been developed to target this pathway. T and B lymphocytes are involved in the pathophysiology of SLE. Various treatment modalities targeting cellular targets are available for the treatment of SLE. These include biologic agents targeting B lymphocytes. However, some patients have disease refractory to these treatment modalities. For these patients, cell-based therapies may be used. Hematopoietic stem cell transplantation involving autologous cells is an option in the treatment of refractory SLE. Mesenchymal stem cells are also applied in the treatment of SLE. Chimeric antigen receptor (CAR)-T cell therapy is a novel treatment also used in SLE management. This novel treatment method holds major promise for the management of autoimmune diseases and, in particular, SLE. Major hurdles to be overcome are the logistics involved, as well as the need for specialized facilities. This review focuses on novel treatment modalities in SLE targeting cellular and molecular targets in the immune system.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, 16673 Athens, Greece;
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzliya 4610101, Israel;
| |
Collapse
|
2
|
Leclair V, Galindo-Feria AS, Rothwell S, Kryštůfková O, Zargar SS, Mann H, Diederichsen LP, Andersson H, Klein M, Tansley S, Rönnblom L, Lindblad-Toh K, Syvänen AC, Wahren-Herlenius M, Sandling JK, McHugh N, Lamb JA, Vencovský J, Chinoy H, Holmqvist M, Bianchi M, Padyukov L, Lundberg IE, Diaz-Gallo LM. Distinct HLA associations with autoantibody-defined subgroups in idiopathic inflammatory myopathies. EBioMedicine 2023; 96:104804. [PMID: 37769433 PMCID: PMC10550566 DOI: 10.1016/j.ebiom.2023.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND In patients with idiopathic inflammatory myopathies (IIM), autoantibodies are associated with specific clinical phenotypes suggesting a pathogenic role of adaptive immunity. We explored if autoantibody profiles are associated with specific HLA genetic variants and clinical manifestations in IIM. METHODS We included 1348 IIM patients and determined the occurrence of 14 myositis-specific or -associated autoantibodies. We used unsupervised cluster analysis to identify autoantibody-defined subgroups and logistic regression to estimate associations with clinical manifestations, HLA-DRB1, HLA-DQA1, HLA-DQB1 alleles, and amino acids imputed from genetic information of HLA class II and I molecules. FINDINGS We identified eight subgroups with the following dominant autoantibodies: anti-Ro52, -U1RNP, -PM/Scl, -Mi2, -Jo1, -Jo1/Ro52, -TIF1γ or negative for all analysed autoantibodies. Associations with HLA-DRB1∗11, HLA-DRB1∗15, HLA-DQA1∗03, and HLA-DQB1∗03 were present in the anti-U1RNP-dominated subgroup. HLA-DRB1∗03, HLA-DQA1∗05, and HLA-DQB1∗02 alleles were overrepresented in the anti-PM/Scl and anti-Jo1/Ro52-dominated subgroups. HLA-DRB1∗16, HLA-DRB1∗07 alleles were most frequent in anti-Mi2 and HLA-DRB1∗01 and HLA-DRB1∗07 alleles in the anti-TIF1γ subgroup. The HLA-DRB1∗13, HLA-DQA1∗01 and HLA-DQB1∗06 alleles were overrepresented in the negative subgroup. Significant signals from variations in class I molecules were detected in the subgroups dominated by anti-Mi2, anti-Jo1/Ro52, anti-TIF1γ, and the negative subgroup. INTERPRETATION Distinct HLA class II and I associations were observed for almost all autoantibody-defined subgroups. The associations support autoantibody profiles use for classifying IIM which would likely reflect underlying pathogenic mechanisms better than classifications based on clinical symptoms and/or histopathological features. FUNDING See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.
Collapse
Affiliation(s)
- Valérie Leclair
- Clinical Epidemiology Division, Department Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Jewish General Hospital Lady Davis Institute, Montreal, Canada.
