1
|
Arvidsson J, Eriksson S, Johansson E, Lagerstrand K. Arterial occlusion duration affects the cuff-induced hyperemic response in skeletal muscle BOLD perfusion imaging as shown in young healthy subjects. MAGMA (NEW YORK, N.Y.) 2023; 36:897-910. [PMID: 37330431 PMCID: PMC10667151 DOI: 10.1007/s10334-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Dynamic BOLD MRI with cuff compression, inducing ischemia and post-occlusive hyperemia in skeletal muscle, has been pointed out as a potential diagnostic tool to assess peripheral limb perfusion. The objective was to explore the robustness of this technique and its sensitivity to the occlusion duration. MATERIALS AND METHODS BOLD images were acquired at 3 T in 14 healthy volunteers. [Formula: see text]-imaging with 5- and 1.5-min occlusions were acquired and several semi-quantitative BOLD parameters were derived from ROI-based [Formula: see text]-time curves. Differences in parameters from the two different occlusion durations were evaluated in the gastrocnemius and soleus muscles using non-parametrical tests. Intra- and inter-scan repeatability were evaluated with coefficient of variation. RESULTS Longer occlusion duration resulted in an increased hyperemic signal effect yielding significantly different values (p < 0.05) in gastrocnemius for all parameters describing the hyperemic response, and in soleus for two of these parameters. Specifically, 5-min occlusion yielded steeper hyperemic upslope in gastrocnemius (41.0%; p < 0.05) and soleus (59.7%; p = 0.03), shorter time to half peak in gastrocnemius (46.9%; p = 0.00008) and soleus (33.5%; p = 0.0003), and shorter time to peak in gastrocnemius (13.5%; p = 0.02). Coefficients of variation were lower than percentage differences that were found significant. DISCUSSION Findings show that the occlusion duration indeed influences the hyperemic response and thus should play a part in future methodological developments.
Collapse
Affiliation(s)
- Jonathan Arvidsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Stefanie Eriksson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kerstin Lagerstrand
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Connolly CM, Paik JJ. Myopathy in systemic sclerosis. Curr Opin Rheumatol 2023; 35:341-348. [PMID: 37650694 PMCID: PMC10538402 DOI: 10.1097/bor.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Systemic sclerosis associated myopathy (SSc-AM) is a complex, heterogenous disease that is associated with poor outcomes. SSc-AM lacks a clear definition, and continues to be poorly recognized. The purpose of this review is to provide a contemporary overview of the clinical, serological and pathophysiologic findings in SSc-AM to guide optimal recognition and management of this challenging disease manifestation. RECENT FINDINGS There have been several advances in diagnostic techniques to facilitate characterization of SSc-AM, including muscle MRI, in which findings were correlated to distinct histopathologic categories of muscle involvement in SSc, histopathologic findings of prominent fibrosis or inflammation on biopsy, and the identification of novel autoantibodies associated with SSc-AM, which may be associated with distinct clinical phenotypes. In one of the largest studies to date, 17% of a well phenotyped SSc cohort were found to have myopathy, which was an independent risk of death, even after adjusting for potential confounders, further highlighting the importance of timely recognistion and management of SSc-AM. SUMMARY There is increasing recognition of the importance of SSc-AM. Novel diagnostic tools provide the opportunity for more detailed insights into pathophysiologic mechanisms, which may facilitate the development of a rigorous consensus definition of SSc-AM.
Collapse
Affiliation(s)
- Caoilfhionn M. Connolly
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Julie J. Paik
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Wang R, Wang F, Lu S, Gao B, Kan Y, Yuan T, Xu Y, Yuan C, Guo D, Fu W, Yu X, Si Y. Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact Mater 2023; 27:394-408. [PMID: 37122899 PMCID: PMC10131126 DOI: 10.1016/j.bioactmat.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@μsphere system demonstrated a uniform size of about 180 μm and a highly porous structure with pore sizes between 20 and 40 μm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Fangqian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Shan Lu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Bin Gao
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| |
Collapse
|
4
|
Giannini M, Ellezam B, Leclair V, Lefebvre F, Troyanov Y, Hudson M, Senécal JL, Geny B, Landon-Cardinal O, Meyer A. Scleromyositis: A distinct novel entity within the systemic sclerosis and autoimmune myositis spectrum. Implications for care and pathogenesis. Front Immunol 2023; 13:974078. [PMID: 36776390 PMCID: PMC9910219 DOI: 10.3389/fimmu.2022.974078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic sclerosis and autoimmune myositis are both associated with decreased quality of life and increased mortality. Their prognosis and management largely depend on the disease subgroups. Indeed, systemic sclerosis is a heterogeneous disease, the two predominant forms of the disease being limited and diffuse scleroderma. Autoimmune myositis is also a heterogeneous group of myopathies that classically encompass necrotizing myopathy, antisynthetase syndrome, dermatomyositis and inclusion body myositis. Recent data revealed that an additional disease subset, denominated "scleromyositis", should be recognized within both the systemic sclerosis and the autoimmune myositis spectrum. We performed an in-depth review of the literature with the aim of better delineating scleromyositis. Our review highlights that this concept is supported by recent clinical, serological and histopathological findings that have important implications for patient management and understanding of the disease pathophysiology. As compared with other subsets of systemic sclerosis and autoimmune myositis, scleromyositis patients can present with a characteristic pattern of muscle involvement (i.e. distribution of muscle weakness) along with multisystemic involvement, and some of these extra-muscular complications are associated with poor prognosis. Several autoantibodies have been specifically associated with scleromyositis, but they are not currently integrated in diagnostic and classification criteria for systemic sclerosis and autoimmune myositis. Finally, striking vasculopathic lesions at muscle biopsy have been shown to be hallmarks of scleromyositis, providing a strong anatomopathological substratum for the concept of scleromyositis. These findings bring new insights into the pathogenesis of scleromyositis and help to diagnose this condition, in patients with subtle SSc features and/or no autoantibodies (i.e. "seronegative" scleromyositis). No guidelines are available for the management of these patients, but recent data are showing the way towards a new therapeutic approach dedicated to these patients.
