1
|
Zhou C, Feng M, Chen Y, Lv S, Zhang Y, Chen J, Zhang R, Huang X. Unraveling immunotherapeutic targets for endometriosis: a transcriptomic and single-cell analysis. Front Immunol 2023; 14:1288263. [PMID: 38035102 PMCID: PMC10687456 DOI: 10.3389/fimmu.2023.1288263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background Endometriosis (EMs), a common gynecological disorder, adversely affects the quality of life of females. The pathogenesis of EMs has not been elucidated and the diagnostic methods for EMs have limitations. This study aimed to identify potential molecular biomarkers for the diagnosis and treatment of EMs. Methods Differential gene expression (DEG) and functional enrichment analyses were performed using the R language. WGCNA, Random Forest, SVM-REF and LASSO methods were used to identify core immune genes. The CIBERSORT algorithm was then used to analyse the differences in immune cell infiltration and to explore the correlation between immune cells and core genes. In addition, the extent of immune cell infiltration and the expression of immune core genes were investigated using single-cell RNA (scRNA) sequencing data. Finally, we performed molecular docking of three core genes with dienogest and goserelin to screen for potential drug targets. Results DEGs enriched in immune response, angiogenesis and estrogen processes. CXCL12, ROBO3 and SCG2 were identified as core immune genes. RT-PCR confirmed that the expression of CXCL12 and SCG2 was significantly upregulated in 12Z cells compared to hESCs cells. ROC curves showed high diagnostic value for these genes. Abnormal immune cell distribution, particularly increased macrophages, was observed in endometriosis. CXCL12, ROBO3 and SCG2 correlated with immune cell levels. Molecular docking suggested their potential as drug targets. Conclusion This study investigated the correlation between EMs and the immune system and identified potential immune-related biomarkers. These findings provided valuable insights for developing clinically relevant diagnostic and therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Cankun Zhou
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Minqing Feng
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yonglian Chen
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Side Lv
- Southern Medical University, Graduate School, Guangzhou, Guangdong, China
| | - Yifan Zhang
- Department of Gynecology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Jiebo Chen
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Xiaobin Huang
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
2
|
Gunes-Bayir A, Mendes B, Dadak A. The Integral Role of Diets Including Natural Products to Manage Rheumatoid Arthritis: A Narrative Review. Curr Issues Mol Biol 2023; 45:5373-5388. [PMID: 37504257 PMCID: PMC10377866 DOI: 10.3390/cimb45070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Genetic and environmental factors including lifestyle are thought to play a key role in the pathophysiology of rheumatoid arthritis (RA). There is evidence that diet can enhance the inflammatory response in genetically predisposed individuals. On the other hand, certain types of diets can alleviate RA symptoms due to their anti-inflammatory and antioxidant activities. Also, natural compounds with potential effectiveness in RA management belong to different chemical classes such as flavonoids, polyphenols, carotenoids, and alkaloids with their antioxidant characteristics as well as probiotics. The nutritional approaches to prevent or extenuate the disease progress were examined in this narrative review which was conducted using the PubMed, ScienceDirect and Google Scholar databases and conforms to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines. Mediterranean and vegan diets equally have been shown to exhibit positive effects on RA as the consumption of dietary fiber, antioxidants and anti-inflammatory compounds from fruits, vegetables, grains, nuts, and seeds are high. Whereas Mediterranean diet additionally includes beneficial nutrients of animal origin such as omega-3 polyunsaturated fatty acids from fish and seafood, patients on vegan diet need to be monitored closely for intake of all critical nutrients. Certain calorie restrictions and intermittent fasting diets have been shown to benefit RA patients although there is an obvious need for further studies to establish solid evidence-based recommendations and guidelines. The research data available strongly suggest that dietary approaches with anti-inflammatory properties may help delay the onset of RA and/or improve symptoms and thus nutrition should be routinely addressed to facilitate management of the disease.