| | - Angeles S Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Simon Rothwell
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Olga Kryštůfková
- Institute of Rheumatology and Department of Rheumatology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Sepehr Sarrafzadeh Zargar
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Herman Mann
- Institute of Rheumatology and Department of Rheumatology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Louise Pyndt Diederichsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Helena Andersson
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Martin Klein
- Institute of Rheumatology and Department of Rheumatology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Sarah Tansley
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Broad Institute of MIT and Harvard, Cambridge, MA, Unite States of America
| | - Ann-Christine Syvänen
- Science for Life Laboratory, Uppsala University, Department of Medical Sciences, Molecular Precision Medicine, Uppsala, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Neil McHugh
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Janine A Lamb
- Epidemiology and Public Health Group, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jiri Vencovský
- Institute of Rheumatology and Department of Rheumatology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Hector Chinoy
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom; Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marie Holmqvist
- Clinical Epidemiology Division, Department Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Wang D, Yang D, Yang L, Diao L, Zhang Y, Li Y, Wang H, Ren J, Cheng L, Tan Q, Zhang R, Han X, Zhang X, Wang B, Li D, Chen M, Hermjakob H, Li Y, LaBaer J, Zhou Z, Yu X. Human Autoantigen Atlas: Searching for the Hallmarks of Autoantigens. J Proteome Res 2023. [PMID: 37183442 DOI: 10.1021/acs.jproteome.2c00799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding autoimmunity to endogenous proteins is crucial in diagnosing and treating autoimmune diseases. In this work, we developed a user-friendly AAgAtlas portal (http://biokb.ncpsb.org.cn/aagatlas_portal/index.php#), which can be used to search for 8045 non-redundant autoantigens (AAgs) and 47 post-translationally modified AAgs against 1073 human diseases that are prioritized by a credential score developed by multisource evidence. Using AAgAtlas, the immunogenic properties of human AAgs was systematically elucidated according to their genetic, biophysical, cytological, expression profile, and evolutionary characteristics. The results indicated that human AAgs are evolutionally conserved in protein sequence and enriched in three hydrophilic and polar amino acid residues (K, D, and E) that are located at the protein surface. AAgs are enriched in proteins that are involved in nucleic acid binding, transferase, and the cytoskeleton. Genome, transcriptome, and proteome analyses further indicated that AAb production is associated with gene variance and abnormal protein expression related to the pathological activities of different tumors. Collectively, our data outlines the hallmarks of human AAgs that facilitate the understanding of humoral autoimmunity and the identification of biomarkers of human diseases.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuqi Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Ren
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaohan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingwei Wang
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Meng Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Zhou Zhou
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases and Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
4
|
Pashova S, Balabanski L, Elmadjian G, Savov A, Stoyanova E, Shivarov V, Petrov P, Pashov A. Restriction of the Global IgM Repertoire in Antiphospholipid Syndrome. Front Immunol 2022; 13:865232. [PMID: 35493489 PMCID: PMC9043687 DOI: 10.3389/fimmu.2022.865232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
The typical anti-phospholipid antibodies (APLA) in the anti-phospholipid syndrome (APS) are reactive with the phospholipid-binding protein β2GPI as well as a growing list of other protein targets. The relation of APLA to natural antibodies and the fuzzy set of autoantigens involved provoked us to study the changes in the IgM repertoire in APS. To this end, peptides selected by serum IgM from a 7-residue linear peptide phage display library (PDL) were deep sequenced. The analysis was aided by a novel formal representation of the Igome (the mimotope set reflecting the IgM specificities) in the form of a sequence graph. The study involved women with APLA and habitual abortions (n=24) compared to age-matched clinically healthy pregnant women (n=20). Their pooled Igomes (297 028 mimotope sequences) were compared also to the global public repertoire Igome of pooled donor plasma IgM (n=2 796 484) and a set of 7-mer sequences found in the J regions of human immunoglobulins (n=4 433 252). The pooled Igome was represented as a graph connecting the sequences as similar as the mimotopes of the same monoclonal antibody. The criterion was based on previously published data. In the resulting graph, identifiable clusters of vertices were considered related to the footprints of overlapping antibody cross-reactivities. A subgraph based on the clusters with a significant differential expression of APS patients' mimotopes contained predominantly specificities underrepresented in APS. The differentially expressed IgM footprints showed also an increased cross-reactivity with immunoglobulin J regions. The specificities underexpressed in APS had a higher correlation with public specificities than those overexpressed. The APS associated specificities were strongly related also to the human peptidome with 1 072 mimotope sequences found in 7 519 human proteins. These regions were characterized by low complexity. Thus, the IgM repertoire of the APS patients was found to be characterized by a significant reduction of certain public specificities found in the healthy controls with targets representing low complexity linear self-epitopes homologous to human antibody J regions.
Collapse
Affiliation(s)
- Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lubomir Balabanski
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
- Genomics Laboratory, Hospital “Malinov”, Sofia, Bulgaria
| | - Gabriel Elmadjian
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexey Savov
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Peter Petrov
- Institute Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anastas Pashov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Vakilian M. A review on the effect of prolyl isomerization on immune response aberration and hypersensitivity reactions: A unifying hypothesis. Clin Immunol 2021; 234:108896. [PMID: 34848356 DOI: 10.1016/j.clim.2021.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022]
Abstract
Little is known about the causes and mechanisms of ectopic immune responses, including different types of hypersensitivity, superantigens, and cytokine storms. Two of the most questionable phenomena observed in immunology are why the intensity and extent of immune responses to different antigens are different, and why some self-antigens are attacked as foreign. The secondary structure of the peptides involved in the immune system, such as the epitope-paratope interfaces plays a pivotal role in the resulting immune responses. Prolyl cis/trans isomerization plays a fundamental role in the form of the secondary structure and the folding of proteins. This review covers some of the emerging evidence indicating the impact of prolyl isomerization on protein conformation, aberration of immune responses, and the development of hypersensitivity reactions.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.