Collapse
Affiliation(s)
- Margherita Giannini
- Service de Physiologie et explorations fonctionnelles, University Hospital of Strasbourg, Strasbourg, France
- Centre de Référence des Maladies Autoimmunes Rares, University Hospital of Strasbourg, Strasbourg, France
- Unité de Recherche 3072 (UR3072), Centre de Recherche en Biomédecine, University of Strasbourg, Strasbourg, France
| | - Benjamin Ellezam
- Division of Pathology, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Valérie Leclair
- Division of Rheumatology, Jewish General Hospital, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Frédéric Lefebvre
- Division of Rheumatology, Centre Hospitalier de l'Université de Montréal (CHUM), Autoimmunity Research Laboratory, CHUM Research Center, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yves Troyanov
- Division of Rheumatology, Hôpital du Sacré-Coeur, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marie Hudson
- Division of Rheumatology, Jewish General Hospital, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Jean-Luc Senécal
- Division of Rheumatology, Centre Hospitalier de l'Université de Montréal (CHUM), Autoimmunity Research Laboratory, CHUM Research Center, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Bernard Geny
- Service de Physiologie et explorations fonctionnelles, University Hospital of Strasbourg, Strasbourg, France
- Unité de Recherche 3072 (UR3072), Centre de Recherche en Biomédecine, University of Strasbourg, Strasbourg, France
| | - Océane Landon-Cardinal
- Division of Rheumatology, Centre Hospitalier de l'Université de Montréal (CHUM), Autoimmunity Research Laboratory, CHUM Research Center, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Alain Meyer
- Service de Physiologie et explorations fonctionnelles, University Hospital of Strasbourg, Strasbourg, France
- Unité de Recherche 3072 (UR3072), Centre de Recherche en Biomédecine, University of Strasbourg, Strasbourg, France
- Service de rhumatologie, Centre de Référence des Maladies Autoimmunes Rares, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Molbo L, Hansen RK, Østergaard LR, Frøkjær JB, Larsen RG. Sex differences in microvascular function across lower leg muscles in humans. Microvasc Res 2021; 139:104278. [PMID: 34774583 DOI: 10.1016/j.mvr.2021.104278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
Collapse
Affiliation(s)
- Lars Molbo
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
6
|
Brown JT, Kotecha T, Steeden JA, Fontana M, Denton CP, Coghlan JG, Knight DS, Muthurangu V. Reduced exercise capacity in patients with systemic sclerosis is associated with lower peak tissue oxygen extraction: a cardiovascular magnetic resonance-augmented cardiopulmonary exercise study. J Cardiovasc Magn Reson 2021; 23:118. [PMID: 34706740 PMCID: PMC8554852 DOI: 10.1186/s12968-021-00817-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exercise intolerance in systemic sclerosis (SSc) is typically attributed to cardiopulmonary limitations. However, problems with skeletal muscle oxygen extraction have not been fully investigated. This study used cardiovascular magnetic resonance (CMR)-augmented cardiopulmonary exercise testing (CMR-CPET) to simultaneously measure oxygen consumption and cardiac output. This allowed calculation of arteriovenous oxygen content gradient, a recognized marker of oxygen extraction. We performed CMR-CPET in 4 groups: systemic sclerosis (SSc); systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH); non-connective tissue disease pulmonary hypertension (NC-PAH); and healthy controls. METHODS We performed CMR-CPET in 60 subjects (15 in each group) using a supine ergometer following a ramped exercise protocol until exhaustion. Values for oxygen consumption, cardiac output and oxygen content gradient, as well as ventricular volumes, were obtained at rest and peak-exercise for all subjects. In addition, T1 and T2 maps were acquired at rest, and the most recent clinical measures (hemoglobin, lung function, 6-min walk, cardiac and catheterization) were collected. RESULTS All patient groups had reduced peak oxygen consumption compared to healthy controls (p < 0.022). The SSc and SSc-PAH groups had reduced peak oxygen content gradient compared to healthy controls (p < 0.03). Conversely, the SSc-PAH and NC-PH patients had reduced peak cardiac output compared to healthy controls and SSc patients (p < 0.006). Higher hemoglobin was associated with higher peak oxygen content gradient (p = 0.025) and higher myocardial T1 was associated with lower peak stroke volume (p = 0.011). CONCLUSIONS Reduced peak oxygen consumption in SSc patients is predominantly driven by reduced oxygen content gradient and in SSc-PAH patients this was amplified by reduced peak cardiac output. Trial registration The study is registered with ClinicalTrials.gov Protocol Registration and Results System (ClinicalTrials.gov ID: 100358).
