1
|
Ma Y, Fei S, Chen X, Gui Y, Zhou B, Xiang T, Liu J, Yue K, Li Q, Jiang W, Sun C, Huang X. Chemerin attenuates acute kidney injury by inhibiting ferroptosis via the AMPK/NRF2/SLC7A11 axis. Commun Biol 2024; 7:1679. [PMID: 39702678 DOI: 10.1038/s42003-024-07377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Acute kidney injury (AKI) is a common and life-threatening condition associated with cell death, where ferroptosis plays a critical role. Chemerin, primarily produced in white adipose tissue, has multiple biological functions in renal pathophysiology. However, to date, whether and how chemerin regulates the progression of AKI remain unclear. Here, we found that chemerin expression was reduced in both AKI model mice and cells. Similarly, serum chemerin levels were also decreased in AKI patients. The administration of recombinant chemerin improves renal function in ischemia-reperfusion (I/R) model mice. Chemerin significantly attenuates ferroptosis in kidneys. In TCMK-1 cells, chemerin knockdown further aggravates ferroptosis. Mechanistically, chemerin activates AMP-activated protein kinase (AMPK), which induces the phosphorylation of nuclear factor erythroid 2-related factor 2 (NRF2) in renal tubular cells. Subsequently, NRF2 translocates into the nucleus, where it stimulates the expression of cystine/glutamate antiporter solute carrier (SLC7A11). As a result, cystine uptake and glutathione (GSH) biosynthesis in renal tubular cells were increased, which confers cells with higher capacity against ferroptosis. Overall, our findings indicate that chemerin plays a protective role in AKI by repressing ferroptosis in renal tubular cells, which is likely due to the activation in the AMPK/NRF2/SLC7A11 axis.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Yan Y, Zheng X, Liu G, Shi G, Li C, Chen H, He X, Lin K, Deng Z, Zhang H, Li WG, Chen H, Tong X, Zhu Z. Gut microbiota-derived cholic acid mediates neonatal brain immaturity and white matter injury under chronic hypoxia. iScience 2024; 27:109633. [PMID: 38638560 PMCID: PMC11025012 DOI: 10.1016/j.isci.2024.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic hypoxia, common in neonates, disrupts gut microbiota balance, which is crucial for brain development. This study utilized cyanotic congenital heart disease (CCHD) patients and a neonatal hypoxic rat model to explore the association. Both hypoxic rats and CCHD infants exhibited brain immaturity, white matter injury (WMI), brain inflammation, and motor/learning deficits. Through 16s rRNA sequencing and metabolomic analysis, a reduction in B. thetaiotaomicron and P. distasonis was identified, leading to cholic acid accumulation. This accumulation triggered M1 microglial activation and inflammation-induced WMI. Administration of these bacteria rescued cholic acid-induced WMI in hypoxic rats. These findings suggest that gut microbiota-derived cholic acid mediates neonatal WMI and brain inflammation, contributing to brain immaturity under chronic hypoxia. Therapeutic targeting of these bacteria provides a non-invasive intervention for chronic hypoxia patients.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtong Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Deng
- Department of Gastroenterology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, Hajializadeh Z, Sabet N. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in Rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol 2023; 24:59. [PMID: 36941590 PMCID: PMC10026443 DOI: 10.1186/s12882-023-03104-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
People's lifestyles and, especially, their eating habits affect their health and the functioning of the organs in their bodies, including the kidneys. One's diet influences the cells' responses to stressful conditions such as acute kidney injury (AKI). This study aims to determine the preconditioning effects of four different diets: energy restriction (ER) diet, time restriction (TR) eating, intermittent fasting (IF), and high-fat diet (HF) on histopathological indices of the kidney as well as the molecules involved in apoptosis during AKI. Adult male rats underwent ER, TR, IF, and HF diets for eight weeks. Then, AKI was induced, and renal function indices, histopathological indices, and molecules involved in apoptosis were measured. In animals with AKI, urinary albumin excretion, serum urea, creatinine and, Bax/Bcl-2 ratio increased in the kidney, while renal eGFR decreased. ER and TR diets improved renal parameters and prevented an increase in the Bax/Bcl-2 ratio. The IF diet improved renal parameters but had no effect on the Bax/Bcl-2 ratio. On the other hand, the HF diet worsened renal function and increased the Bax/Bcl-2 ratio. Histopathological examination also showed improved kidney conditions in the ER and TR groups and more damage in the HF group. This study demonstrated that ER and TR diets have renoprotective effects on AKI and possibly cause the resistance of kidney cells to damage by reducing the Bax/Bcl-2 ratio and improving apoptotic conditions.
