1
|
Eloseily E, Pickering A, Dhakal S, Ruperto N, Brunner HI, Grom AA, Thornton S. Transcriptional Profiling of Tofacitinib Treatment in Juvenile Idiopathic Arthritis: Implications for Treatment Response Prediction. Arthritis Care Res (Hoboken) 2025; 77:513-521. [PMID: 39489688 DOI: 10.1002/acr.25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE To assess changes in gene expression following tofacitinib treatment and investigate transcription patterns as potential predictors of treatment response in patients with active juvenile idiopathic arthritis (JIA). METHODS Whole-blood samples were collected from patients with JIA at baseline and after 18 weeks of open-label tofacitinib treatment. Patients who achieved a JIA-American College of Rheumatology (ACR) response of 70% or above at week 18 were classified as treatment responders (TRs), whereas those with at most a JIA-ACR30 were classified as poor responders (PRs). Differential gene expression and gene ontology overrepresentation analyses were performed to compare RNA expression between week 18 and baseline samples, as well as between PR and TR samples at baseline. RESULTS Samples from 67 patients at baseline and 60 patients at week 18 were analyzed. After 18 weeks of tofacitinib treatment across all patients with JIA, 883 genes showed significant differential expression (week 18 to baseline). The most strongly down-regulated genes were overrepresented within interleukin-7 (IL-7) and type I and type II interferon pathways, whereas up-regulated genes were enriched in ontologies related to neuronal cell processes and cell signaling. Comparing PRs and TRs at baseline, 663 genes showed differential expression. Up-regulated genes were overrepresented within ontologies including activation of MAPK activity (P = 9.40 × 10-5), myeloid cell development (P = 8.13 × 10-5), activation of GTPase activity (P = 0.00015), and organelle transport along microtubules (P = 0.00021). CONCLUSION Tofacitinib treatment in JIA down-regulated genes in interferon and IL-7 signaling pathways regardless of effectiveness. Furthermore, baseline up-regulation of MAPK signaling may predict poor response to tofacitinib treatment in JIA.
Collapse
Affiliation(s)
- Esraa Eloseily
- University of Texas Southwestern Medical Center, Dallas, and Assiut University Faculty of Medicine, Assiut, Egypt
| | | | - Sanjeev Dhakal
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicolino Ruperto
- Università Milano Bicocca and IRCCS Fondazione San Gerardo dei Tintori/Paediatric Rheumatology International Trials Organisation, Monza, Italy
| | - Hermine I Brunner
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexei A Grom
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sherry Thornton
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
2
|
Amati F, Bongiovanni G, Tonutti A, Motta F, Stainer A, Mangiameli G, Aliberti S, Selmi C, De Santis M. Treatable Traits in Systemic Sclerosis. Clin Rev Allergy Immunol 2023; 65:251-276. [PMID: 37603199 DOI: 10.1007/s12016-023-08969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease within the spectrum of connective tissue diseases, specifically characterized by vascular abnormalities and inflammatory and fibrotic involvement of the skin and internal organs resulting in high morbidity and mortality. The clinical phenotype of SSc is heterogeneous, and serum autoantibodies together with the extent of skin involvement have a predictive value in the risk stratification. Current recommendations include an organ-based management according to the predominant involvement with only limited individual factors included in the treatment algorithm. Similar to what has been proposed for other chronic diseases, we hypothesize that a "treatable trait" approach based on relevant phenotypes and endotypes could address the unmet needs in SSc stratification and treatment to maximize the outcomes. We provide herein a comprehensive review and a critical discussion of the literature regarding potential treatable traits in SSc, focusing on established and candidate biomarkers, with the purpose of setting the bases for a precision medicine-based approach. The discussion, structured based on the organ involvement, allows to conjugate the pathogenetic mechanisms of tissue injury with the proposed predictors, particularly autoantibodies and other serum biomarkers. Ultimately, we are convinced that precision medicine is the ideal guide to manage a complex condition such as SSc for which available treatments are largely unsatisfactory.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gabriele Bongiovanni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giuseppe Mangiameli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Zhao K, Kong C, Shi N, Jiang J, Li P. Potential angiogenic, immunomodulatory, and antifibrotic effects of mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis. Front Immunol 2023; 14:1125257. [PMID: 37251412 PMCID: PMC10213547 DOI: 10.3389/fimmu.2023.1125257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Systemic sclerosis (SSc) is an intricate systemic autoimmune disease with pathological features such as vascular injury, immune dysregulation, and extensive fibrosis of the skin and multiple organs. Treatment options are limited; however, recently, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been acknowledged in preclinical and clinical trials as being useful in treating autoimmune diseases and are likely superior to MSCs alone. Recent research has also shown that MSC-EVs can ameliorate SSc and the pathological changes in vasculopathy, immune dysfunction, and fibrosis. This review summarizes the therapeutic effects of MSC-EVs on SSc and the mechanisms that have been discovered to provide a theoretical basis for future studies on the role of MSC-EVs in treating SSc.