Collapse
Affiliation(s)
- James T Brown
- Institute of Cardiovascular Science, University College London, London, UK
- Royal Free Hospital, London, UK
| | - Tushar Kotecha
- Institute of Cardiovascular Science, University College London, London, UK
- Royal Free Hospital, London, UK
| | - Jennifer A Steeden
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marianna Fontana
- Royal Free Hospital, London, UK
- Division of Medicine, University College London, London, UK
| | - Christopher P Denton
- Royal Free Hospital, London, UK
- Division of Medicine, University College London, London, UK
| | | | - Daniel S Knight
- Institute of Cardiovascular Science, University College London, London, UK
- Royal Free Hospital, London, UK
| | - Vivek Muthurangu
- Institute of Cardiovascular Science, University College London, London, UK.
- Centre for Cardiovascular Imaging, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
7
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
8
|
Decreased Muscular Perfusion in Dermatomyositis: Initial Results Detected by Inflow-Based Vascular-Space-Occupancy MRI. AJR Am J Roentgenol 2021; 216:1588-1595. [PMID: 33787295 DOI: 10.2214/ajr.20.23045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. This study aimed to determine whether inflow-based vascular-space-occupancy (iVASO) MRI could reproducibly quantify skeletal muscle perfusion and differentiate patients with dermatomyositis (DM) from healthy subjects. MATERIALS AND METHODS. A total of 25 patients with DM and 22 healthy volunteers underwent iVASO MRI in a 3-T MRI scanner. Maximum and mean arteriolar muscle blood volume (MBV) values of four subgroups of muscles (normal muscles, morphologically normal-appearing muscles, edematous muscles, and atrophic or fat-infiltrated muscles) were obtained. Maximum and mean arteriolar MBV values were compared among the different subgroups, and repeat testing was performed in 20 subjects to assess reproducibility. RESULTS. Compared with normal muscles in healthy subjects, morphologically normal-appearing muscles, edematous muscles, and atrophic or fat-infiltrated muscles in patients with DM showed a significant decrease of both maximum and mean arteriolar MBV (p < .001). Both parameters were significantly lower in atrophic or fat-infiltrated muscles than in morphologically normal-appearing and edematous muscles (p < .001). ROC AUCs for discriminating patients with DM from healthy volunteers were 0.842 and 0.812 for maximum and mean arteriolar MBV values, respectively. As a measure of test-retest studies, the intraclass correlation coefficients (ICCs) were 0.990 (95% CI, 0.986-0.993) and 0.990 (95% CI, 0.987-0.993) for maximum and mean arteriolar MBV, respectively. For interobserver reproducibility, the ICCs were 0.989 (95% CI, 0.986-0.991) and 0.980 (95% CI, 0.975-0.983), respectively. CONCLUSION. iVASO MRI can reproducibly quantify arteriolar MBV in the thigh and discriminate between healthy volunteers and patients with DM.
Collapse
|
9
|
Pauling JD, Skeoch S, Paik JJ. The clinicoserological spectrum of inflammatory myopathy in the context of systemic sclerosis and systemic lupus erythematosus. INDIAN JOURNAL OF RHEUMATOLOGY 2021; 15:81-90. [PMID: 33790525 DOI: 10.4103/injr.injr_136_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The autoimmune rheumatic diseases (ARDs) are characterised by a pathological triad composed of autoimmunity/inflammation, microangiopathy and aberrant tissue remodelling. Disease terms such as idiopathic inflammatory myopathy (IIM), scleroderma/systemic sclerosis (SSc), and systemic lupus erythematosus (SLE) are helpful clinically but disguise the considerable overlap that exists within these 'distinct' disorders. This is perhaps best demonstrated by inflammatory myopathy, which can be present in SSc or SLE, but can itself be absent in clinically amyopathic IIM. Archetypal clinical manifestations of ARD (such as Raynaud's phenomenon) are frequently present, albeit with varying prominence, within each of these diseases. This is certainly the case for inflammatory myositis, which has long been recognised as an important clinical feature of both SSc and SLE. Progress in elucidating the clinicoserological spectrum of autoimmune rheumatic diseases has identified autoantibody specificities that are strongly associated with 'overlap' disease and the presence of inflammatory myositis in SSc and SLE. In this review, we shall describe the prevalence, burden, prognostic value and management considerations of IIM in the context of both SSc and SLE. A major emphasis on the value of autoantibodies shall highlight the value of these tools in predicting the future occurrence of inflammatory myositis in both SSc and SLE. Where applicable, unmet research needs shall be highlighted. The review emphasises the importance of myopathy as a common feature across all the ARDs, and highlights specific antibody specificities that are strongly associated with myopathy in the context of SLE and SSc.