Collapse
Affiliation(s)
- Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Byun JH, Lebeau PF, Platko K, Carlisle RE, Faiyaz M, Chen J, MacDonald ME, Makda Y, Yousof T, Lynn EG, Dickhout JG, Krepinsky JC, Weaver F, Igdoura SA, Seidah NG, Austin RC. Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. KIDNEY360 2022; 3:1394-1410. [PMID: 36176646 PMCID: PMC9416829 DOI: 10.34067/kid.0007022021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
Background PCSK9 modulates the uptake of circulating lipids through a range of receptors, including the low-density lipoprotein receptor (LDLR) and CD36. In the kidney, CD36 is known to contribute to renal injury through pro-inflammatory and -fibrotic pathways. In this study, we sought to investigate the role of PCSK9 in modulating renal lipid accumulation and injury through CD36 using a high fat diet (HFD)-induced murine model. Methods The effect of PCSK9 on the expression of CD36 and intracellular accumulation of lipid was examined in cultured renal cells and in the kidneys of male C57BL/6J mice. The effect of these findings was subsequently explored in a model of HFD-induced renal injury in Pcsk9 -/- and Pcsk9 +/+ littermate control mice on a C57BL/6J background. Results In the absence of PCSK9, we observed heightened CD36 expression levels, which increased free fatty acid (FFA) uptake in cultured renal tubular cells. As a result, PCSK9 deficiency was associated with an increase in long-chain saturated FFA-induced ER stress. Consistent with these observations, Pcsk9-/- mice fed a HFD displayed elevated ER stress, inflammation, fibrosis, and renal injury relative to HFD-fed control mice. In contrast to Pcsk9-/- mice, pretreatment of WT C57BL/6J mice with evolocumab, an anti-PCSK9 monoclonal antibody (mAb) that binds to and inhibits the function of circulating PCSK9, protected against HFD-induced renal injury in association with reducing cell surface CD36 expression on renal epithelia. Conclusions We report that circulating PCSK9 modulates renal lipid uptake in a manner dependent on renal CD36. In the context of increased dietary fat consumption, the absence of circulating PCSK9 may promote renal lipid accumulation and subsequent renal injury. However, although the administration of evolocumab blocks the interaction of PCSK9 with the LDLR, this evolocumab/PCSK9 complex can still bind CD36, thereby protecting against HFD-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Paul F. Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Mahi Faiyaz
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jack Chen
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Yumna Makda
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Tamana Yousof
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Joan C. Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Fiona Weaver
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Canada
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| |
Collapse
|
5
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
6
|
Raji-Amirhasani A, Khaksari M, Shahrokhi N, Soltani Z, Nazari-Robati M, Mahani FD, Hajializadeh Z, Sabet N. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: the role of SIRT1 and TGF-β1. Nutrition 2022; 96:111588. [DOI: 10.1016/j.nut.2022.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
7
|
Packialakshmi B, Stewart IJ, Burmeister DM, Chung KK, Zhou X. Large animal models for translational research in acute kidney injury. Ren Fail 2021; 42:1042-1058. [PMID: 33043785 PMCID: PMC7586719 DOI: 10.1080/0886022x.2020.1830108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While extensive research using animal models has improved the understanding of acute kidney injury (AKI), this knowledge has not been translated into effective treatments. Many promising interventions for AKI identified in mice and rats have not been validated in subsequent clinical trials. As a result, the mortality rate of AKI patients remains high. Inflammation plays a fundamental role in the pathogenesis of AKI, and one reason for the failure to translate promising therapeutics may lie in the profound difference between the immune systems of rodents and humans. The immune systems of large animals such as swine, nonhuman primates, sheep, dogs and cats, more closely resemble the human immune system. Therefore, in the absence of a basic understanding of the pathophysiology of human AKI, large animals are attractive models to test novel interventions. However, there is a lack of reviews on large animal models for AKI in the literature. In this review, we will first highlight differences in innate and adaptive immunities among rodents, large animals, and humans in relation to AKI. After illustrating the potential merits of large animals in testing therapies for AKI, we will summarize the current state of the evidence in terms of what therapeutics have been tested in large animal models. The aim of this review is not to suggest that murine models are not valid to study AKI. Instead, our objective is to demonstrate that large animal models can serve as valuable and complementary tools in translating potential therapeutics into clinical practice.