| |
Collapse
|
6
|
Sena P, Mancini S, Bertacchini J, Carnevale G, Pedroni M, Roncucci L. Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers (Basel) 2021; 13:3239. [PMID: 34209517 PMCID: PMC8269181 DOI: 10.3390/cancers13133239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer represents a paradigmatic model of inflammatory carcinogenesis accompanied by the production of several kinds of tumor-associated autoantibodies (TAABs). The specific aim of this study is to define the clinical impact of the presence of non-specific circulating TAABs in a cohort of cancer patients and to establish whether significant differences were present between colorectal cancer and cancers at other sites. For this aim a prospective study was developed and a five-year survival analysis performed. Indirect immunofluorescence on rat tissues for non-organ specific autoantibodies (NOSAs: liver-kidney-stomach), on rat colon substrates (colon-related autoantibodies, CAAs) and on HEp-2 cell lines was performed. NOSA positivity was more frequent in patients with colorectal cancer than in those with cancer at other sites. Survival analysis demonstrated a significantly worse prognosis in cancer patients positive for TAABs. CAA positivity is a predictor of survival, independently from the presence of comorbidities, and HEp-2 reactivity was a strong predictor of survival in a stepwise Cox-regression model, including stage at diagnosis. Overall overproduction of TAABs is associated with advanced oncological disease, the presence of metastasis, and poorer prognosis of cancer patients.
Collapse
Affiliation(s)
- Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Stefano Mancini
- Department of Internal Medicine and Rehabilitation, Santa Maria Bianca Hospital, AUSL Modena, Via A. Fogazzaro 6, 41037 Mirandola, Italy;
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| |
Collapse
|
7
|
Carl PL, Fried HM, Cohen PL. Proteins in assemblages formed by phase separation possess properties that promote their transformation to autoantigens: Implications for autoimmunity. J Autoimmun 2020; 111:102471. [DOI: 10.1016/j.jaut.2020.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
8
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
9
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
10
|
Zheng Z, Mergaert AM, Fahmy LM, Bawadekar M, Holmes CL, Ong IM, Bridges AJ, Newton MA, Shelef MA. Disordered Antigens and Epitope Overlap Between Anti-Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 72:262-272. [PMID: 31397047 DOI: 10.1002/art.41074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF) are commonly present in rheumatoid arthritis (RA) without a clear rationale for their coexistence. Moreover, autoantibodies develop against proteins with different posttranslational modifications and native proteins without obvious unifying characteristics of the antigens. We undertook this study to broadly evaluate autoantibody binding in seronegative and seropositive RA to identify novel features of reactivity. METHODS An array was created using a total of 172,828 native peptides, citrulline-containing peptides, and homocitrulline-containing peptides derived primarily from proteins citrullinated in the rheumatoid joint. IgG and IgM binding to peptides were compared between cyclic citrullinated peptide (CCP)-positive RF+, CCP+RF-, CCP-RF+, and CCP-RF- serum from RA patients (n = 48) and controls (n = 12). IgG-bound and endogenously citrullinated peptides were analyzed for amino acid patterns and predictors of intrinsic disorder, i.e., unstable 3-dimensional structure. Binding to IgG-derived peptides was specifically evaluated. Enzyme-linked immunosorbent assay confirmed key results. RESULTS Broadly, CCP+RF+ patients had high citrulline-specific IgG binding to array peptides and CCP+RF- and CCP-RF+ patients had modest citrulline-specific IgG binding (median Z scores 3.02, 1.42, and 0.75, respectively; P < 0.0001). All RA groups had low homocitrulline-specific binding. CCP+RF+ patients had moderate IgG binding to native peptides (median Z score 2.38; P < 0.0001). The highest IgG binding was to citrulline-containing peptides, irrespective of protein identity, especially if citrulline was adjacent to glycine or serine, motifs also seen in endogenous citrullination in the rheumatoid joint. Highly bound peptides had multiple features predictive of disorder. IgG from CCP+RF+ patients targeted citrulline-containing IgG-derived peptides. CONCLUSION Disordered antigens, which are frequently citrullinated, and common epitopes for ACPAs and RF are potentially unifying features for RA autoantibodies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene M Ong
- University of Wisconsin-Madison and University of Wisconsin Carbone Comprehensive Cancer Center
| | - Alan J Bridges
- University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital
| | | | - Miriam A Shelef
- University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital
| |
Collapse
|
11
|
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci (Hoboken) 2018; 110:e24067. [PMID: 32328540 PMCID: PMC7167742 DOI: 10.1002/pep2.24067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
The development of clinically useful peptide-based vaccines remains a long-standing goal. This review highlights that intrinsically disordered protein antigens, which lack an ordered three-dimensional structure, represent excellent starting points for the development of such vaccines. Disordered proteins represent an important class of antigen in a wide range of human pathogens, and, contrary to widespread belief, they are frequently targets of protective antibody responses. Importantly, disordered epitopes appear invariably to be linear epitopes, rendering them ideally suited to incorporation into a peptide vaccine. Nonetheless, the conformational properties of disordered antigens, and hence their recognition by antibodies, frequently depend on the interactions they make and the context in which they are presented to the immune system. These effects must be considered in the design of an effective vaccine. Here we discuss these issues and propose design principles that may facilitate the development of peptide vaccines targeting disordered antigens.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Sreedam C. Das
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| |
Collapse
|
12
|
Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Front Immunol 2017; 8:976. [PMID: 28861084 PMCID: PMC5561390 DOI: 10.3389/fimmu.2017.00976] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.