Collapse
Affiliation(s)
- John D Pauling
- Royal National Hospital for Rheumatic Diseases (part of the Royal United Hospitals NHS Foundation Trust), Bath, UK.,Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases (part of the Royal United Hospitals NHS Foundation Trust), Bath, UK.,Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Julie J Paik
- Johns Hopkins Myositis Center. 5200 Eastern Avenue, MFL Building, Center Tower Suite 4500, Baltimore, MD USA
| |
Collapse
|
10
|
Ahlawat S, Paik J, Del Grande F, Paris ES, Sujlana P, Fayad LM. Distinct MR features in scleroderma associated myopathy. Radiol Med 2021; 126:707-716. [PMID: 33394365 DOI: 10.1007/s11547-020-01317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To compare the MRI features in patients with fibrosing [FM] versus non-fibrosing [NFM] systemic sclerosis [SSc]-associated myopathy. METHODS 10 patients with FM and 14 with NFM underwent bilateral thigh MRI [T1-weighted, STIR and DW/ADC mapping]. Three observers, blinded to histology evaluated 36 muscles per patient for presence of intramuscular edema, fascial edema, fatty replacement and atrophy and measured ADC values. Fisher's exact test and student's t-test were used to compare MRI findings of FM [endomysial/ perimysial fibrosis] and NFM [necrosis/inflammation] on histology. RESULTS Intramuscular edema [p < 0.0001] and fascial edema [p = 0.07] were more common in FM. On DWI, elevated intramuscular signal was more common in FM, [low b-value: p < 0.0001 and high b-value: p < 0.0001]. On T1, NFM exhibited more fatty replacement [p = < 0.0001] and atrophy [p = < 0.0001]. CONCLUSIONS Intramuscular and fascial edema on MRI are more common in SSc-associated FM, while markers of chronic muscle damage are more often associated with NFM.
Collapse
Affiliation(s)
- Shivani Ahlawat
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| | - Julie Paik
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Filippo Del Grande
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland.,Department of Radiology, Ospedale Regionale Di Lugano, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Elias S Paris
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Parvinder Sujlana
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| |
Collapse
|
11
|
Sari A, Esme M, Aycicek GS, Armagan B, Kilic L, Ertenli AI, Halil MG, Akdogan A. Evaluating skeletal muscle mass with ultrasound in patients with systemic sclerosis. Nutrition 2020; 84:110999. [PMID: 33160811 DOI: 10.1016/j.nut.2020.110999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Patients with systemic sclerosis (SSc) have an increased risk for loss of skeletal muscle mass. Ultrasonography (US) is a safe and promising method to evaluate muscle mass. In this study, we aimed to assess the frequency and clinical associations of low muscle mass status in patients with SSc, investigate the correlations between muscle mass sonographically measured regional muscle thicknesses (MTs), and explore the utility of US in predicting low muscle mass. METHODS A total of 93 patients with SSc (86 women) were included in the study. Appendicular skeletal muscle mass (ASM) was calculated using a bioelectric impedance analysis and adjusted for height2 (ASM index, ASMI). Low muscle mass was defined as an ASMI of <7.26 kg/m2 for men and <5.50 kg/m2 for women. MT of the gastrocnemius medialis (GM), rectus femoris (RF), rectus abdominis (RA), external oblique (EO), internal oblique (IO), and transverse abdominis (TA) muscles were assessed by US. Correlations between ASMI and individual MTs were evaluated. Receiver operating characteristic analysis was used to determine the optimal cutoff values of MTs in predicting low muscle mass. RESULTS Low muscle mass was present in 13.9% of patients. Diffuse disease subset (53.8% vs 17.5%), antitopoisomerase-1 antibody positivity (76.9% vs 47.5%), and malnutrition (61.5% vs 8.8%) were more frequent in patients with low muscle mass (P < 0.05 for all). MTs of RA (0.54 vs 0.75 cm), TA (0.30 vs 0.34 cm), and GM (1.23 vs 1.51 cm) muscles were significantly lower in patients with low muscle mass (P < 0.05 for all). RA (r = 0.322; P = 0.002), external oblique (r = 0.310; P = 0.002), TA (r = 0.205; P = 0.049), and GM (r = 0.513; P < 0.001) MTs were positively correlated with ASMI. Selected cutoff values for GM and RA MTs showed the highest sensitivity (92.3% for both) and negative predictive value (97.9% and 97.6%, respectively) in predicting low muscle mass status (area under the curve: 0.846 and 0.760, respectively) in the receiver operating characteristic analysis. CONCLUSIONS Low muscle mass is prevalent in SSc and patients with diffuse disease are at particular risk for this condition. US measurement of abdominal and calf MTs may be used as a screening method to detect low muscle mass due to its high sensitivity and negative predictive value.