Collapse
Affiliation(s)
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
He ZL, Zhou JB, Liu ZK, Dong SY, Zhang YT, Shen T, Zheng SS, Xu X. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation. Hepatobiliary Pancreat Dis Int 2021; 20:222-231. [PMID: 33726966 DOI: 10.1016/j.hbpd.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication after liver transplantation (LT) and is an indicator of poor prognosis. The establishment of a more accurate preoperative prediction model of AKI could help to improve the prognosis of LT. Machine learning algorithms provide a potentially effective approach. METHODS A total of 493 patients with donation after cardiac death LT (DCDLT) were enrolled. AKI was defined according to the clinical practice guidelines of kidney disease: improving global outcomes (KDIGO). The clinical data of patients with AKI (AKI group) and without AKI (non-AKI group) were compared. With logistic regression analysis as a conventional model, four predictive machine learning models were developed using the following algorithms: random forest, support vector machine, classical decision tree, and conditional inference tree. The predictive power of these models was then evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS The incidence of AKI was 35.7% (176/493) during the follow-up period. Compared with the non-AKI group, the AKI group showed a remarkably lower survival rate (P < 0.001). The random forest model demonstrated the highest prediction accuracy of 0.79 with AUC of 0.850 [95% confidence interval (CI): 0.794-0.905], which was significantly higher than the AUCs of the other machine learning algorithms and logistic regression models (P < 0.001). CONCLUSIONS The random forest model based on machine learning algorithms for predicting AKI occurring after DCDLT demonstrated stronger predictive power than other models in our study. This suggests that machine learning methods may provide feasible tools for forecasting AKI after DCDLT.
Collapse
Affiliation(s)
- Zeng-Lei He
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun-Bin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi-Kun Liu
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Si-Yi Dong
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yun-Tao Zhang
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tian Shen
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
9
|
Boly CA, Venhuizen M, Dekker NAM, Vonk ABA, Boer C, van den Brom CE. Comparison of Microcirculatory Perfusion in Obese and Non-Obese Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. J Clin Med 2021; 10:jcm10030469. [PMID: 33530543 PMCID: PMC7865338 DOI: 10.3390/jcm10030469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity is a frequent comorbidity among patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Cardiac surgery with CPB impairs microcirculatory perfusion, which is associated with multiple organ failure. As microvascular function is frequently compromised in obese patients, we studied whether cardiac surgery with CPB has a more detrimental effect on microcirculatory perfusion in obese patients. Sublingual microcirculatory perfusion was measured with sidestream dark field (SDF) imaging in obese patients (body mass index ≥32 kg/m2; n = 14) without type II diabetes mellitus and in lean patients (BMI 20–25 kg/m2; n = 22) undergoing cardiac surgery with CPB. CPB reduced systolic blood pressure and mean arterial pressure more profoundly in lean compared with obese patients (SBP: 38% vs. 18%; MAP: 11% vs. 8%, p < 0.05), and both restored after weaning from CPB. No differences were present in intraoperative glucose, hematocrit, hemoglobin, lactate, and blood gas values between obese and lean patients. Microcirculatory perfusion did not differ between obese and lean patients the day before surgery. CPB decreased microcirculatory perfusion with 9% in both groups, but this was only significant in lean patients (p < 0.05). Three days following surgery, microcirculatory perfusion was restored in both groups. In conclusion, microcirculatory perfusion was equally disturbed during cardiac surgery with CPB in metabolically healthy obese patients compared to lean patients.
