1
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. J Autoimmun 2022; 132:102856. [DOI: 10.1016/j.jaut.2022.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
4
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Gao S, Gong Y, Ji J, Yuan L, Han L, Guo Y, Fan X, Hou Y, Hua C. A new benzenediamine derivative modulates Toll-like receptors-induced myeloid dendritic cells activation and ameliorates lupus-like syndrome in MRLlpr/lpr mice. Eur J Pharmacol 2017; 803:94-102. [PMID: 28342978 DOI: 10.1016/j.ejphar.2017.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Modulators of the over-activation of myeloid dendritic cells (mDCs) by Toll-like receptors (TLRs) have an advantage in the treatment of systemic lupus erythematosus (SLE). This study was designed to evaluate the effects of FC-99, a novel benzenediamine derivative, on TLR-induced activation of mDCs, and to assess the efficacy of FC-99 in a murine model of SLE. In vitro, FC-99 inhibited the phenotypic (CD40 and MHC-II) and functional activation (IL-12 and CXCL10) of mDCs induced by TLR ligands. In vivo, MRLlpr/lpr mice displayed renal diseases associated with increased levels of proteinuria and immunoglobulin, which were ameliorated by FC-99. Enhanced accumulation and activation of mDCs in lymphoid organs was also impaired by FC-99. Additionally, FC-99 inhibited the activation of IκB-α and upregulated the expression of TNFα-induced protein 3 (TNFAIP3) in vitro and in vivo. These results indicate that FC-99 modulates TLR-induced activation of mDCs and ameliorates lupus-like syndrome in MRLlpr/lpr mice. This effect is closely associated with the inhibition of IκB-α and upregulation of TNFAIP3.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongsheng Gong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jianjian Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Linbo Yuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Liping Han
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yimin Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaofang Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
7
|
Yan S, Yim LY, Tam RCY, Chan A, Lu L, Lau CS, Chan VSF. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice. Int J Mol Sci 2016; 17:ijms17081282. [PMID: 27509492 PMCID: PMC5000679 DOI: 10.3390/ijms17081282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity.
Collapse
Affiliation(s)
- Sheng Yan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Lok Yan Yim
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Rachel Chun Yee Tam
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Albert Chan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Liwei Lu
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chak Sing Lau
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Vera Sau-Fong Chan
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15. [PMID: 26906720 PMCID: PMC4818737 DOI: 10.1016/j.intimp.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) control immune responses and are central to the development of immune memory and tolerance. DCs initiate and orchestrate immune responses in a manner that depends on signals they receive from microbes and cellular environment. Although DCs consist mainly of bone marrow-derived and resident populations, a third tissue-derived population resides the spleen and lymph nodes (LNs), different subsets of tissue-derived DCs have been identified in the blood, spleen, lymph nodes, skin, lung, liver, gut and kidney to maintain the tolerance and control immune responses. Tissue-resident DCs express different receptors for microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs), which were activated to promote the production of pro- or anti-inflammatory cytokines. Malfunction of DCs contributes to diseases such as autoimmunity, allergy, and cancer. It is therefore important to update the knowledge about resident DC subsets and diseases associated with DC malfunction.
Collapse
Affiliation(s)
- Keqiang Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Ruoxi Yuan
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Xiang Yi
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Liangzhu Li
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwu Li
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Shaobo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
9
|
Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators Inflamm 2016; 2016:5045248. [PMID: 27122656 PMCID: PMC4829720 DOI: 10.1155/2016/5045248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
Abstract
System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies.
Collapse
|
10
|
Scott JL, Cunningham MA, Naga OS, Wirth JR, Eudaly JG, Gilkeson GS. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:5561-71. [PMID: 26553076 DOI: 10.4049/jimmunol.1500315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/09/2015] [Indexed: 01/21/2023]
Abstract
Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease.
Collapse
Affiliation(s)
- Jennifer L Scott
- Department of Microbiology and Immunology, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425; Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Melissa A Cunningham
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Osama S Naga
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jena R Wirth
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jackie G Eudaly
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| |
Collapse
|
11
|
A Plasmacytoid Dendritic Cells-Type I Interferon Axis Is Critically Implicated in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:14158-70. [PMID: 26110387 PMCID: PMC4490545 DOI: 10.3390/ijms160614158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that is characterized by the generation of immune responses to various nuclear components. Impaired clearance of apoptotic cells and loss of tolerance to self-antigens are involved both in the initiation and in the propagation of the disease. Dendritic cells (DCs) are key factors in the balance between autoimmunity and tolerance and play a role linking innate and adaptive immunity. DCs, particularly plasmacytoid DCs (pDCs), are the main source of type I interferon (IFN) cytokines, which contribute to the immunopathogenesis of SLE. There is accumulating evidence that pDCs and type I IFN cytokines take the leading part in the development of SLE. In this review, we discuss recent data regarding the role of pDCs and type I IFN cytokines in the pathogenesis of SLE and the potential for employing therapies targeting against aberrant regulation of the pDC-type I IFN axis for treating SLE.