Collapse
Affiliation(s)
- Alper Sari
- Department of Rheumatology, Hacettepe University, Faculty of Medicine, Ankara, Turkey.
| | - Mert Esme
- Department of Geriatrics, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Gozde Sengul Aycicek
- Department of Geriatrics, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Berkan Armagan
- Department of Rheumatology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Levent Kilic
- Department of Rheumatology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Ali Ihsan Ertenli
- Department of Rheumatology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Meltem Gulhan Halil
- Department of Geriatrics, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Department of Rheumatology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Larsen RG, Thomsen JM, Hirata RP, Steffensen R, Poulsen ER, Frøkjaer JB, Graven-Nielsen T. Impaired microvascular reactivity after eccentric muscle contractions is not restored by acute ingestion of antioxidants or dietary nitrate. Physiol Rep 2020; 7:e14162. [PMID: 31293100 PMCID: PMC6640596 DOI: 10.14814/phy2.14162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Unaccustomed eccentric exercise leads to impaired microvascular function but the underlying mechanism is unknown. In this study, we evaluated the role of oxidative stress and of nitric oxide (NO) bioavailability. Thirty young men and women performed eccentric contractions of the tibialis anterior (TA) muscle (ECC), with the contralateral leg serving as nonexercising control (CON). Participants were randomized into three groups ingesting an antioxidant cocktail (AO), beetroot juice (BR) or placebo 46 h postexercise. At baseline and 48 h postexercise, hyperemic responses to brief muscle contractions and 5 min of cuff occlusion were assessed bilaterally in the TA muscles using blood oxygen level dependent (BOLD) magnetic resonance imaging. Eccentric contractions resulted in delayed time-to-peak (~22%; P < 0.001), blunted peak (~21%; P < 0.001) and prolonged time-to-half relaxation (~12%, P < 0.001) in the BOLD response to brief contractions, with no effects of AO or BR, and no changes in CON. Postocclusive time-to-peak was also delayed (~54%; P < 0.001) in ECC, with no effects of AO or BR, and no changes in CON. Impaired microvascular reactivity after eccentric contractions is confined to the exercised tissue, and is not restored with acute ingestion of AO or BR. Impairments in microvascular reactivity after unaccustomed eccentric contractions may result from structural changes within the microvasculature that can diminish muscle blood flow regulation during intermittent activities requiring prompt adjustments in oxygen delivery.
Collapse
Affiliation(s)
- Ryan G Larsen
- Sports Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens M Thomsen
- Sports Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rogerio P Hirata
- Department of Health Science and Technology, SMI, Aalborg University, Aalborg, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Eva R Poulsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens B Frøkjaer
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, SMI, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Englund EK, Langham MC. Quantitative and Dynamic MRI Measures of Peripheral Vascular Function. Front Physiol 2020; 11:120. [PMID: 32184733 PMCID: PMC7058683 DOI: 10.3389/fphys.2020.00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
The endothelium regulates and mediates vascular homeostasis, allowing for dynamic changes of blood flow in response to mechanical and chemical stimuli. Endothelial dysfunction underlies many diseases and is purported to be the earliest pathologic change in the progression of atherosclerotic disease. Peripheral vascular function can be interrogated by measuring the response kinetics following induced ischemia or exercise. In the presence of endothelial dysfunction, there is a blunting and delay of the hyperemic response, which can be measured non-invasively using a variety of quantitative magnetic resonance imaging (MRI) methods. In this review, we summarize recent developments in non-contrast, proton MRI for dynamic quantification of blood flow and oxygenation. Methodologic description is provided for: blood oxygenation-level dependent (BOLD) signal that reflect combined effect of blood flow and capillary bed oxygen content; arterial spin labeling (ASL) for quantification of regional perfusion; phase contrast (PC) to quantify arterial flow waveforms and macrovascular blood flow velocity and rate; high-resolution MRI for luminal flow-mediated dilation; and dynamic MR oximetry to quantify oxygen saturation. Overall, results suggest that these dynamic and quantitative MRI methods can detect endothelial dysfunction both in the presence of overt cardiovascular disease (such as in patients with peripheral artery disease), as well as in sub-clinical settings (i.e., in chronic smokers, non-smokers exposed to e-cigarette aerosol, and as a function of age). Thus far, these tools have been relegated to the realm of research, used as biomarkers of disease progression and therapeutic response. With proper validation, MRI-measures of vascular function may ultimately be used to complement the standard clinical workup, providing additional insight into the optimal treatment strategy and evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Pettersson H, Boström C, Bringby F, Walle-Hansen R, Jacobsson LTH, Svenungsson E, Nordin A, Alexanderson H. Muscle endurance, strength, and active range of motion in patients with different subphenotypes in systemic sclerosis: a cross-sectional cohort study. Scand J Rheumatol 2018; 48:141-148. [DOI: 10.1080/03009742.2018.1477990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- H Pettersson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Functional Area Occupational Therapy and Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Science and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
| | - C Boström
- Functional Area Occupational Therapy and Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Science and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
| | - F Bringby
- Department of Neurobiology, Care Science and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
| | - R Walle-Hansen
- Department of Clinical Service, Orthopaedic Clinic, Oslo University Hospital, Oslo, Norway
| | - LTH Jacobsson
- Unit of Internal Medicine, Lund University Hospital, Lund, Sweden
| | - E Svenungsson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - A Nordin
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - H Alexanderson
- Functional Area Occupational Therapy and Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Science and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
16
|
Walker UA, Clements PJ, Allanore Y, Distler O, Oddis CV, Khanna D, Furst DE. Muscle involvement in systemic sclerosis: points to consider in clinical trials. Rheumatology (Oxford) 2017; 56:v38-v44. [PMID: 28992167 DOI: 10.1093/rheumatology/kex196] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/13/2022] Open
Abstract
SSc is clinically and pathogenetically heterogeneous. Consensus standards for trial design and outcome measures are needed. International experts experienced in SSc clinical trial design and a researcher experienced in systematic literature review screened the PubMed and Cochrane Central Register of Controlled Trials in order to develop points to consider when planning a clinical trial for muscle involvement in SSc. The experts conclude that SSc-associated muscle involvement is heterogeneous and lacks a universally accepted gold-standard for measuring therapeutic response. Although outcome studies are currently limited by the inability to clearly distinguish active, reversible muscle inflammation from irreversible muscle damage and extramuscular organ involvement, strong consideration should be given to enrolling patients with a myopathy that features several elements of likely reversibility such as muscle weakness, biopsy-proven active inflammation, an MRI indicating muscle inflammation and a baseline serum creatinine kinase above three times the upper limit of normal to prevent floor effect. Randomized controlled trials are preferred, with a duration of at least 24 weeks. Outcome measures should include a combination of elements that are likely to be reversible, such as muscle weakness, biopsy-proven active inflammation, creatinine kinase/aldolase and a quality of life questionnaire. The individual measurements might require a short pre-study for further validation. A biological sample repository is recommended.