Collapse
Affiliation(s)
- Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Anu Remm
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Antonella Meloni
- Pediatric Clinic II, Ospedale Microcitemico, Cagliari, Italy.,Department of Biomedical and Biotechnological Science, University of Cagliari, Cagliari, Italy
| | - Katarina Trebusak Podkrajsek
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, Guy's Hospital, London, United Kingdom
| | - Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Zaenker P, Gray E, Ziman M. Autoantibody Production in Cancer—The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun Rev 2016; 15:477-83. [DOI: 10.1016/j.autrev.2016.01.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
|
14
|
Gebretsadik G, Menon MKC. Proteomics and Its Applications in Diagnosis of Auto Immune Diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/oji.2016.61003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Dias SRC, Boroni M, Rocha EA, Dias TL, de Laet Souza D, Oliveira FMS, Bitar M, Macedo AM, Machado CR, Caliari MV, Franco GR. Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis. Front Genet 2014; 5:174. [PMID: 24966869 PMCID: PMC4052899 DOI: 10.3389/fgene.2014.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.
Collapse
Affiliation(s)
- Sílvia R C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mariana Boroni
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Elizângela A Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Thomaz L Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fabrício M S Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Andrea M Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Carlos R Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Marcelo V Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
16
|
Pavlović MD, Jandrlić DR, Mitić NS. Epitope distribution in ordered and disordered protein regions. Part B — Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J Immunol Methods 2014; 407:90-107. [DOI: 10.1016/j.jim.2014.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
|
17
|
Mitić NS, Pavlović MD, Jandrlić DR. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy. J Immunol Methods 2014; 406:83-103. [PMID: 24614036 DOI: 10.1016/j.jim.2014.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Highly disordered protein regions are prevalently hydrophilic, extremely sensitive to proteolysis in vitro, and are expected to be under-represented as T-cell epitopes. The aim of this research was to find out whether disorder and hydropathy prediction methods could help in understanding epitope processing and presentation. According to the pan-specific T-cell epitope predictors NetMHCpan and NetMHCIIpan and 9 publicly available disorder predictors, frequency of epitopes presented by human leukocyte antigens (HLA) class-I or -II was found to be more than 2.5 times higher in ordered than in disordered protein regions (depending on the disorder predictor). Both HLA class-I and HLA class-II binding epitopes are prevalently hydrophilic in disordered and prevalently hydrophobic in ordered protein regions, whereas epitopes recognized by HLA class-II alleles are more hydrophobic than those recognized by HLA class-I. As regards both classes of HLA molecules, high-affinity binding epitopes display more hydrophobicity than low affinity-binding epitopes (in both ordered and disordered regions). Epitopes belonging to disordered protein regions were not predicted to have poor affinity to HLA class-II molecules, as expected from disorder intrinsic proteolytic instability. The relation of epitope hydrophobicity and order/disorder location was also valid if alleles were grouped according to the HLA class-I and HLA class-II supertypes, except for the class-I supertype A3 in which the main part of recognized epitopes was prevalently hydrophilic. Regarding specific supertypes, the affinity of epitopes belonging to ordered regions varies only slightly (depending on the disorder predictor) compared to the affinity of epitopes in corresponding disordered regions. The distribution of epitopes in ordered and disordered protein regions has revealed that the curves of order-epitope distribution were convex-like while the curves of disorder-epitope distribution were concave-like. The percentage of prevalently hydrophobic epitopes increases with the enhancement of epitope promiscuity level and moving from disordered to ordered regions. These data suggests that reverse vaccinology, oriented towards promiscuous and high-affinity epitopes, is also oriented towards prevalently hydrophobic, ordered regions. The analysis of predicted and experimentally evaluated epitopes of cancer-testis antigen MAGE-A3 has confirmed that the majority of T-cell epitopes, particularly those that are promiscuous or naturally processed, was located in ordered and disorder/order boundary protein regions overlapping hydrophobic regions.