Collapse
|
12
|
Gong L, Wang Y, Zhou L, Bai X, Wu S, Zhu F, Zhu YF. Activation of toll-like receptor-7 exacerbates lupus nephritis by modulating regulatory T cells. Am J Nephrol 2014; 40:325-44. [PMID: 25341693 DOI: 10.1159/000368204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Toll-like receptor-7 (TLR7), which recognizes viral single-stranded RNA, can trigger immune complex glomerulonephritis in experimental lupus erythematosus. However, whether it modulates dendritic cells (DCs) phenotype and regulatory T cells (Treg) function is incompletely understood. METHOD Splenocytes and bone marrow DCs were obtained from 5- and 20-week-old female MRL(lpr/lpr) mice and C57BL/6 mice. In addition, to understand the response of Treg and DCs to TLR7 ligation in vivo, 16-week-old female MRL(lpr/lpr) and C57BL/6 mice were distributed into two groups with or without intraperitoneal injections of TLR7 ligand every other day. RESULTS After activation with the TLR7 ligand imiquimod in vivo and vitro, DCs from imiquimod-treated MRL/lpr mice showed an altered costimulatory profile, with decreased induction of CD80, CD86, and MHCII expression, comparing to age-matched C57BL/6 control mice. There was no significant difference in the numbers of CD4+CD25+Foxp3+ cells after TLR7 ligation by imiquimod in MRL(lpr/lpr) and control mice. Immunostaining of kidney sections of nephritic MRL/lpr mice revealed that CD11c was expressed in the infiltrated tubulointerstitial cells, and confocal microscopic analysis of renal CD11c+MHCII+, CD11c+CD80+, and CD11c+)CD86+ cells showed an immature phenotype with low levels of CD80, CD86, and MHCII in imiquimod-treated MRL/lpr mice. There was no difference in the number of Foxp3 positive cells in kidneys between the imiquimod and vehicle-treated groups. CONCLUSIONS Our results suggest that activation of TLR7 exacerbated lupus nephritis by modulating the abnormally costimulatory phenotype of dendritic cells and functions of Treg in MRL/lpr mice.
Collapse
Affiliation(s)
- Li Gong
- Experimental animal center, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Khan SA, Nowatzky J, Jiménez-Branda S, Greenberg JD, Clancy R, Buyon J, Bhardwaj N. Active systemic lupus erythematosus is associated with decreased blood conventional dendritic cells. Exp Mol Pathol 2013; 95:121-123. [PMID: 23773850 DOI: 10.1016/j.yexmp.2013.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The aim of the study is to determine the frequency and functionality of blood conventional dendritic cells (cDCs) in relation to disease activity in systemic lupus erythematosus. METHODS Blood cDCs were enumerated for 34 SLE patients, defined as "active" (SLEDAI ≥ 4) or "inactive" (SLEDAI < 4), 26 RA subjects and 8 healthy subjects by FACS. cDC activation was measured by IL-12p40/70 staining following resiquimod stimulation. RESULTS The frequency of blood cDCs was significantly lower in active compared to inactive patients, however, with comparable cDC functionality. CONCLUSION cDC frequency in active SLE is decreased with no perturbation in cDC function, possibly due to enhanced turnover and/or tissue-specific migration.