Collapse
Affiliation(s)
- Chantal A. Boly
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands; (C.A.B.); (M.V.); (N.A.M.D.); (C.B.)
| | - Margot Venhuizen
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands; (C.A.B.); (M.V.); (N.A.M.D.); (C.B.)
| | - Nicole A. M. Dekker
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands; (C.A.B.); (M.V.); (N.A.M.D.); (C.B.)
- Departments Physiology and Cardiothoracic Surgery, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands;
| | - Alexander B. A. Vonk
- Department of Cardiothoracic Surgery, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands;
| | - Christa Boer
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands; (C.A.B.); (M.V.); (N.A.M.D.); (C.B.)
- Faculty of Medicine, Amsterdam UMC, VU University, 1081 BT Amsterdam, The Netherlands
| | - Charissa E. van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands; (C.A.B.); (M.V.); (N.A.M.D.); (C.B.)
- Departments Physiology and Cardiothoracic Surgery, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-4442933
| |
Collapse
|
10
|
Sun H, Sun Z, Varghese Z, Guo Y, Moorhead JF, Unwin RJ, Ruan XZ. Nonesterified free fatty acids enhance the inflammatory response in renal tubules by inducing extracellular ATP release. Am J Physiol Renal Physiol 2020; 319:F292-F303. [PMID: 32686520 DOI: 10.1152/ajprenal.00098.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control. The ATP release is dependent on caspase-3/7 activation induced by mitochondrial reactive oxygen species. Furthermore, extracellular ATP aggravates PA-induced monocyte chemoattractant protein-1 secretion and monocyte infiltration of tubular cells, enlarging the inflammatory response in both macrophages and HK-2 cells via the purinergic P2X7 receptor-mammalian target of rapamycin-forkhead box O1-thioredoxin-interacting protein/NOD-like receptor protein 3 inflammasome pathway. Hence, PA increases mitochondrial reactive oxygen species-induced ATP release and inflammatory stress, which cause a "first hit," while ATP itself is a "second hit" in amplifying the renal tubular inflammatory response. Thus, inhibition of ATP release or the purinergic P2X7 receptor may be an approach to reduce renal inflammation and improve renal function.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Yinfeng Guo
- Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - John F Moorhead
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Robert John Unwin
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.,Early Cardiovascular, Renal & Metabolism, AstraZeneca Biopharmaceutical's R&D, Cambridge, United Kingdom
| | - Xiong Z Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.,Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Zhou J, Lyu L, Zhu L, Liang Y, Dong H, Chu H. Association of overweight with postoperative acute kidney injury among patients receiving orthotopic liver transplantation: an observational cohort study. BMC Nephrol 2020; 21:223. [PMID: 32527305 PMCID: PMC7291754 DOI: 10.1186/s12882-020-01871-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common postoperative complication of orthotopic liver transplantation (OLT). So far, little attention has been paid on the association between overweight and AKI after OLT, and animal models or clinical studies have drawn conflicting conclusions. The objective of our study was to determine whether overweight (BMI [Body Mass Index] ≥ 25 kg/m2) is associated with an increased risk of AKI after OLT. METHODS This retrospective cohort study included 244 patients receiving OLT in the Affiliated Hospital of Qingdao University between January 1, 2017, and August 29, 2019. Preoperative, intraoperative, and postoperative data were collected retrospectively. The primary outcome was the development of AKI as defined by Kidney Disease, Improving Global Outcome (KIDGO) staging