Collapse
Affiliation(s)
- Ulrich A Walker
- Department of Rheumatology, Basel University, Basel, Switzerland
| | - Philip J Clements
- Department of Rheumatology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Yannick Allanore
- Department of Rheumatology and INSERM U1016, Descartes University, Cochin Hospital, Paris, France
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Chester V Oddis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dinesh Khanna
- Department of Medicine, University of Michigan, University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Daniel E Furst
- Department of Rheumatology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
|
18
|
Musculoskeletal Involvement in Systemic Sclerosis: An Unexplored Aspect of the Disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2016. [DOI: 10.5301/jsrd.5000228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Musculoskeletal (MSK) symptoms in patients with systemic sclerosis (SSc) include articular involvement (arthralgia, synovitis, contractures), which is often an early phenomenon and significantly contributes to the disability. Predominantly the hands are affected. Consensus in outcome measures of articular involvement is missing. Health Assessment Questionnaire Disability Index (HAQ-DI), Cochin Hand Function Scale (CHFS), Hand Mobility Index in Scleroderma (HAMIS), and Disease Activity Score of 28 Joints (DAS28) may be used for the assessment of different aspects of joint involvement. There is an unmet need for therapies confirmed by randomized controlled clinical trials (RCTs) to treat both synovitis and non-inflammatory joint involvement. The few rehabilitation studies that have been conducted have shown some promising efficacy. Muscle involvement may be an early symptom. The presence of clinically meaningful muscle involvement often heralds an unfavourable prognosis. The histology of muscle biopsy shows a variable picture including inflammation and necrosis. Besides, signs of acute neurogenic atrophy have been recently described as a previously underestimated contributor to muscle weakness. Similar to articular involvement, the lack of classification criteria on inflammatory and non-inflammatory SSc-associated myopathies, and the lack of validated core set of outcome measures makes it difficult to perform RCTs. The SSc-specific fibrinous tenosynovitis (tendon-friction rubs /TFRs/) is a frequent finding in SSc. Patients with TFR are at increased risk of developing renal, vascular, cardiac and gastrointestinal involvement and have reduced survival rates. Changes of fibrinous tenosynovitis can be objectively detected by ultrasound and may be used as an outcome measure in the treatment of MSK involvement.
Collapse
|
19
|
Partovi S, Kaspar M, Aschwanden M, Robbin MR, Bilecen D, Walker UA, Staub D. Quantitative dynamic contrast-enhanced ultrasound for the functional evaluation of the skeletal muscle microcirculation in systemic sclerosis. Clin Hemorheol Microcirc 2016; 62:35-44. [DOI: 10.3233/ch-151929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mathias Kaspar
- Department of Internal Medicine, Division of Angiology, University Hospital, Basel, Switzerland
| | - Markus Aschwanden
- Department of Internal Medicine, Division of Angiology, University Hospital, Basel, Switzerland
| | - Mark R. Robbin
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Deniz Bilecen
- Department of Radiology, Kantonsspital Laufen, Laufen, Switzerland
| | - Ulrich A. Walker
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Daniel Staub
- Department of Internal Medicine, Division of Angiology, University Hospital, Basel, Switzerland
| |
Collapse
|
20
|
Maurer B, Walker UA. Role of MRI in Diagnosis and Management of Idiopathic Inflammatory Myopathies. Curr Rheumatol Rep 2015; 17:67. [DOI: 10.1007/s11926-015-0544-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Abstract
Multiple nonmorphologic magnetic resonance sequences are available in musculoskeletal imaging that can provide additional information to better characterize and diagnose musculoskeletal disorders and diseases. These sequences include blood-oxygen-level-dependent (BOLD), arterial spin labeling (ASL), diffusion-weighted imaging (DWI), and diffusion-tensor imaging (DTI). BOLD and ASL provide different methods to evaluate skeletal muscle microperfusion. The BOLD signal reflects the ratio between oxyhemoglobin and deoxyhemoglobin. ASL uses selective tagging of inflowing blood spins in a specific region for calculating local perfusion. DWI and DTI provide information about the structural integrity of soft tissue including muscles and fibers as well as pathologies.