Collapse
Affiliation(s)
- Shaukat Ali Khan
- New York University School of Medicine, Cancer Institute, Smilow Research Building 1303, 522 First Avenue, New York, NY 10016, U.S.A
| | - Johannes Nowatzky
- New York University School of Medicine, Cancer Institute, Smilow Research Building 1303, 522 First Avenue, New York, NY 10016, U.S.A.,New York University School of Medicine, Department of Medicine, Division of Rheumatology, NYU Hospital for Joint Diseases, 301 E 17th Street, New York, NY 10003, U.S.A
| | - Sonia Jiménez-Branda
- New York University School of Medicine, Cancer Institute, Smilow Research Building 1303, 522 First Avenue, New York, NY 10016, U.S.A
| | - Jeffrey David Greenberg
- New York University School of Medicine, Department of Medicine, Division of Rheumatology, NYU Hospital for Joint Diseases, 301 E 17th Street, New York, NY 10003, U.S.A
| | - Robert Clancy
- New York University School of Medicine, Department of Medicine, Division of Rheumatology, NYU Hospital for Joint Diseases, 301 E 17th Street, New York, NY 10003, U.S.A
| | - Jill Buyon
- New York University School of Medicine, Department of Medicine, Division of Rheumatology, NYU Hospital for Joint Diseases, 301 E 17th Street, New York, NY 10003, U.S.A
| | - Nina Bhardwaj
- New York University School of Medicine, Cancer Institute, Smilow Research Building 1303, 522 First Avenue, New York, NY 10016, U.S.A
| |
Collapse
|
14
|
Chan VSF, Nie YJ, Shen N, Yan S, Mok MY, Lau CS. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev 2012; 11:890-7. [DOI: 10.1016/j.autrev.2012.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 01/12/2023]
|
15
|
Sriram U, Varghese L, Bennett HL, Jog NR, Shivers DK, Ning Y, Behrens EM, Caricchio R, Gallucci S. Myeloid dendritic cells from B6.NZM Sle1/Sle2/Sle3 lupus-prone mice express an IFN signature that precedes disease onset. THE JOURNAL OF IMMUNOLOGY 2012; 189:80-91. [PMID: 22661089 DOI: 10.4049/jimmunol.1101686] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Patients with systemic lupus erythematosus show an overexpression of type I IFN-responsive genes that is referred to as "IFN signature." We found that B6.NZMSle1/Sle2/Sle3 (Sle1,2,3) lupus-prone mice also express an IFN signature compared with non-autoimmune C57BL/6 mice. In vitro, myeloid dendritic cells (mDCs) (GM-CSF bone marrow-derived dendritic cells; BMDCs) from Sle1,2,3 mice constitutively overexpressed IFN-responsive genes such as IFN-β, Oas-3, Mx-1, ISG-15, and CXCL10 and members of the IFN signaling pathway STAT1, STAT2, and IRF7. The IFN signature was similar in Sle1,2,3 BMDCs from young, pre-autoimmune mice and from mice with high titers of autoantibodies, suggesting that the IFN signature in mDCs precedes disease onset and is independent from the autoantibodies. Sle1,2,3 BMDCs hyperresponded to stimulation with IFN-α and the TLR7 and TLR9 agonists R848 and CpGs. We propose that this hyperresponse is induced by the IFN signature and only partially contributes to the signature, as oligonucleotides inhibitory for TLR7 and TLR9 only partially suppressed the constitutive IFN signature, and pre-exposure to IFN-α induced the same hyperresponse in wild-type BMDCs as in Sle1,2,3 BMDCs. In vivo, mDCs and to a lesser extent T and B cells from young prediseased Sle1,2,3 mice also expressed the IFN signature, although they lacked the strength that BMDCs showed in vitro. Sle1,2,3 plasmacytoid DCs expressed the IFN signature in vitro but not in vivo, suggesting that mDCs may be more relevant before disease onset. We propose that Sle1,2,3 mice are useful tools to study the role of the IFN signature in lupus pathogenesis.
Collapse
Affiliation(s)
- Uma Sriram
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
17β-estradiol induces CD40 expression in dendritic cells via MAPK signaling pathways in a minichromosome maintenance protein 6-dependent manner. ACTA ACUST UNITED AC 2011; 63:2425-35. [DOI: 10.1002/art.30420] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Katzman SD, Gallo E, Hoyer KK, Abbas AK. Differential requirements for Th1 and Th17 responses to a systemic self-antigen. THE JOURNAL OF IMMUNOLOGY 2011; 186:4668-73. [PMID: 21402892 DOI: 10.4049/jimmunol.1003786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-APC interactions are essential for the initiation of effector responses against foreign and self-antigens, but the role of these interactions in generating different populations of effector T cells in vivo remains unclear. Using a model of CD4(+) T cell responses to a systemic self-antigen without adjuvants or infection, we demonstrate that activation of APCs augments Th17 responses much more than Th1 responses. Recognition of systemic Ag induces tolerance in self-reactive CD4(+) T cells, but induction of CD40 signaling, even under tolerogenic conditions, results in a strong, Ag-specific IL-17 response without large numbers of IFN-γ-producing cells. Transfer of the same CD4(+) T cells into lymphopenic recipients expressing the self-antigen results in uncontrolled production of IL-17, IFN-γ, and systemic inflammation. If the Ag-specific T cells lack CD40L, production of IL-17 but not IFN-γ is decreased, and the survival time of recipient mice is significantly increased. In addition, transient blockade of the initial MHC class II-dependent T cell-APC interaction results in a greater reduction of IL-17 than of IFN-γ production. These data suggest that Th17 differentiation is more sensitive to T cell interactions with APCs than is the Th1 response, and interrupting this interaction, specifically the CD40 pathway, may be key to controlling Th17-mediated autoimmunity.
Collapse
Affiliation(s)
- Shoshana D Katzman
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|