Collapse
Affiliation(s)
- Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| | - Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| |
Collapse
|
18
|
Hershberg U, Meng W, Zhang B, Haff N, St Clair EW, Cohen PL, McNair PD, Li L, Levesque MC, Luning Prak ET. Persistence and selection of an expanded B-cell clone in the setting of rituximab therapy for Sjögren's syndrome. Arthritis Res Ther 2014; 16:R51. [PMID: 24517398 PMCID: PMC3978607 DOI: 10.1186/ar4481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Subjects with primary Sjögren’s syndrome (SjS) have an increased risk of developing B-cell lymphoma and may harbor monoclonal B-cell expansions in the peripheral blood. Expanded B-cell clones could be pathogenic, and their persistence could exacerbate disease or predispose toward the development of lymphoma. Therapy with anti-CD20 (rituximab) has the potential to eliminate expanded B-cell clones and thereby potentially ameliorate disease. This study was undertaken to identify and track expanded B-cell clones in the blood of subjects with primary SjS who were treated with rituximab. Methods To determine whether circulating B-cell clones in subjects with primary SjS emerge or remain after B cell-depleting therapy with rituximab, we studied the antibody heavy-chain repertoire. We performed single-memory B-cell and plasmablast sorting and antibody heavy-chain sequencing in six rituximab-treated SjS subjects over the course of a 1-year follow-up period. Results Expanded B-cell clones were identified in four out of the six rituximab-treated SjS subjects, based upon the independent amplification of sequences with identical or highly similar VH, DH, and JH gene segments. We identified one SjS subject with a large expanded B-cell clone that was present prior to therapy and persisted after therapy. Somatic mutations in the clone were numerous but did not increase in frequency over the course of the 1-year follow-up, suggesting that the clone had been present for a long period of time. Intriguingly, a majority of the somatic mutations in the clone were silent, suggesting that the clone was under chronic negative selection. Conclusions For some subjects with primary SjS, these data show that (a) expanded B-cell clones are readily identified in the peripheral blood, (b) some clones are not eliminated by rituximab, and (c) persistent clones may be under chronic negative selection or may not be antigen-driven. The analysis of sequence variation among members of an expanded clone may provide a novel means of measuring the chronicity and selection of expanded B-cell populations in humans.
Collapse
|
19
|
De Martino L, Capalbo D, Improda N, D'Elia F, Di Mase R, D'Assante R, D'Acunzo I, Pignata C, Salerno M. APECED: A Paradigm of Complex Interactions between Genetic Background and Susceptibility Factors. Front Immunol 2013; 4:331. [PMID: 24167503 PMCID: PMC3805967 DOI: 10.3389/fimmu.2013.00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/30/2013] [Indexed: 01/08/2023] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disease, caused by mutations of a single gene named Autoimmune regulator gene (AIRE) which results in a failure of T-cell tolerance. Central tolerance takes place within the thymus and represents the mechanism by which potentially auto-reactive T-cells are eliminated through the negative selection process. The expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (mTECs) in the thymus is a key process in the central tolerance and is driven by the protein encoded by AIRE gene, the transcription factor autoimmune regulator (AIRE). A failure in this process caused by AIRE mutations is thought to be responsible of the systemic autoimmune reactions of APECED. APECED is characterized by several autoimmune endocrine and non-endocrine manifestations and the phenotype is often complex. Although APECED is the paradigm of a monogenic autoimmune disorder, it is characterized by a wide variability of the clinical expression even between siblings with the same genotype, thus implying that additional mechanisms, other than the failure of Aire function, are involved in the pathogenesis of the disease. Unraveling open issues of the molecular basis of APECED, will help improve diagnosis, management, and therapeutical strategies of this complex disease.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 2012; 11:754-65. [PMID: 22387972 DOI: 10.1016/j.autrev.2012.02.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases are heterogeneous with regard to prevalence, manifestations, and pathogenesis. The classification of autoimmune diseases has varied over time. Here, we have compiled a comprehensive up-to-date list of the autoimmune diseases, and have reviewed published literature to estimate their prevalence. We identified 81 autoimmune diseases. The overall estimated prevalence is 4.5%, with 2.7% for males and 6.4% for females. For specific diseases, prevalence ranges from 1% to <1/10(6). Considering all diseases in the class, the most common mean age-of-onset was 40-50 years. This list of autoimmune diseases has also yielded information about autoantigens. Forty-five autoimmune diseases have been associated with well-defined autoantigens. Of the diseases with known autoantigens, 33.3% had highly repetitive sequences, 35.6% had coiled-coil arrangements and 57.8% were associated with cellular membranes, which means that based on these structural motifs alone, autoantigens do not appear to be a random sample of the human proteome. Finally, we identified 19 autoimmune diseases that phenocopy diseases arising from germline mutations in the corresponding autoantigen. Collectively, our findings lead to a tentative proposal for criteria for assigning autoimmune pathogenesis to a particular disease.
Collapse
|
21
|
Capalbo D, Fusco A, Aloj G, Improda N, Vitiello L, Dianzani U, Betterle C, Salerno M, Pignata C. High intrafamilial variability in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy: a case study. J Endocrinol Invest 2012; 35:77-81. [PMID: 22071465 DOI: 10.3275/8055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Autoimmune polyendocrinopathy- candidiasis-ectodermal-dystrophy syndrome (APECED) is a monogenic disease whose phenotype may reveal wide heterogeneity. The reasons of this variability still remain obscure. PATIENTS AND METHODS Two APECED siblings with identical genotype and extremely different phenotype were compared with regard to exposure to infectious triggers, autoantibodies' profile, mechanisms of peripheral tolerance, and human leukocyte antigen (HLA) haplotype. The following infectious markers were evaluated: rubella, Epstein Barr virus, cytomegalovirus, toxoplasma, varicella zoster virus, parvovirus B19, herpes simplex virus, and parainfluenza virus. APECED-related autoantibodies were detected by indirect immunofluorescence or complement fixation or enzyme- linked immunosorbent assay or radioimmunoassay. Resistance to Fas-induced apoptosis was evaluated on peripheral blood mononuclear cells (PBMC) activated with phytohemoagglutinin, the number of TCD4+CD25+ regulatory cells (Treg) was evaluated through flow-cytometry and natural killer (NK) activity through Wallac method. Perforin (PRF1) was amplified by PCR and sequenced. RESULTS No difference was observed between the siblings in common infectious triggers, extent of Fas-induced apoptosis, NK-cell activity and PRF1 sequence, the number of Tregs and HLA haplotypes. CONCLUSION Although APECED is a monogenic disease, its expressivity may be extremely different even in the same family. This variability cannot be explained by common triggering infectious agents or functional alterations of mechanisms governing peripheral tolerance.