Collapse
Affiliation(s)
- Ayse Gunes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Beyza Mendes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
3
|
Hanley CJ, Waise S, Ellis MJ, Lopez MA, Pun WY, Taylor J, Parker R, Kimbley LM, Chee SJ, Shaw EC, West J, Alzetani A, Woo E, Ottensmeier CH, Rose-Zerilli MJJ, Thomas GJ. Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer. Nat Commun 2023; 14:387. [PMID: 36720863 PMCID: PMC9889778 DOI: 10.1038/s41467-023-35832-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are poorly characterised cells that variably impact tumour progression. Here, we use single cell RNA-sequencing, multiplexed immunohistochemistry and digital cytometry (CIBERSORTx) to identify and characterise three major fibroblast subpopulations in human non-small cell lung cancer: adventitial, alveolar and myofibroblasts. Alveolar and adventitial fibroblasts (enriched in control tissue samples) localise to discrete spatial niches in histologically normal lung tissue and indicate improved overall survival rates when present in lung adenocarcinomas (LUAD). Trajectory inference identifies three phases of control tissue fibroblast activation, leading to myofibroblast enrichment in tumour samples: initial upregulation of inflammatory cytokines, followed by stress-response signalling and ultimately increased expression of fibrillar collagens. Myofibroblasts correlate with poor overall survival rates in LUAD, associated with loss of epithelial differentiation, TP53 mutations, proximal molecular subtypes and myeloid cell recruitment. In squamous carcinomas myofibroblasts were not prognostic despite being transcriptomically equivalent. These findings have important implications for developing fibroblast-targeting strategies for cancer therapy.
Collapse
Affiliation(s)
- Christopher J Hanley
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK.
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK.
| | - Sara Waise
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Ellis
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Maria A Lopez
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Wai Y Pun
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Julian Taylor
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Rachel Parker
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Lucy M Kimbley
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Serena J Chee
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute of Systems, Molecular and Integrative Biology (ISMIB) and Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, L69 7BE, UK
| | - Emily C Shaw
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jonathan West
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Aiman Alzetani
- Department of Thoracic surgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Edwin Woo
- Department of Thoracic surgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Christian H Ottensmeier
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK
- Institute of Systems, Molecular and Integrative Biology (ISMIB) and Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, L69 7BE, UK
| | - Matthew J J Rose-Zerilli
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Gareth J Thomas
- School of Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK.
- Cancer Research UK and NIHR Southampton Experimental Cancer Medicine Centre, Southampton, SO16 6YD, UK.
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| |
Collapse
|
4
|
Zhang Z, Zhang Z, Shu L, Meng Y, Ma J, Gao R, Zhou X. A Genetic Variant of the ROBO3 Gene is Associated With Adolescent Idiopathic Scoliosis in the Chinese Population. Spine (Phila Pa 1976) 2023; 48:E20-E24. [PMID: 36149840 DOI: 10.1097/brs.0000000000004484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A case-control association study. OBJECTIVES This study aimed to reveal whether mutations within roundabout receptor 3 ( ROBO3 ) gene were related to adolescent idiopathic scoliosis (AIS) in Chinese Han population and to investigate the functional role of ROBO3 in the pathogenesis and progression of AIS. SUMMARY OF BACKGROUND DATA ROBO3 is essential for the regulation of hindbrain axonal cell migration and midline crossing. Studies have demonstrated that ROBO3 homozygous mutations are associated with horizontal gaze palsy with progressive scoliosis. However, whether and how ROBO3 contributed to the development of scoliosis remains unclear. MATERIALS AND METHODS Whole exome sequencing was performed in 135 AIS patients and 267 healthy controls to evaluate the differences of single nucleotide polymorphism variants within ROBO3 . Then the identified variant of ROBO3 was genotyped in another cohort included 1140 AIS patients and 1580 controls. Moreover, paraspinal muscles were collected from 39 AIS patients and 45 lumbar disk herniation patients for the measurement of ROBO3 mRNA expression. The χ 2 test, Fisher exact test or the Student t test were used to compare intergroup data. Pearson correlation was used to determine the association between ROBO3 expression and clinical phenotypes. RESULTS A significant association was identified between the gene variant (rs74787566) of ROBO3 and the development of AIS through exome sequencing. The genotyping cohort demonstrated a higher frequency of allele A in AIS patients compared to controls (7.89% vs . 