Collapse
Affiliation(s)
- Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Ganesan N, Chang YD, Hung SC, Lan JL, Liao JW, Fu ST, Lee CC. Mesenchymal stem cells suppressed skin and lung inflammation and fibrosis in topoisomerase I-induced systemic sclerosis associated with lung disease mouse model. Cell Tissue Res 2023; 391:323-337. [PMID: 36447073 DOI: 10.1007/s00441-022-03716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Systemic sclerosis associated with lung interstitial lung disease (SSc-ILD) is the most common cause of death among patients with SSc. Mesenchymal stem cell (MSCs) transplantations had been treated by SSc patients that showed in the previous case report. The therapeutic mechanisms and effects of MSCs on SSc-ILD are still obscure. In this study, we investigated the therapeutic effects and mechanisms of treatment of BM-MSC derived from C57BL/6 on the topoisomerase I (TOPO I) induced SSc-ILD-like mice model. The mice were immunized with a mixture of recombinant human TOPO I in PBS solution (500 U/mL) and completed Freund's adjuvant [CFA; 1:1 (volume/volume)] twice per week for 9 weeks. On week 10, the mice were sacrificed to analyze the related pathological parameters. Lung and skin pathologies were analyzed using histochemical staining. CD4 T-helper (TH) cell differentiation in lung and skin-draining lymph nodes was detected using flow cytometry. Our results revealed that allogeneic and syngeneic MSCs exhibited similar repressive effects on TOPO I-induced IgG1 and IgG2a in the SSc group. After intravascular (IV) treatment with syngeneic or allogeneic MSCs, the dermal thickness and fibrosis dramatically condensed and significantly reduced airway hyperresponsiveness. These findings showed that both allogeneic and syngeneic MSCs have therapeutic potential for SSc-ILD.
Collapse
Affiliation(s)
- Nithya Ganesan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Di Chang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Shih-Chieh Hung
- New Drug Development Center, China Medical University, Taichung, Taiwan.,Institute of Translation Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Joung-Liang Lan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Shih Tsung Fu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan. .,New Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Fang D, Chen B, Lescoat A, Khanna D, Mu R. Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis. Nat Rev Rheumatol 2022; 18:683-693. [DOI: 10.1038/s41584-022-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
6
|
Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: an updated review with therapeutic implications. Arthritis Res Ther 2022; 24:108. [PMID: 35562771 PMCID: PMC9102675 DOI: 10.1186/s13075-022-02787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a disease of connective tissue with high rate of morbidity and mortality highlighted by extreme fibrosis affecting various organs such as the dermis, lungs, and heart. Until now, there is no specific cure for the fibrosis occurred in SSc disease. The SSc pathogenesis is yet unknown, but transforming growth factor beta (TGF-β), endothelin-1 (ET-1), and Ras-ERK1/2 cascade are the main factors contributing to the tissue fibrosis through extracellular matrix (ECM) accumulation. Several studies have hallmarked the association of ET-1 with or without TGF-β and Ras-ERK1/2 signaling in the development of SSc disease, vasculopathy, and fibrosis of the dermis, lungs, and several organs. Accordingly, different clinical and experimental studies have indicated the potential therapeutic role of ET-1 and Ras antagonists in these situations in SSc. In addition, ET-1 and connective tissue growth factor (CTGF) as a cofactor of the TGF-β cascade play a substantial initiative role in inducing fibrosis. Once initiated, TGF-β alone or in combination with ET-1 and CTGF can activate several kinase proteins such as the Ras-ERK1/2 pathway that serve as the fundamental factor for developing fibrosis. Furthermore, Salirasib is a synthetic small molecule that is able to inhibit all Ras forms. Therefore, it can be used as a potent therapeutic factor for fibrotic disorders. So, this review discusses the role of TGF-β/ET-1/Ras signaling and their involvement in SSc pathogenesis, particularly in its fibrotic situation.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shokoofi
- Rheumatology Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