system. Logistic regression analysis was used to determine the relationship between overweight and the occurrence of postoperative AKI. Data analysis was conducted from September to October 2019, revision in April 2020. RESULTS Among 244 patients receiving OLT (mean [standard deviation] age, 54.1 [9.6] years; 84.0% male) identified, 163 patients (66.8%) developed postoperative AKI. Overweight (BMI ≥ 25 kg/m2) was associated with a higher rate of postoperative severe AKI (stage 2/3) compared with normal weight (18.5 ≤ BMI < 25 kg/m2) (41 [47.7%] vs 39 [28.7%]; adjusted odds ratio [OR], 2.539; 95% confidence interval [CI], 1.389-4.642; P = 0.002). Furthermore, patients with obese were at even higher risk of postoperative severe AKI after controlling for confounding factors (adjusted OR: 3.705; 95% CI: 1.108-12.388; P = 0.033). CONCLUSIONS Overweight is independently associated with an increased risk of postoperative severe AKI among patients receiving OLT. The association of BMI with severe AKI after OLT is J-shaped.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Anesthesiology, Qingdao University Medical College, Qingdao, China
| | - Lin Lyu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266100, Shandong Province, China
| | - Lin Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266100, Shandong Province, China
| | - Yongxin Liang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266100, Shandong Province, China
| | - He Dong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266100, Shandong Province, China
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266100, Shandong Province, China.
| |
Collapse
|
12
|
Kumar T, Aujla H, Woźniak M, Dott W, Sullo N, Joel-David L, Pais P, Smallwood D, Miller D, Eagle-Hemming B, Di Paola AS, Barber S, Brookes C, Brunskill NJ, Murphy GJ. Intravenous sildenafil citrate and post-cardiac surgery acute kidney injury: a double-blind, randomised, placebo-controlled trial. Br J Anaesth 2020; 124:693-701. [PMID: 32245569 PMCID: PMC7271663 DOI: 10.1016/j.bja.2020.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This study assessed whether i.v. sildenafil citrate prevented acute kidney injury in at-risk patients undergoing cardiac surgery with cardiopulmonary bypass. METHODS In a double-blind RCT, adults at increased risk of acute kidney injury undergoing cardiac surgery in a single UK tertiary centre were randomised to receive sildenafil citrate 12.5 mg kg-1 i.v. over 150 min or dextrose 5% at the commencement of surgery. The primary outcome was serum creatinine measured at six post-randomisation time points. The primary analysis used a linear mixed-effects model adjusted for the stratification variables, baseline estimated glomerular filtration rate, and surgical procedure. Secondary outcomes considered clinical events and potential disease mechanisms. Effect estimates were expressed as mean differences (MDs) or odds ratios with 95% confidence intervals. RESULTS The analysis population comprised eligible randomised patients that underwent valve surgery or combined coronary artery bypass graft and valve surgery, with cardiopulmonary bypass, between May 2015 and June 2018. There were 60 subjects in the sildenafil group and 69 in the placebo control group. The difference between groups in creatinine concentration was not statistically significant (MD: 0.88 μmol L-1 [-5.82, 7.59]). There was a statistically significant increase in multiple organ dysfunction scores in the sildenafil group (MD: 0.54 [0.02, 1.07]; P=0.044). Secondary outcomes, and biomarkers of kidney injury, endothelial function, and inflammatory cell activation, were not significantly different between the groups. CONCLUSIONS These results do not support the use of i.v. sildenafil citrate for kidney protection in adult cardiac surgery. CLINICAL TRIAL REGISTRATION ISRCTN18386427.