Collapse
|
22
|
Holland AE, Dowman LM, Hill CJ. Principles of rehabilitation and reactivation: interstitial lung disease, sarcoidosis and rheumatoid disease with respiratory involvement. Respiration 2015; 89:89-99. [PMID: 25633076 DOI: 10.1159/000370126] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interstitial lung diseases (ILDs) are characterised by dyspnoea on exertion, exercise-induced hypoxaemia, reduced skeletal muscle function and exercise intolerance. Evidence from nine randomised controlled trials shows that pulmonary rehabilitation improves exercise capacity, dyspnoea and quality of life in ILD, with moderately large effect sizes from 0.59 to 0.68. Participants with idiopathic pulmonary fibrosis, the most common and most progressive of the ILDs, achieve benefits in exercise capacity and quality of life that are of equal magnitude to those seen in other ILDs, with effect sizes from 0.59 to 0.75. Whole body exercise training is a core component of pulmonary rehabilitation for ILD. The standard exercise prescription used for other chronic lung diseases is effective in ILD, including 8 weeks of training with at least two supervised sessions per week and at least 30 min of aerobic training per session. However, the unique presentation and underlying pathophysiology of ILD may require modifications of the exercise prescription for individual patients. Those with connective tissue disease may present with joint pain and stiffness that require modification of the standard exercise prescription, including reduction in weight-bearing exercise. Some patients with severe disease may present with distressing dyspnoea that limits the intensity or progression of training. Because exercise-induced hypoxaemia is common in ILD and more severe than seen in other chronic lung diseases, pulmonary rehabilitation should be provided in a setting where supplemental oxygen therapy is available. Pulmonary rehabilitation programs offer the opportunity to address other critical aspects of ILD care, including management of comorbidities, symptoms and mood.
Collapse
Affiliation(s)
- Anne E Holland
- Department of Physiotherapy, La Trobe University, Melbourne, Australia
| | | | | |
Collapse
|
23
|
Caterini JE, Elzibak AH, St Michel EJ, McCrindle BW, Redington AN, Thompson S, Noseworthy MD, Wells GD. Characterizing blood oxygen level-dependent (BOLD) response following in-magnet quadriceps exercise. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:271-8. [PMID: 25248947 DOI: 10.1007/s10334-014-0461-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022]
|
24
|
Lóránd V, Czirják L, Minier T. Musculoskeletal involvement in systemic sclerosis. Presse Med 2014; 43:e315-28. [PMID: 25179276 DOI: 10.1016/j.lpm.2014.03.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/18/2014] [Indexed: 12/26/2022] Open
Abstract
Musculoskeletal (MSK) involvement is a very frequent manifestation of patients with systemic sclerosis (SSc). There are several reports about clinical trials assessing musculoskeletal involvement in SSc. However, only few controlled studies have been conducted. The prevalence of musculoskeletal symptoms, clinical and radiographic findings has been assessed. The most important articular (arthralgia, synovitis, contractures), tendon (tendon friction rubs, tenosynovitis) and muscular manifestations (myalgia, muscle weakness, myositis) should be carefully evaluated during the assessment of SSc patients, because these are not only common, but substantially influence the quality of life and some of them also have predictive value concerning disease activity and severity.
Collapse
Affiliation(s)
- Veronika Lóránd
- University of Pécs, Faculty of Medicine, Department of Rheumatology and Immunology, 7632 Pécs, Hungary
| | - László Czirják
- University of Pécs, Faculty of Medicine, Department of Rheumatology and Immunology, 7632 Pécs, Hungary
| | - Tünde Minier
- University of Pécs, Faculty of Medicine, Department of Rheumatology and Immunology, 7632 Pécs, Hungary.
| |
Collapse
|
25
|
Gordon Y, Partovi S, Müller-Eschner M, Amarteifio E, Bäuerle T, Weber MA, Kauczor HU, Rengier F. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 2014; 4:147-64. [PMID: 24834412 DOI: 10.3978/j.issn.2223-3652.2014.03.01] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/08/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues' temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990's. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. APPLICATIONS TO PERIPHERAL PERFUSION DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). REVIEW OUTLINE The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and vascular systems of the extremities.