Collapse
Affiliation(s)
- D Capalbo
- Department of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reed JH, Dudek NL, Osborne SE, Kaufman KM, Jackson MW, Purcell AW, Gordon TP. Reactivity with dichotomous determinants of Ro 60 stratifies autoantibody responses in lupus and primary Sjögren's syndrome. ACTA ACUST UNITED AC 2010; 62:1448-56. [PMID: 20131295 DOI: 10.1002/art.27370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Analysis of B cell determinants of Ro 60 exposed on the surface of apoptotic cells (apotopes) or intracellular epitopes provides insight into the structural forms of the autoantigen that break immune tolerance. This study was initiated to compare anti-Ro 60 responses in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (SS) against membrane-bound and intracellular forms of Ro 60. METHODS The reactivity of autoantibodies from patients with SLE and primary SS to Ro 60 apotopes and epitopes was assessed by multiparameter flow cytometry and solid-phase immunoassay. Anti-Ro 60 IgG was eluted from early apoptotic cells or recombinant Ro 60 immobilized on nitrocellulose, and binding to membrane-bound and intracellular forms of Ro 60 was quantitated by flow cytometry. RESULTS An immunodominant apotope, which was recognized by IgG from a subset of SLE patients with anti-Ro, but not anti-La, autoantibodies, was mapped to a region forming a helix-loop-helix at the apical tip of the Ro 60 molecule. Immobilization of this region to the solid phase exposed an epitope that was recognized by IgG from primary SS and SLE patients whose sera had both anti-Ro and anti-La autoantibodies. Autoantibodies eluted from either the surface of apoptotic cells or the Ro 60 epitope on the solid phase were non-cross-reactive and specifically recognized membrane-bound or cytoplasmic forms of Ro 60. CONCLUSION This is the first example of a dichotomy of human autoantibody responses against mutually exclusive determinants linked to a single domain of a systemic autoantigen and supports a model in which tolerance is broken by different immunogenic forms of Ro 60.
Collapse
Affiliation(s)
- Joanne H Reed
- Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Khitrov AN, Shogenov ZS, Tretyak EB, Ischenko AI, Matsuura E, Neuhaus O, Paltsev MA, Suchkov SV. Postinfectious immunodeficiency and autoimmunity: pathogenic and clinical values and implications. Expert Rev Clin Immunol 2010; 3:323-31. [PMID: 20477676 DOI: 10.1586/1744666x.3.3.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoimmunity is still a mystery of clinical immunology and medicine as a whole. The etiology and pathogenesis of autoimmune disorders remain unclear and, thus, are assessed as a balance between hereditary predisposition, triggering factors and the appearance of autoantibodies and/or self-reactive T cells. Among the immunological armamentarium, molecular mimicry, based on self-reactive T- and B-cell activation by cross-reactive epitopes of infectious agents, is of special value. Hypotheses regarding the possible involvement of molecular mimicry in the development of postinfectious autoimmunity are currently very intriguing. They provide new approaches for identifying etiological agents that are associated with postinfectious autoimmunity, paired microbial- and tissue-linked epitopes targeted for autoimmune reaction determination, postinfectious autoimmunity pathogenesis recognition and specific prevention, and therapy for autoimmune disorder development.
Collapse
Affiliation(s)
- Alexander N Khitrov
- IM Sechenov Moscow Medical Academy, Department of Pathology, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lichen planus pemphigoides, a possible example of epitope spreading. ACTA ACUST UNITED AC 2010; 109:837-43. [DOI: 10.1016/j.tripleo.2009.12.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 12/28/2022]
|
25
|
Antibodies specifically target AML antigen NuSAP1 after allogeneic bone marrow transplantation. Blood 2010; 115:2077-87. [PMID: 20053754 DOI: 10.1182/blood-2009-03-211375] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identifying the targets of immune response after allogeneic hematopoietic cell transplantation (HCT) promises to provide relevant immune therapy candidate proteins. We used protein microarrays to serologically identify nucleolar and spindle-associated protein 1 (NuSAP1) and chromatin assembly factor 1, subunit B (p60; CHAF1b) as targets of new antibody responses that developed after allogeneic HCT. Western blots and enzyme-linked immunosorbent assays (ELISA) validated their post-HCT recognition and enabled ELISA testing of 120 other patients with various malignancies who underwent allo-HCT. CHAF1b-specific antibodies were predominantly detected in patients with acute myeloid leukemia (AML), whereas NuSAP1-specific antibodies were exclusively detected in patients with AML 1 year after transplantation (P < .001). Complete genomic exon sequencing failed to identify a nonsynonymous single nucleotide polymorphism (SNP) for NuSAP1 and CHAF1b between the donor and recipient cells. Expression profiles and reverse transcriptase-polymerase chain reaction (RT-PCR) showed NuSAP1 was predominately expressed in the bone marrow CD34(+)CD90(+) hematopoietic stem cells, leukemic cell lines, and B lymphoblasts compared with other tissues or cells. Thus, NuSAP1 is recognized as an immunogenic antigen in 65% of patients with AML following allogeneic HCT and suggests a tumor antigen role.