Collapse
Affiliation(s)
- Tracy Kumar
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Hardeep Aujla
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Marcin Woźniak
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Will Dott
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Nikol Sullo
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK; University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Lathishia Joel-David
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Paolo Pais
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Dawn Smallwood
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK; School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Douglas Miller
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | - Bryony Eagle-Hemming
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK
| | | | - Shaun Barber
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Cassandra Brookes
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Nigel J Brunskill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, UK; Leicester Clinical Trials Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
13
|
Low, rather than High, Body Mass Index Is a Risk Factor for Acute Kidney Injury in Multiethnic Asian Patients: A Retrospective Observational Study. Int J Nephrol 2018; 2018:3284612. [PMID: 29552359 PMCID: PMC5818948 DOI: 10.1155/2018/3284612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/08/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Acute kidney injury (AKI) is common in hospitalised patients. The relationship between body mass index (BMI) and the risk of having AKI for patients in the acute hospital setting is not known, particularly in the Asian population. Methods This was a retrospective, single-centre, observational study conducted in Singapore, a multiethnic population. All patients aged ≥21 years and hospitalised from January to December 2013 were recruited. Results A total of 12,555 patients were eligible for the analysis. A BMI of <18.5 kg/m2 was independently associated with the development of AKI in hospitalised patients (odds ratio (OR): 1.23 [95% confidence interval [CI]: 1.04–1.44, P = 0.01]) but not for overweight and obesity. Subgroup analysis further revealed that underweight patients aged ≥75 and repeated hospitalisation posed a higher risk of AKI (OR: 1.25 [CI: 1.01–1.56], P = 0.04; OR: 1.23 [CI: 1.04–1.44], P = 0.01, resp.). Analyses by interactions between different age groups and BMI using continuous or categorised variables did not affect the overall probability of developing AKI. Conclusions Underweight Asian patients are susceptible to AKI in acute hospital settings. Identification of this novel risk factor for AKI allows us to optimise patient care by prevention, early detection, and timely intervention.
Collapse
|
14
|
Qureshi SH, Patel NN, Murphy GJ. Vascular endothelial cell changes in postcardiac surgery acute kidney injury. Am J Physiol Renal Physiol 2017; 314:F726-F735. [PMID: 29357431 DOI: 10.1152/ajprenal.00319.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute kidney injury (AKI) is common complication of cardiac surgery; however, the phenotype of this condition is poorly defined. The aim of this study was to characterize changes in endothelial structure and function that underlie postcardiopulmonary bypass (post-CPB) AKI. Adult pigs ( n = 16) were randomized to undergo the following procedures ( n = 8 per group): group 1: sham operation, neck dissection with 2.5 h of general anesthesia; and group 2: CPB, 2.5 h of cardiopulmonary bypass. CPB resulted in the depletion of specific epitopes of glycosaminoglycans side chains of the endothelial glycocalyx: Dolichos biflorus agglutinin: mean difference (MD) [95% confidence interval (CI)], P value: -0.26 (-0.42, -0.09), P = 0.0024, Triticum vulgaris (wheat germ) agglutinin: -0.83 (-1.2, -0.38), P = 0.0005, and Ulex europaeus agglutinin 1: -0.25 (-0.49, -0.009), P = 0.041; endothelial membrane protein: thrombomodulin: -3.13 (-5.6, -0.65), P = 0.02; and adherens junction: VE-cadherin: -1.06 (-1.98, -0.145), P = 0.02. CPB also resulted in reductions in microvascular cortical perfusion: -0.62 (-1.02, -0.22), P = 0.006, and increased renal cortex adenosine levels: 2.32 (0.83, 3.8), P = 0.0059. These changes were accompanied by significant reduction in creatinine clearance at 1.5 h postintervention, MD 95% CI; -51.7 (-99.7, -3.7), P = 0.037, and at 24 h, MD (95% CI): -47.3 (-87.7, -7.6), P = 0.023, and proteinuria immediately postintervention MD (95% CI): 18.79 (2.17, 35.4), P = 0.03 vs. sham. In our experimental CPB model, endothelial injury was associated with loss of autoregulation, increase in microvascular permeability, and reduced glomerular filtration. Interventions that promote endothelial homeostasis may have clinical utility in the prevention of postcardiac surgery AKI.