Collapse
Affiliation(s)
- Yaron Gordon
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Sasan Partovi
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Müller-Eschner
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Erick Amarteifio
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Marc-André Weber
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Ulrich Kauczor
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Fabian Rengier
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:387-95. [DOI: 10.1007/s10334-013-0424-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
27
|
Partovi S, Schulte AC, Staub D, Jacobi B, Aschwanden M, Walker UA, Imfeld S, Broz P, Benz D, Zipp L, Takes M, Jäger KA, Huegli RW, Bilecen D. Correlation of skeletal muscle blood oxygenation level-dependent MRI and skin laser doppler flowmetry in patients with systemic sclerosis. J Magn Reson Imaging 2013; 40:1408-13. [DOI: 10.1002/jmri.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/10/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sasan Partovi
- University Hospital Bruderholz; Department of Radiology and Nuclear Medicine; Basel Switzerland
| | - Anja-Carina Schulte
- University Hospital Bruderholz; Department of Radiology and Nuclear Medicine; Basel Switzerland
| | - Daniel Staub
- University Hospital Basel; Department of Angiology; Basel Switzerland
| | - Bjoern Jacobi
- Third Department of Internal Medicine; Johannes Gutenberg University Hospital of Mainz; Mainz Germany
| | - Markus Aschwanden
- University Hospital Basel; Department of Angiology; Basel Switzerland
| | - Ulrich A. Walker
- Basel University Department of Rheumatology; Felix Platter-Spital; Basel Switzerland
| | - Stephan Imfeld
- University Hospital Basel; Department of Angiology; Basel Switzerland
| | - Pavel Broz
- University Hospital Basel; Department of Angiology; Basel Switzerland
| | - Daniela Benz
- Basel University Department of Rheumatology; Felix Platter-Spital; Basel Switzerland
| | - Lisa Zipp
- University Hospital Bruderholz; Department of Radiology and Nuclear Medicine; Basel Switzerland
| | - Martin Takes
- University Hospital Basel; Department of Radiology; Basel Switzerland
| | - Kurt A. Jäger
- University Hospital Basel; Department of Angiology; Basel Switzerland
| | - Rolf W. Huegli
- University Hospital Bruderholz; Department of Radiology and Nuclear Medicine; Basel Switzerland
| | - Deniz Bilecen
- University Hospital Bruderholz; Department of Radiology and Nuclear Medicine; Basel Switzerland
| |
Collapse
|
28
|
Assessment of T regulatory cells and expanded profiling of autoantibodies may offer novel biomarkers for the clinical management of systemic sclerosis and undifferentiated connective tissue disease. Clin Dev Immunol 2013; 2013:390563. [PMID: 23818915 PMCID: PMC3681301 DOI: 10.1155/2013/390563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/21/2013] [Accepted: 04/11/2013] [Indexed: 12/16/2022]
Abstract
In order to identify disease biomarkers for the clinical and therapeutic management of autoimmune diseases such as systemic sclerosis (SSc) and undifferentiated connective tissue disease (UCTD), we have explored the setting of peripheral T regulatory (T reg) cells and assessed an expanded profile of autoantibodies in patients with SSc, including either limited (lcSSc) or diffuse (dcSSc) disease, and in patients presenting with clinical signs and symptoms of UCTD. A large panel of serum antibodies directed towards nuclear, nucleolar, and cytoplasmic antigens, including well-recognized molecules as well as less frequently tested antigens, was assessed in order to determine whether different antibody profiles might be associated with distinct clinical settings. Beside the well-recognized association between lcSSc and anti-centromeric or dcSSC and anti-topoisomerase-I antibodies, we found a significative association between dcSSc and anti-SRP or anti-PL-7/12 antibodies. In addition, two distinct groups emerged on the basis of anti-RNP or anti-PM-Scl 75/100 antibody production among UCTD patients. The levels of T reg cells were significantly lower in patients with SSc as compared to patients with UCTD or to healthy controls; in patients with lcSSc, T reg cells were inversely correlated to disease duration, suggesting that their levels may represent a marker of disease progression.
Collapse
|
29
|
Partovi S, Aschwanden M, Jacobi B, Schulte AC, Walker UA, Staub D, Imfeld S, Broz P, Benz D, Zipp L, Jaeger KA, Takes M, Robbin MR, Huegli RW, Bilecen D. Correlation of muscle BOLD MRI with transcutaneous oxygen pressure for assessing microcirculation in patients with systemic sclerosis. J Magn Reson Imaging 2013; 38:845-51. [PMID: 23441019 DOI: 10.1002/jmri.24046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/17/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To prospectively compare calf muscle BOLD MRI with transcutaneous oxygen pressure (TcPO2 ) measurement in patients with systemic sclerosis (SSc) and healthy volunteers and thereby get insight into the pathogenesis of vasculopathy in this connective tissue disorder. MATERIALS AND METHODS Twelve patients with SSc (6 women and 6 men, mean age 53.5 ± 10.0 years) and 12 healthy volunteers (4 men and 8 women, mean age 47 ± 12.1 years) were examined using muscle BOLD MRI and TcPO2. A cuff compression at mid-thigh level was performed to provoke ischemia and reactive hyperemia. BOLD measurements were acquired on a 3 Tesla whole body-scanner in the upper calf region using a multi-echo EPI-sequence with four echo-times (TE: 9/20/31/42 ms) and a repetition time of 2 s. Empirical cross-correlation analysis depending on time lags between BOLD- and TcPO2-measurements was performed. RESULTS Maximal cross-correlation of BOLD T2*- and TcPO2-measurements was calculated as 0.93 (healthy volunteers) and 0.90 (SSc patients) for a time lag of approximately 40 s. Both modalities showed substantial differences regarding time course parameters between the SSc patients and healthy volunteers. CONCLUSION Skeletal muscle BOLD MRI correlated very well with TcPO2 . T2* changes seem to reflect reoxygenation deficits in deeper muscle tissue of SSc patients.
Collapse
Affiliation(s)
- Sasan Partovi
- University Hospital Bruderholz, Department of Radiology and Nuclear Medicine, Basel, Switzerland; University Hospitals Case Medical Center/Case Western Reserve University, Department of Radiology, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|