4.30%, P <0.001, odds ratio=1.87). In addition, the expression of ROBO3 in paraspinal muscles was inversely correlated with the Cobb angle ( P =0.043, r2 =0.1059). CONCLUSION A significant association was identified between the gene variant (rs74787566) of ROBO3 and the development of AIS. The reduced expression of ROBO3 could result in the progression of curve magnitude in patients with AIS. Further studies are needed to verify the functional role of ROBO3 in the development of AIS. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| | - Lun Shu
- Department of Orthopedics, Hainan Hospital, Chinese PLA General Hospital, Hainan, People's Republic of China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai
| |
Collapse
|
5
|
Huang R, Zhang C, Bu Y, Li Z, Zheng X, Qiu S, Machuki JO, Zhang L, Yang Y, Guo K, Gao F. A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@CuS: Photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis. Biomaterials 2021; 277:121088. [PMID: 34464824 DOI: 10.1016/j.biomaterials.2021.121088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease that results from synovial hyperplasia. The hyperplasia of synovium directly degrades cartilage by secreting matrix-degrading enzymes and inducing cartilage degradation and even loss of joint function. In this study, a metal/semiconductor composite, octahedral copper sulfide shell, and gold nanorod core (Au NR@CuS) is designed for, photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT) combination therapy for RA to remove hyperplasia of the synovium. Upon laser irradiation, the coupling of the local surface electromagnetic field improves the electromagnetic field of the Au NR core and the absorption of light of the CuS shell, whereby the photothermal effect is enhanced. Due to the Fenton-like reactions and the integration of Au NR and CuS semiconductor photocatalyst inhibits hole recombination and provides a reaction site for photocatalysis, which introduces additional •OH to photodynamics therapy. In addition, the large octahedral void space in Au NR@CuS NPs can be used for loading a high quantity of drugs for chemotherapy, and modified with vasoactive intestinal peptide and hyaluronic acid (HA) formation VIP-HA-Au NR@CuS NPs to target synovial cells in RA. Under combination therapy, VIP-HA-Au NR@CuS NPs were shown to effectively inhibit the synovial cells and the edema degree of the CIA mouse was alleviated apparently. Both in vitro and in vivo studies indicate that the VIP-HA-Au NR@CuS NPs can provide a potential possibility for the treatment of RA.
Collapse
Affiliation(s)
- Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Yeyang Bu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Xin Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Shang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, 325027, Wenzhou, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, 325027, Wenzhou, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
6
|
Rafipay A, Dun X, Parkinson DB, Erskine L, Vargesson N. Knockdown of slit signaling during limb development leads to a reduction in humerus length. Dev Dyn 2021; 250:1340-1357. [DOI: 10.1002/dvdy.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Alexandra Rafipay
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Xin‐Peng Dun
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - Lynda Erskine
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Neil Vargesson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| |
Collapse
|
7
|
Gong L, Wang S, Shen L, Liu C, Shenouda M, Li B, Liu X, Shaw JA, Wineman AL, Yang Y, Xiong D, Eichmann A, Evans SM, Weiss SJ, Si MS. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight 2020; 5:136852. [PMID: 32644051 PMCID: PMC7406261 DOI: 10.1172/jci.insight.136852] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/28/2023] Open
Abstract
In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues. We then performed transverse aortic constriction or pulmonary artery banding to induce left and right ventricular pressure overload, respectively, in WT and knockout mice. We discovered that SLIT3 deficiency abrogated fibrotic and hypertrophic changes and promoted long-term ventricular function and overall survival in both left and right ventricular pressure overload. Furthermore, we found that SLIT3 stimulated fibroblast activity and fibrillar collagen production, which coincided with the transcription and nuclear localization of the mechanotransducer yes-associated protein 1. These results indicate that SLIT3 is important for regulating fibroblast activity and fibrillar collagen synthesis in an autocrine manner, making it a potential therapeutic target for fibrotic diseases, especially myocardial fibrosis and adverse remodeling induced by persistent afterload elevation.