[Updates in systemic sclerosis pathogenesis: Toward new therapeutic opportunities]. Rev Med Interne 2019; 40:654-663. [PMID: 31301944 DOI: 10.1016/j.revmed.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is a rare connective tissue disease characterized by skin and several internal organ fibrosis, systemic vasculopathy and immune abnormalities. Even if fibroblasts and endothelial cells dysfunction, as well as lymphocytes and other immune cells implication are now well described, the exact origin and chronology of the disease pathogenesis remain unclear. Oxidative stress, influenced by genetic and environmental factors, seems to play a key role. Indeed, it seems to be implicated in the early phases of fibrosis development, vasculopathy and in immune tolerance abnormalities shared by all patients, although disease expression is heterogeneous. To date, no curative treatment is available. Even if immunosuppressive treatment or drugs acting on vascular system are proposed for some patients, overall, treatment efficiency remains modest. Only autologous hematopoietic stem cells transplantation, reserved for patients with severe or rapidly progressive fibrosis, has recently demonstrated efficiency, with lasting regression of fibrosis. Nevertheless, this treatment can expose to important, life-threatening toxicity. In the last decade, new mechanisms implicated in the pathogenesis of systemic sclerosis have been unraveled, bringing new therapeutic opportunities. In this review, we offer to focus on recent insights in the knowledge of systemic sclerosis pathogenesis and its implication in current and future medical care.
Collapse
|
8
|
Gaucherand L, Falk BA, Evanko SP, Workman G, Chan CK, Wight TN. Crosstalk Between T Lymphocytes and Lung Fibroblasts: Generation of a Hyaluronan-Enriched Extracellular Matrix Adhesive for Monocytes. J Cell Biochem 2017; 118:2118-2130. [PMID: 27982477 DOI: 10.1002/jcb.25842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
In immunity and inflammation, T cells are often associated with stromal mesenchymal cells such as fibroblasts. Hyaluronan and proteins that associate with hyaluronan such as versican and tumor necrosis factor-inducible gene-6 (TSG-6) are extracellular matrix (ECM) components that promote leukocyte adhesion, accumulation, and activation. However, the factors responsible for producing this specialized ECM and its impact on inflammatory events are not well understood. In this study, we explored the role of T cells in stimulating lung fibroblasts to produce an ECM that impacts monocyte adhesion. We found that CD3/CD28-activated human CD4+ T cells when co-cultured with human lung fibroblasts stimulated the expression of mRNA for hyaluronan synthase 2 (HAS2) and decreased the expression of hyaluronidase 2 (HYAL2). This led to an increase in the deposition of hyaluronan that formed cable-like structures within the ECM. Co-culturing activated T cells with fibroblasts also led to increased expression and accumulation of TSG-6. Surprisingly, addition of activated CD4+ T cells to the fibroblasts reduced the expression of mRNA for versican, and increased the expression of enzymes that degrade versican, such as ADAMTS4 and ADAMTS9 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif) leading to a decrease in versican in the ECM of the co-cultures. Furthermore, addition of human monocytes to these co-cultures resulted in elevated monocyte adhesion to the cable-like structures in the ECM when compared to controls. These results illustrate the importance of crosstalk between T cells and fibroblasts in promoting the generation of a matrix that is adhesive for monocytes. J. Cell. Biochem. 118: 2118-2130, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Léa Gaucherand
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Stephen P Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
9
|
Adachi T, Nakanishi T, Yumoto H, Hirao K, Takahashi K, Mukai K, Nakae H, Matsuo T. Caries-related Bacteria and Cytokines Induce CXCL10 in Dental Pulp. J Dent Res 2016; 86:1217-22. [DOI: 10.1177/154405910708601215] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Marked infiltration of inflammatory cells, such as activated T-cells, is observed in the progression of pulpitis; however, little is known about the mechanism of their recruitment into pulpal lesions. It has been recently demonstrated that CXC chemokine ligand 10 (CXCL10) chemoattracts CXC chemokine receptor 3 (CXCR3)-positive activated T-cells. We therefore examined whether CXCL10 is involved in the pathogenesis of pulpitis. CXCL10 mRNA expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Immunostaining results revealed that CXCL10 was detected in macrophages, endothelial cells, and fibroblasts in inflamed dental pulp, and that CXCR3 expression was observed mainly on T-cells. Moreover, cultured dental pulp fibroblasts produced CXCL10 after stimulation with live caries-related bacteria, peptidoglycans, and pro-inflammatory cytokines. In contrast, heat-killed bacteria did not induce CXCL10 secretion. These findings suggest that CXCL10-CXCR3 may play an important role in the pulpal immune response to caries-related bacterial invasion. Abbreviations: CXCL10, CXC chemokine ligand 10; CXCR3, CXC chemokine receptor 3; IFN, interferon; FBS, fetal bovine serum; LTA, lipoteichoic acid; PGN, peptidoglycan; IL, interleukin; TNF, tumor necrosis factor; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay; CCL, C-C chemokine ligand; TLR, Toll-like receptor; NOD, nucleotide oligomerization domain; HDPF, human dental pulp fibroblasts.