Collapse
|
26
|
Abstract
Recent years have witnessed an explosive growth in available biological data pertaining to autoimmunity research. This includes a tremendous quantity of sequence data (biological structures, genetic and physical maps, pathways, etc.) generated by genome and proteome projects plus extensive clinical and epidemiological data. Autoimmunity research stands to greatly benefit from this data so long as appropriate strategies are available to enable full access to and utilization of this data. The quantity and complexity of this biological data necessitates use of advanced bioinformatics strategies for its efficient retrieval, analysis and interpretation. Major progress has been made in development of specialized tools for storage, analysis and modeling of immunological data, and this has led to development of a whole new field know as immunoinformatics. With advances in novel high-throughput immunology technologies immunoinformatics is transforming understanding of how the immune system functions. This paper reviews advances in the field of immunoinformatics pertinent to autoimmunity research including databases, tools in genomics and proteomics, tools for study of B- and T-cell epitopes, integrative approaches, and web servers.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Flinders Medical Centre/Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | | |
Collapse
|
27
|
A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: Inflammation in their induction and impact on tumor growth. Cancer Lett 2008; 281:8-23. [PMID: 19091462 DOI: 10.1016/j.canlet.2008.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/16/2008] [Accepted: 11/07/2008] [Indexed: 01/09/2023]
Abstract
The repertoire of autoantibodies found in cancer patients partly overlaps with that typical of patients with autoimmune diseases. Beside the biochemical and immunological properties of the target antigens and their altered expression in tumor tissues, the intratumoral inflammatory context can play a key role in the induction of autoimmune disease-associated autoantibodies in cancer patients. Furthermore, the impact of such antibodies on cancer growth and progression can be deeply influenced by the interplay with inflammation. The characterization of the spontaneous humoral responses occurring in cancer patients, of the mechanisms that trigger and sustain the autoantibody response and of the biological effects of such autoantibodies may help the rational design of anti-cancer immunotherapeutic protocols.
Collapse
|
28
|
Lengen C, Regard M, Joller H, Landis T, Lalive P. Anomalous brain dominance and the immune system: do left-handers have specific immunological patterns? Brain Cogn 2008; 69:188-93. [PMID: 18762362 DOI: 10.1016/j.bandc.2008.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Geschwind and Behan (1982) and Geschwind and Galaburda (1985a, 1985b, 1985c) suggested a correlation between brain laterality and immune disorders. To test whether this hypothesis holds true not only for the frequency of immune diseases and circulating autoantibodies, but extends also to cellular immunity, we examined the association between handedness and markers of cellular immunity. Twenty-seven left-handed and 37 right-handed subjects were serologically screened for cellular parameters and 22 left-handed subjects were typed for human leukocyte antigen (HLA). When compared to the right-handers, the left-handed group showed a significant decrease in the inflammatory cell types CD3(+) T cells (total T cells), CD4(+) T cells (T-helper cells), and HLA-Dr (MHC-II, antigen-presenting cells) as well as in the CD19(+) cells (B cells) and CD16/CD57(+) cells (natural killer cells). We assume a relationship exists between cerebral hemispheric specialisation and the immune system not only for humoral but also for cellular immunity, and we discuss the role of the major histocompatibility complex in neurological and immunological development.
Collapse
Affiliation(s)
- Charis Lengen
- Clinic Schloessliöä AG, Private Psychiatric Hospital, Schloesslistrasse 8, CH-8618 Oetwil am See, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Bulashevska A, Eils R. Using Bayesian multinomial classifier to predict whether a given protein sequence is intrinsically disordered. J Theor Biol 2008; 254:799-803. [PMID: 18611404 DOI: 10.1016/j.jtbi.2008.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. Many disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this paper, a new predictor model based on the Bayesian classification methodology is introduced to predict for a given protein or protein region if it is intrinsically disordered or ordered using only its primary sequence. The method allows to incorporate length-dependent amino acid compositional differences of disordered regions by including separate statistical representations for short, middle and long disordered regions. The predictor was trained on the constructed data set of protein regions with known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438]. Further strength of our approach is the ease of implementation.