Collapse
Affiliation(s)
- Lianghui Gong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuyun Wang
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Shen
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mena Shenouda
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Baolei Li
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoxiao Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Alan L. Wineman
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingding Xiong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences,,Department of Medicine, and,Department of Pharmacology, UCSD, La Jolla, California, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine,,Department of Internal Medicine,,Life Sciences Institute,,Cellular and Molecular Biology Graduate Program, and,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming-Sing Si
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Friocourt F, Chédotal A. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems. Dev Neurobiol 2017; 77:876-890. [DOI: 10.1002/dneu.22478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| |
Collapse
|
9
|
Ruedel A, Schott M, Schubert T, Bosserhoff AK. Robo3A and Robo3B expression is regulated via alternative promoters and mRNA stability. Cancer Cell Int 2016; 16:71. [PMID: 27660555 PMCID: PMC5028924 DOI: 10.1186/s12935-016-0347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/28/2022] Open
Abstract
Background The transmembrane receptor family Roundabout (Robo) was described to have an essential role in the developing nervous system. Recent studies demonstrated that Robo3 shows an altered expression in rheumatoid arthritis as well as in melanoma. Context and purpose of the study Until today no detailed studies of the two Robo3 isoforms (Robo3A and Robo3B) and their roles in rheumatoid arthritis synovial fibroblasts, respectively malignant melanoma are available. To get a better understanding regarding the role of Robo3A and Robo3B in the molecular process of rheumatoid arthritis and melanoma the exact characterization of expression and regulation is object of this study. Results mRNA and protein expression of the transcriptional variants were analyzed by quantitative RT-PCR respectively western blotting and revealed particularly enhanced expression of Robo3B in rheumatoid arthritis and melanoma. Promoter assays and inhibitor studies also disclosed that there is apparently a cell- and isoform-specific regulation of the Robo3 expression. Finally, dissimilar mRNA stabilities of Robo3A and Robo3B are identified as decisive posttranscriptional gene expression control. Conclusion In summary, this study supported an isotype specific role of Robo3B in disease hinting to different functional roles of each isoform.
Collapse
Affiliation(s)
- Anke Ruedel
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Mandy Schott
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg, Universitätsstrasse, 91054 Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Lowin T, Straub RH. Synovial fibroblasts integrate inflammatory and neuroendocrine stimuli to drive rheumatoid arthritis. Expert Rev Clin Immunol 2015; 11:1069-71. [DOI: 10.1586/1744666x.2015.1066674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6607-6616. [PMID: 26261542 PMCID: PMC4525876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1 and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.
Collapse
Affiliation(s)
- Anke Ruedel
- Institute of Pathology, University Hospital Regensburg Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Peter Dietrich
- Institute for Biochemistry, Biochemistry and Molecular Medicine, University Erlangen Fahrstraße 17, D-91054 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, University Hospital of Erlangen Krankenhausstr.12, D-91054 Erlangen, Germany
| | - Simone Hofmeister
- Institute of Pathology, University Hospital Regensburg Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Anja Katrin Bosserhoff
- Institute for Biochemistry, Biochemistry and Molecular Medicine, University Erlangen Fahrstraße 17, D-91054 Erlangen, Germany
| |
Collapse
|
12
|
Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4953-4962. [PMID: 26191188 PMCID: PMC4503060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.
Collapse
Affiliation(s)
- Anke Ruedel
- Institute of Pathology, University Hospital RegensburgFranz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Peter Dietrich
- Institute for Biochemistry, Biochemistry and Molecular Medicine, Emil-Fischer Zentrum, Friedrich-Alexander-University of Erlangen-NürnbergFahrstraße 17, D-91054 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, University Hospital of ErlangenKrankenhausstr.12, D-91054 Erlangen, Germany
| | - Simone Hofmeister
- Institute of Pathology, University Hospital RegensburgFranz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital RegensburgFranz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Anja-Katrin Bosserhoff
- Institute for Biochemistry, Biochemistry and Molecular Medicine, Emil-Fischer Zentrum, Friedrich-Alexander-University of Erlangen-NürnbergFahrstraße 17, D-91054 Erlangen, Germany
| |
Collapse
|
13
|
Filer A, Antczak P, Parsonage GN, Legault HM, O’Toole M, Pearson MJ, Thomas AM, Scheel-Toellner D, Raza K, Buckley CD, Falciani F. Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways. PLoS One 2015; 10:e0120917. [PMID: 25807374 PMCID: PMC4373951 DOI: 10.1371/journal.pone.0120917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/09/2015] [Indexed: 01/11/2023] Open
Abstract
Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.