Collapse
Affiliation(s)
- T. Adachi
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - T. Nakanishi
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - H. Yumoto
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - K. Hirao
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - K. Takahashi
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - K. Mukai
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - H. Nakae
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - T. Matsuo
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| |
Collapse
|
10
|
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 2016; 455:161-71. [PMID: 26883280 DOI: 10.1016/j.cca.2016.02.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anti-citrullinated peptide antibodies. Initial phase of RA involves the activation of both T and B cells. Cytokines have a crucial role in the pathophysiology of RA as pro-inflammatory cytokines such as TNFα, IL-1, IL-17 stimulates inflammation and degradation of bone and cartilage. There occurs an imbalance between the pro- and anti-inflammatory cytokine activities which leads to multisystem immune complications. There occurs a decline in the number of Treg cells which may also play an important role in pathophysiology of the disease. In RA patients, serum or plasma level of cytokines may indicate the severity of disease. Cytokine gene polymorphism could be used as markers of susceptibility and severity of RA. Anti-cytokine agents seem to emerge as potent drug molecules to treat RA. Many clinical trials are ongoing and several positive results have been obtained. There is a need to develop potential anti-cytokine agents that target numerous pathways involved in the pathogenesis of RA. This review article describes the effector functions of pro- and anti-inflammatory cytokines and the role of cytokine gene polymorphism in the pathogenesis of RA. Anti-cytokine agents that are currently available and those that are still in clinical trials have also been summarized.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India.
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Abdul Qayyum Khan
- Department of Orthopedic Surgery, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Swaleha Zubair
- Women's college, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| |
Collapse
|
11
|
Adair P, Kim YC, Pratt KP, Scott DW. Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. Cell Immunol 2015; 299:30-41. [PMID: 26653006 DOI: 10.1016/j.cellimm.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
The role of the T cell receptor (TCR) in antigen recognition and activation of T lymphocytes is well established. However, how the TCR affects T-helper differentiation/skewing is less well understood, particularly for human CD4(+) (CD4) T cell subsets. Here we investigate the role of TCR specific antigen avidity in differentiation and maintenance of human Th1, Th2 and Th17 subsets. Two human TCRs, both specific for the same peptide antigen but with different avidities, were cloned and expressed in human CD4 T cells. These TCR engineered cells were then stimulated with specific antigen in unskewed and T-helper skewed conditions. We show that TCR avidity can control the percentage of IL-4 and IFN-γ co-expression in unskewed TCR engineered cells, that effector function can be maintained in a TCR avidity-dependent manner in skewed TCR engineered cells, and that increased TCR avidity can accelerate Th1 skewing of TCR engineered cells.
Collapse
Affiliation(s)
- Patrick Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 20814, USA
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| |
Collapse
|
12
|
The role of the acquired immune response in systemic sclerosis. Semin Immunopathol 2015; 37:519-28. [PMID: 26152639 DOI: 10.1007/s00281-015-0509-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
Profound alterations characterize the adaptive immune response in systemic sclerosis, and several layers of evidence support a prominent role exerted by immune cellular effectors and humoral mediators in the pathogenesis of this disease. These include (i) the presence of oligoclonal T cells in tissues undergoing fibrosis consistent with (auto)antigen-specific recruitment, (ii) the preferential expansion of polarized CD4+ and CD8+ T cells producing pro-fibrotic cytokines such as IL-4 and IL-13, (iii) the presence of increased number of cells producing mediators belonging to the IL-17 family, including IL-22, which may drive and participate in inflammatory pathways involving epithelial cells as well as fibroblasts, (iv) the deficient or redirected function of T regulatory cells favoring fibrosis, and (v) the enhanced expression of CD19 and CD21 on naïve B cells, and the upregulation of co-stimulatory molecules in mature B cells, which together with the increased levels of B cell activating factor (BAFF) underlie the propensity to an exaggerated humoral response possibly favoring fibrogenesis. Despite all the progress made in understanding the features of the aberrant immune response in scleroderma, it remains unclear whether the activation of immune effector pathways ultimately drives the disease pathogenesis or rather represents a defective attempt to limit or even reverse excessive extracellular matrix deposition and progressive vasculopathy, the main hallmarks of this disease.