Collapse
Affiliation(s)
- Saqib H Qureshi
- University of Leicester, Clinical Sciences Wing, Glenfield General Hospital , Leicester , United Kingdom
| | - Nishith N Patel
- National Heart and Lung Institute, Hammersmith Hospital Campus, Imperial College London , London , United Kingdom
| | - Gavin J Murphy
- University of Leicester, Clinical Sciences Wing, Glenfield General Hospital , Leicester , United Kingdom
| |
Collapse
|
15
|
Zou Z, Zhuang Y, Liu L, Shen B, Xu J, Luo Z, Teng J, Wang C, Ding X. Role of Body Mass Index in Acute Kidney Injury Patients after Cardiac Surgery. Cardiorenal Med 2017; 8:9-17. [PMID: 29344022 DOI: 10.1159/000477824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/17/2017] [Indexed: 01/30/2023] Open
Abstract
Background/Aims To explore the association of body mass index (BMI) with the risk of developing acute kidney injury after cardiac surgery (CS-AKI) and for AKI requiring renal replacement therapy (AKI-RRT) after cardiac surgery. Methods Clinical data of 8,455 patients undergoing cardiac surgery, including demographic preoperative, intraoperative, and postoperative data were collected. Patients were divided into underweight (BMI <18.5), normal weight (18.5≤ BMI <24), overweight (24≤ BMI <28), and obese (BMI ≥28) groups. The influence of BMI on CS-AKI incidence, duration of hospital, and intensive care unit (ICU) stays as well as AKI-related mortality was analyzed. Results The mean age of the patients was 53.2 ± 13.9 years. The overall CS-AKI incidence was 33.8% (n = 2,855) with a hospital mortality of 5.4% (n = 154). The incidence of AKI-RRT was 5.2% (n = 148) with a mortality of 54.1% (n = 80). For underweight, normal weight, overweight, and obese cardiac surgery patients, the AKI incidences were 29.9, 31.0, 36.5, and 46.0%, respectively (p < 0.001). The hospital mortality of AKI patients in the 4 groups was 9.5, 6.0, 3.8, and 4.3%, whereas the hospital mortality of AKI-RRT patients in the 4 groups was 69.2, 60.8, 36.4, and 58.8%, both significantly different (p < 0.05). Hospital and ICU stay durations were not significantly different in the 4 BMI groups. Conclusion The hospital prognosis of AKI and AKI-RRT patients after cardiac surgery was best when their BMI was in the 24-28 range.
Collapse
Affiliation(s)
- Zhouping Zou
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yamin Zhuang
- Department of Cardiology Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Liu
- Department of Cardiology Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Shanghai Key Laboratory of Kidney and Blood Purification, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Shanghai Institute for Kidney and Dialysis, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Shanghai Key Laboratory of Kidney and Blood Purification, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Shanghai Institute for Kidney and Dialysis, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Cardiology Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Shanghai Key Laboratory of Kidney and Blood Purification, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Shanghai Institute for Kidney and Dialysis, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiology Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Shanghai Key Laboratory of Kidney and Blood Purification, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Shanghai Institute for Kidney and Dialysis, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Park JY, Park JH, Lee SS, Ri HS, Kim HJ, Choi YM, Choi YJ, Yoon JU. The Association of Preoperative Body Mass Index with Acute Kidney Injury in Liver Transplantation Recipients: A Retrospective Study. Korean J Crit Care Med 2017; 32:265-274. [PMID: 31723645 PMCID: PMC6786735 DOI: 10.4266/kjccm.2017.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
Background Liver transplantation (LT) is a complicated procedure with a high incidence of postoperative acute kidney injury (AKI). Previous studies indicate that even transient or mild post-LT AKI can result in critical conditions, including prolonged stays in hospitals and intensive care units and increased morbidity and mortality. The aim of this study was to investigate the association between body mass index (BMI) and occurrence of AKI in LT recipients. Methods Medical data from 203 patients who received LT surgery from January 2010 to August 2016 in a single university hospital setting were retrospectively collected and analyzed. Patients were classified as either underweight (BMI <20 kg/m2) or normal weight (20 ≤ BMI < 30 kg/m2). Demographic data, anesthetic methods, complications, and perioperative laboratory test values of each patient were assessed. Propensity analyses and logistic regression were performed to evaluate the association between BMI and post-LT AKI. Results There was no significant difference in occurrence of post-LT AKI between underweight and normal weight patients. The underweight patient group had significantly longer hospital stay compared with the normal weight patient group (P = 0.023). Conclusions BMI classification was neither a positive nor negative predictor of postoperative AKI occurrence. However, patients with lower BMI had significantly longer hospital stay compared with their counterparts. Although our study was limited by its retrospective design, our observations suggest that lower BMI might play a role in post-LT AKI.