Collapse
Affiliation(s)
- Andrew Filer
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2WB, UK
- * E-mail: (FF), (AF)
| | - Philipp Antczak
- Centre of Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Greg N. Parsonage
- School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, B15 2TT, UK
| | - Holly M. Legault
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140, USA
| | - Margot O’Toole
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140, USA
| | - Mark J. Pearson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
| | - Andrew M. Thomas
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
| | - Karim Raza
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Christopher D. Buckley
- Rheumatology Research Group, Centre for Muscoloskeletal Ageing Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WD, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Francesco Falciani
- Centre of Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
- * E-mail: (FF), (AF)
| |
Collapse
|
14
|
Lim R, Lappas M. Slit2 exerts anti-inflammatory actions in human placenta and is decreased with maternal obesity. Am J Reprod Immunol 2014; 73:66-78. [PMID: 25329354 DOI: 10.1111/aji.12334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Obese pregnancies are characterised by increased inflammation. Members of the Slit/Roundabout (Robo) family are key regulators of the inflammatory response. The aim of this study was to determine the effect of (i) pre-existing maternal obesity on Slit-Robo expression in human placenta and (ii) Slit2 knockdown by siRNA in primary trophoblast cells on markers of inflammation. METHOD OF STUDY The expression of Slit-Robo protiens was assessed in human placenta from lean (n = 15) and obese (n = 16) patients by qRT-PCR and Western blotting. Primary trophoblast cells were used to determine the effect of pro-inflammatory mediators on Slit2 expression, and the effect of Slit2 siRNA on pro-inflammatory mediators. RESULTS While there was no change in Slit3, Robo1 or Robo4 expression, Slit2 expression was significantly lower in obese placenta compared to lean placenta. Human primary trophoblast cells treated with pro-inflammatory mediators IL-1β, TNF-α and LPS significantly decreased Slit2 expression. Slit2 silencing by siRNA augmented IL-6 expression and secretion in cells stimulated with TNF-α, LPS and TNF-α; IL-8 gene expression and/or release in cells stimulated with IL-1β and LPS; TNF-α gene expression and secretion in cells stimulated with LPS; and MMP-9 gene expression and pro MMP-9 levels in cells stimulated with TNF-α. CONCLUSION The anti-inflammatory effects of Slit2 in human placenta is a novel finding, and suggests that inflammatory mediators, which are increased with obesity, downregulates Slit2 to enhance placental inflammation. Given the central role of pro-inflammatory cytokines in placental nutrient transport, our findings suggest Slit2 may play a role in fetal growth and development.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia
| | | |
Collapse
|
15
|
Bosserhoff AK, Hofmeister S, Ruedel A, Schubert T. DCC is expressed in a CD166-positive subpopulation of chondrocytes in human osteoarthritic cartilage and modulates CRE activity. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1947-1956. [PMID: 24966904 PMCID: PMC4069887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE In a recent study we determined a strong differential expression of DCC in OA compared to normal chondrocytes and a strong impact of the DCC receptor on cellular mobility triggered by its ligand Netrin-1. Migration of chondrocytes or their progenitor cells may play a role in remodeling of cartilage and pathological conditions. The purpose of this study is to identify subsets of chondrocytes expressing DCC and to understand signaling pathways used by DCC in chondrocytes. METHODS Immunofluorescent histology of human cartilage was used to determine the expression pattern of CD166, DCC and p-CREB. Cell culture of chondrocytes and SW1353, transient transfection, siRNA transfection, EMSA, luciferase assay, quantitative RT-PCR, ELISA, and Western Blotting were used to study signaling down-stream of DCC. RESULTS DCC expressing chondrocytes are mainly located in the surface layers of OA cartilage. These also express CD166 indicating that DCC expressing chondrocytes are progenitor cells. Interestingly, expression of DCC reduces cAMP levels, CREB DNA-binding activity and CRE activity in chondrocytes, whereas down-regulation of DCC results in induction of CRE signaling. CONCLUSION In summary, DCC is up-regulated in CD166-positive chondrogenic progenitor cells in OA and induces down-regulation of CREB. These findings indicate that migration of CD166 positive progenitor cells to sites of cartilage damage may be directed by regulation of DCC signaling.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/metabolism
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Movement
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DCC Receptor