Collapse
|
13
|
Abstract
Systemic sclerosis is a complex autoimmune disease characterized by a chronic and frequently progressive course and by extensive patient-to-patient variability. Like other autoimmune diseases, systemic sclerosis occurs more frequently in women, with a peak of onset in the fifth decade of life. The exact cause of systemic sclerosis remains elusive but is likely to involve environmental factors in a genetically primed individual. Pathogenesis is dominated by vascular changes; evidence of autoimmunity with distinct autoantibodies and activation of both innate and adaptive immunity; and fibrosis of the skin and visceral organs that results in irreversible scarring and organ failure. Intractable progression of vascular and fibrotic organ damage accounts for the chronic morbidity and high mortality. Early and accurate diagnosis and classification might improve patient outcomes. Screening strategies facilitate timely recognition of life-threatening complications and initiation of targeted therapies to halt their progression. Effective treatments of organ-based complications are now within reach. Discovery of biomarkers - including autoantibodies that identify patient subsets at high risk for particular disease complications or rapid progression - is a research priority. Understanding the key pathogenetic pathways, cell types and mediators underlying disease manifestations opens the door for the development of targeted therapies with true disease-modifying potential. For an illustrated summary of this Primer, visit: http://go.nature.com/lchkcA.
Collapse
|
14
|
Telangiectasis in CREST syndrome and systemic sclerosis: correlation of clinical and pathological features with response to pulsed dye laser treatment. Lasers Med Sci 2013; 29:137-40. [DOI: 10.1007/s10103-013-1298-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
15
|
Usategui A, del Rey MJ, Pablos JL. Fibroblast abnormalities in the pathogenesis of systemic sclerosis. Expert Rev Clin Immunol 2011; 7:491-8. [PMID: 21790292 DOI: 10.1586/eci.11.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease characterized by autoimmunity, vascular lesions and progressive fibrosis. The fibrotic component is dominant in SSc compared with other vascular or autoimmune diseases and determines its prognosis and therapeutic refractoriness. Fibroblasts are responsible for abnormal extracellular matrix accumulation. Studies in cultured SSc skin fibroblasts have facilitated the identification of potential pathways involved in their profibrotic phenotype. Profibrotic fibroblasts characterized by abnormal growth and extracellular matrix synthesis may differentiate or expand from normal resident fibroblasts. Recruitment of bone marrow-derived progenitors and transdifferentiation of different cell lineages might also be involved. Multiple factors and signaling pathways appear to be involved in the development or persistence of the SSc fibroblast phenotype. Although their relative relevance and interplay are unclear, aberrant TGF-β signaling seems pivotal and constitutes the best characterized therapeutic target.