Collapse
Affiliation(s)
- Alla Bulashevska
- Department of Theoretical Bioinformatics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 2007; 6:1882-98. [PMID: 17391014 PMCID: PMC2543138 DOI: 10.1021/pr060392u] [Citation(s) in RCA: 436] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
31
|
Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med 2006; 4:37. [PMID: 16925820 PMCID: PMC1590053 DOI: 10.1186/1479-5876-4-37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022] Open
Abstract
Background A number of autoimmune diseases have been clinically and pathologically characterized. In contrast, target antigens have been identified only in a few cases and, in these few cases, the knowledge of the exact epitopic antigenic sequence is still lacking. Thus the major objective of current work in the autoimmunity field is the identification of the epitopic sequences that are related to autoimmune reactions. Our labs propose that autoantigen peptide epitopes able to evoke humoral (auto)immune response are defined by the sequence similarity to the host proteome. The underlying scientific rationale is that antigen peptides acquire immunoreactivity in the context of their proteomic similarity level. Sequences uniquely owned by a protein will have high potential to evoke an immune reaction, whereas motifs with high proteomic redundancy should be immunogenically silenced by the tolerance phenomenon. The relationship between sequence redundancy and peptide immunoreactivity has been successfully validated in a number of experimental models. Here the hypothesis has been applied to pemphigus diseases and the corresponding desmoglein autoantigens. Methods Desmoglein 3 sequence similarity analysis to the human proteome followed by dot-blot/NMR immunoassays were carried out to identify and validate possible epitopic sequences. Results Computational analysis led to identifying a linear immunodominant desmoglein-3 epitope highly reactive with the sera from Pemphigus vulgaris as well as Pemphigus foliaceous. The epitopic peptide corresponded to the amino acid REWVKFAKPCRE sequence, was located in the extreme N-terminal region (residues 49 to 60), and had low redundancy to the human proteome. Sequence alignment showed that human desmoglein 1 and 3 share the REW-KFAK–RE sequence as a common motif with 75% residue identity. Conclusion This study 1) validates sequence redundancy to autoproteome as a main factor in shaping desmoglein peptide immunogenicity; 2) offers a molecular mechanicistic basis in analyzing the commonality of autoimmune responses exhibited by the two forms of pemphigus; 3) indicates possible peptide-immunotherapeutical approaches for pemphigus diseases.
Collapse
Affiliation(s)
| | | | | | - Rosario Serpico
- Institute of Clinical Odontostomatology, 2University of Naples, Italy
| | - Animesh A Sinha
- Division of Dermatology and Cutaneous Sciences, Center for Investigative Dermatology, Michigan State University, East Lansing, MI, USA
| | - Darja Kanduc
- Dept. of Biochemistry and Molecular Biology, University of Bari, Italy
| |
Collapse
|
32
|
Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YYJ, Romero P, Cortese MS, Uversky VN, Dunker AK. Rational drug design via intrinsically disordered protein. Trends Biotechnol 2006; 24:435-42. [PMID: 16876893 DOI: 10.1016/j.tibtech.2006.07.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/31/2006] [Accepted: 07/17/2006] [Indexed: 01/18/2023]
Abstract
Despite substantial increases in research funding by the pharmaceutical industry, drug discovery rates seem to have reached a plateau or perhaps are even declining, suggesting the need for new strategies. Protein-protein interactions have long been thought to provide interesting drug discovery targets, but the development of small molecules that modulate such interactions has so far achieved a low success rate. In contrast to this historic trend, a few recent successes raise hopes for routinely identifying druggable protein-protein interactions. In this Opinion article, we point out the importance of coupled binding and folding for protein-protein signalling interactions generally, and from this and associated observations, we develop a new strategy for identifying protein-protein interactions that would be particularly promising targets for modulation by small molecules. This novel strategy, based on intrinsically disordered protein, has the potential to increase significantly the discovery rate for new molecule entities.
Collapse
Affiliation(s)
- Yugong Cheng
- Molecular Kinetics Inc., 6201 La Pas Trail, Suite 160, Indianapolis, IN 46268, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ballotti S, Chiarelli F, de Martino M. Autoimmunity: basic mechanisms and implications in endocrine diseases. Part I. Horm Res Paediatr 2006; 66:132-41. [PMID: 16807508 DOI: 10.1159/000094251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autoimmunity implies disturbances at several levels of the immune control. Self-tolerance and discrimination between self and non-self synergize to avoid the development of autoimmunity. Negative selection in the thymus, the transcription factor AIRE, CD4+CD25+ regulatory T cells, and dendritic cells cooperate to produce and maintain tolerance. Cytokines modulate deriving immune processes and influence the local micro-environment. Multiple mechanisms are involved in tolerance breakdown: genetic factors (major histocompatibility complex haplotypes, polymorphisms in the cytotoxic T lymphocyte antigen gene and epigenetic alterations), environmental factors (mainly infections), impaired apoptosis, and the emergence of autoreactive naive lymphocytes. These events may be involved in the pathogenesis of endocrine diseases at several levels.
Collapse
Affiliation(s)
- S Ballotti
- Department of Paediatrics, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | | | | |
Collapse
|