- Fetal Proteins/metabolism
- Humans
- Middle Aged
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Phosphorylation
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- Transfection
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
| | | | - Anke Ruedel
- Institute of Pathology, University of RegensburgRegensburg, Germany
| | | |
Collapse
|
16
|
Lim R, Barker G, Lappas M. SLIT3 is increased in supracervical human foetal membranes and in labouring myometrium and regulates pro-inflammatory mediators. Am J Reprod Immunol 2013; 71:297-311. [PMID: 24286238 DOI: 10.1111/aji.12181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Inflammation is associated with preterm birth, a worldwide healthcare issue. SLIT3 has a role in inflammation, and thus, the purpose of this study was to determine the effect of SLIT3 on labour mediators in human gestational tissues. METHOD OF STUDY SLIT3 protein expression was performed using immunohistochemistry in foetal membranes and myometrium with no labour and after labour. Foetal membranes were also obtained from a distal site (DS) and supracervical site (overlying the cervix; SCS). SLIT3 gene silencing was achieved using siRNA in primary amnion and myometrial cells. Pro-inflammatory and pro-labour mediators were evaluated by qRT-PCR, ELISA and gelatin zymography. RESULTS SLIT3 expression was greater in foetal membranes from the SCS compared with DS and in myometrium after term spontaneous labour onset. SLIT3 siRNA in primary amnion and myometrial cells decreased IL-1β-induced pro-inflammatory cytokine gene expression and release (IL-6 and IL-8) and MMP-9 gene expression and release. In amnion cells, SLIT3 siRNA knockdown decreased IL-1β-induced COX-2 expression and prostaglandin PGE2 release. There was no effect of SLIT3 siRNA on IL-1β-induced NF-κB transcriptional activity. CONCLUSION Our results demonstrate that SLIT3 is increased with labour, and both our amnion and our myometrial studies describe a pro-inflammatory effect of SLIT3 in these tissues.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia
| | | | | |
Collapse
|
17
|
Schubert T, Denk AE, Ruedel A, Kaufmann S, Hustert E, Bastone P, Bosserhoff AK. Fragments of SLIT3 inhibit cellular migration. Int J Mol Med 2012; 30:1133-7. [PMID: 22922792 DOI: 10.3892/ijmm.2012.1098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/02/2012] [Indexed: 11/06/2022] Open
Abstract
The repellent factor family of Slit molecules has been described as having a repulsive function in the developing nervous system on growing axons expressing the Roundabout (Robo) receptors. Recent studies determined the effects of Slit molecules on the migratory and invasive potential of several types of tumor cells but also on synovial fibroblasts (SFs) derived from rheumatoid arthritis (RA) patients. To optimize a potential therapeutic application we aimed at generatingfragments of Slit3 showing the same functional ability as the full-length molecule but having the advantage of a smaller size. Recombinant Slit3 proteins were expressed and analyzed by western blotting. Their activity was defined by functional assays such as migration assays with RASF and melanoma cells. Recombinant Slit3 containing only leucine rich repeat domain 2 (D2), the domain important for Robo binding and the minimal functional unit D2 dNC were both able to inhibit migration of RASFs as effectively as Slit3 with all 4 repeats. Collectively, our data showed that the ability of Slit3 to reduce the migratory activity of synovial cells from patients with RA and melanoma cells can be mimicked by small protein fragments derived from Slit3. Slit3 fragments may be helpful in therapeutic attempts; however, further studies are necessary in order to elucidate their activity in vivo.
Collapse
Affiliation(s)
- Thomas Schubert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 2010; 16:458-68. [PMID: 20739221 DOI: 10.1016/j.molmed.2010.07.004] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial hyperplasia and progressive joint destruction. Rheumatoid arthritis synovial fibroblasts (RASFs) are leading cells in joint erosion and contribute actively to inflammation. RASFs show an activated phenotype that is independent of the inflammatory environment and requires the combination of several factors. Although new aspects regarding RASF activation via matrix degradation products, epigenetic modifications, inflammatory factors, Toll-like receptor (TLR) activation and others have recently been uncovered, the primary pathophysiological processes in early arthritis leading to permanent activation are mostly unknown. Here, we review new findings regarding RASF activation and their altered behavior that contribute to matrix destruction and inflammation as well as their potential to spread RA.
Collapse
Affiliation(s)
- Elena Neumann
- Dept of Internal Medicine and Rheumatology, Justus-Liebig-University Gießen, Kerckhoff-Klinik, Benekestr. 2-8, D-61231 Bad Nauheim, Germany.
| | | | | | | | | |
Collapse
|