Collapse
Affiliation(s)
- Alicia Usategui
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | | |
Collapse
|
16
|
Fineschi S, Goffin L, Rezzonico R, Cozzi F, Dayer JM, Meroni PL, Chizzolini C. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of toll-like receptor 4. ACTA ACUST UNITED AC 2009; 58:3913-23. [PMID: 19035500 DOI: 10.1002/art.24049] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Previous studies have revealed the presence of IgG antifibroblast antibodies (AFAs) capable of binding to the surface of fibroblasts in systemic sclerosis (SSc) sera. Since chemokines may directly or indirectly affect the development of fibrosis, this study was undertaken to investigate the production of chemokines induced by AFAs in fibroblasts, and to characterize the signaling pathways and surface molecules involved. METHODS AFA-positive and AFA-negative IgG were tested on fibroblasts. Chemokine messenger RNA expression was screened by microarray and quantitative reverse transcription-polymerase chain reaction. Production of CCL2, CXCL8, and CXCL10 proteins was assessed by enzyme-linked immunosorbent assay. Pharmacologic inhibitors were used to study signal transduction, with results assessed by Western blotting and immunofluorescence analysis. Fibroblasts with defective expression of Toll-like receptors (TLRs) and anti-TLR monoclonal antibodies (mAb) were used to assess AFA specificity. RESULTS In human fibroblasts, AFA-positive IgG induced the preferential transcription of chemokines with profibrotic and proangiogenic potential, including, but not exclusively, CCL2, CXCL1, CXCL8, CKLF, and ECGF1, which were distinctly different from those induced by interferon-gamma. Levels of CCL2 and CXCL8 proteins were increased in AFA-stimulated fibroblast culture supernatants. AFA binding to fibroblasts resulted in concomitant activation of ERK-1/2, c-Jun, and NF-kappaB. CCL2 production was sensitive to inhibition of both proteasome and JNK, while CXCL8 production was sensitive only to inhibition of proteasome. AFAs failed to up-regulate CCL2 expression in TLR-4-deficient fibroblasts but not in TLR-6- or TLR-2-deficient fibroblasts. Moreover, anti-TLR-4 mAb, but not anti-TLR-2 mAb, partially inhibited the production of CCL2 induced by AFAs in human fibroblasts. CONCLUSION Autoantibodies that bind to the surface of fibroblasts may contribute to the pathogenesis of SSc by up-regulating the fibroblast production of profibrotic and proangiogenic chemokines, in a proteasome- and TLR-4-dependent manner.
Collapse
Affiliation(s)
- Serena Fineschi
- University Hospital and School of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Curr Opin Rheumatol 2009; 20:707-12. [PMID: 18946333 DOI: 10.1097/bor.0b013e32830c45ae] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW A better comprehension of the interactions between cells of the adaptive immune system with fibroblasts and endothelial cells is required to understand abnormal extracellular matrix deposition, development of pathologic fibrosis, and vasculopathy. RECENT FINDINGS Skin T cells with high IL-4 production potential and peripheral blood T cells preferentially expressing chemokine receptors associated with Th2 functions are found in individuals with active systemic sclerosis. Animal models indicate that Th2 cells and IL-13 can induce muscular hypertrophy in pulmonary arterial vasculature. In bleomycin-induced fibrosis, B cells produce fibrogenic cytokines upon interaction of an endogenous ligand (hyaluronan) with toll-like receptor-4. In the sclerodermatous graft versus host model, the lack of tumor necrosis factor-production by CD4+ T cells is permissive for fibrosis development. Dermal fibrosis and capillary loss typical of systemic sclerosis can be reversible after high-dose immunosuppression and hematopoietic stem cell transplantation. SUMMARY Although immunosuppressive strategies to treat patients with systemic sclerosis and allied conditions are largely disappointing, thus indicating a permissive rather than causative role of immunoinflammatory events characteristic of the disease, new findings stress that cells of the adaptive immune system play important roles in assisting fibrogenesis and vascular abnormalities. This may help in identifying efficacious strategies aimed at their control.
Collapse
|
18
|
Gu YS, Kong J, Cheema GS, Keen CL, Wick G, Gershwin ME. The immunobiology of systemic sclerosis. Semin Arthritis Rheum 2008; 38:132-60. [PMID: 18221988 DOI: 10.1016/j.semarthrit.2007.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/08/2007] [Accepted: 10/07/2007] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a chronic connective tissue disease characterized by vascular damage, autoimmunity, and excessive collagen deposition. Despite advances in disease-specific treatment of other rheumatologic diseases, disease-targeted treatment in SSc continues to be elusive. In this review, our goal was to place the contemporary immunobiology of SSc in the perspective of clinical medicine. METHODS We performed a PubMed search for the period from 1989 to 2007, using the keyword, "systemic sclerosis," resulting in a total of 9099 publications, including 1252 reviews. Articles were then selected based on their discussion of recent advances in the elusive pathogenesis of SSc. A final total of 259 articles were chosen for the review. RESULTS The SSc hallmarks of vascular damage, immunologic activation, and collagen deposition can be traced to 4 major factors: T-cells, fibroblasts, B-cells, and cytokines/chemokines. T-cells are a major component of the infiltrate in skin and lung, exhibiting increased expression of activation markers and showing signs of antigen-driven expansion. Preliminary data indicate that induction of oral tolerance with collagen, a target of SSc T-cell responses, is associated with clinical benefits. Although this suggests that T-cells participate in the pathogenesis of SSc, their precise role and antigen specificity largely remain to be elucidated. Defective numbers and functions of certain T-cell subsets, such as natural killer and gammadelta T-cells, may be involved in the failure to maintain tolerance. Other data suggest that gammadelta T-cells may themselves be effector cells in endothelial cell cytotoxicity. There are several lines of evidence for a pathogenic role of B-cells in SSc, in particular, through the production of autoantibodies. Antibody-dependent cell-mediated cytotoxicity is a primary pathogenic event in an animal model of SSc and is likely to be involved in human SSc. Nonetheless, there is as yet no convincing evidence for the pathogenicity of SSc-specific antibodies. SSc fibroblasts exhibit a specific phenotype characterized not only by excessive collagen production but also by increased responsiveness to and production of cytokines and chemokines. This phenotype is induced by a complex network of cytokines and chemokines but appears to be maintained in the absence of exogenous stimuli via the autocrine production of some of these factors by SSc fibroblasts themselves, particularly transforming growth factor, platelet-derived growth factor, monocyte chemoattractant protein 1, and interleukin-1. CONCLUSIONS Significant variations in laboratory data among patients suggest that the pathology reflects a heterogeneous disease. Nonetheless, the possibility of achieving clinical benefits by inducing oral tolerance highlights the importance of characterizing SSc T-cell antigens. It is hoped that the identification of some of the key players in the induction and maintenance of the SSc fibroblast phenotype may yield new disease-targeted treatment regimens for patients with SSc.
Collapse
Affiliation(s)
- Y Stephanie Gu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abraham D, Distler O. How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res Ther 2007; 9 Suppl 2:S2. [PMID: 17767740 PMCID: PMC2072886 DOI: 10.1186/ar2186] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A considerable amount of research time has been invested in studies aimed at elucidating pathogenic processes in systemic sclerosis (SSc). Despite this, major challenges for biomedical science remain, such as identification of the key factors that determine susceptibility to SSc, and elucidation of the precise nature of the initiating event that causes endothelial cell injury and ultimately brings about the biological cascade(s) that lead to the pathologic vascular changes. Involved factors are likely to include genetic perturbations, environmental cues, tissue injury, infection and hypoxia/oxidative stress. As important as determining the initiating events are the identification and characterization of key factors that are functionally important in driving vascular disease progression, because these factors are potential targets for therapeutic intervention. This article reviews the role of endothelin as an example of a pleiotropic mediator with effects on various aspects of SSc pathogenesis, such as inflammation, vasculopathy and tissue remodelling.
Collapse
Affiliation(s)
- David Abraham
- Department of Medicine, Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital and University College, Rowland Hill Street, London, NW3 2PF, UK.
| | | |
Collapse
|
20
|
Hartgring SAY, Bijlsma JWJ, Lafeber FPJG, van Roon JAG. Interleukin-7 induced immunopathology in arthritis. Ann Rheum Dis 2006; 65 Suppl 3:iii69-74. [PMID: 17038478 PMCID: PMC1798384 DOI: 10.1136/ard.2006.058479] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 is a potent immunoregulatory cytokine that is detected in joints of patients with rheumatoid and juvenile idiopathic arthritis and which correlates with parameters of disease. Several synovial cell types that play an important role in inflammation and immunopathology, such as macrophages, dendritic cells, and fibroblasts, produce IL-7. IL-7 induces cytokines produced by arthritogenic T cells (for example, interferon gamma (IFNgamma), IL-17), T cell differentiating factors (for example, IL-12), chemokines capable of attracting inflammatory cells (for example, macrophage induced gene (MIG), macrophage inflammatory protein (MIP)-1alpha) as well as molecules involved in cell adhesion, migration, and costimulation (for example, lymphocyte function associated antigen (LFA)-1, CD40, CD80). In addition, IL-7 can induce bone loss by stimulating osteoclastogenesis that is dependent on receptor activator of nuclear factor kappaB ligand (RANKL). IL-7 induces tumour necrosis factor alpha (TNFalpha) secretion by T cells and by monocytes after T cell dependent monocyte/macrophage activation. Importantly, induction of both IL-7 and IL-7 induced effects seems to be able to operate independent of TNFalpha. Together this suggests that IL-7 is an important cytokine in several rheumatic conditions, capable of inducing inflammation and immunopathology. Thus it may be an important target for immunotherapy.
Collapse
Affiliation(s)
- S A Y Hartgring
- Rheumatology and Clinical Immunology (F02.127), University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, the Netherlands.
| | | | | | | |
Collapse
|