Collapse
Affiliation(s)
- Ju Yeon Park
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung-Hyun Park
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Su Sung Lee
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun-Su Ri
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye-Jin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yun Mi Choi
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yoon Ji Choi
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji-Uk Yoon
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
17
|
Eo H, Park JE, Jeon YJ, Lim Y. Ameliorative Effect of Ecklonia cava Polyphenol Extract on Renal Inflammation Associated with Aberrant Energy Metabolism and Oxidative Stress in High Fat Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3811-3818. [PMID: 28459555 DOI: 10.1021/acs.jafc.7b00357] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immoderate fat accumulation causes both oxidative stress and inflammation, which can induce kidney damage in obesity. Previously, Ecklonia cava has shown anti-inflammatory and antioxidative effects. Our group aimed to investigate whether E. cava polyphenol extract (ECPE) improves renal damage in high fat diet (HFD)-induced obese mice through regulation of not only energy metabolism but also oxidative stress and inflammation. After obesity induction by HFD, the mice were treated with different dosages of ECPE (100 or 500 mg/kg/day) by gavage for 12 weeks. ECPE treatment lowered the protein levels related to lipid accumulation (SREBP1c, ACC & FAS), inflammation (NLRP3 inflammasome, NFκB, MCP-1, TNF-α & CRP), and oxidative stress (Nrf2, HO-1, MnSOD, NQO1, GPx, 4-HNE and protein carbonyls) in HFD induced obese mice. Moreover, ECPE supplementation significantly up-regulated renal SIRT1, PGC-1α, and AMPK, which are associated with renal energy metabolism. Consequently, the results provide novel insights into the anti-inflammatory roles of ECPE in obesity-induced renal inflammation.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Eun Park
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University , Jeju 63243, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Kim H, Kim J, Seo C, Lee M, Cha MU, Jung SY, Jhee JH, Park S, Yun HR, Kee YK, Yoon CY, Oh HJ, Park JT, Chang TI, Yoo TH, Kang SW, Han SH. Body mass index is inversely associated with mortality in patients with acute kidney injury undergoing continuous renal replacement therapy. Kidney Res Clin Pract 2017; 36:39-47. [PMID: 28392996 PMCID: PMC5331974 DOI: 10.23876/j.krcp.2017.36.1.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Many epidemiologic studies have reported on the controversial concept of the obesity paradox. The presence of acute kidney injury (AKI) can accelerate energy-consuming processes, particularly in patients requiring continuous renal replacement therapy (CRRT). Thus, we aimed to investigate whether obesity can provide a survival benefit in this highly catabolic condition. METHODS We conducted an observational study in 212 patients who had undergone CRRT owing to various causes of AKI between 2010 and 2014. The study end point was defined as death that occurred within 30 days after the initiation of CRRT. RESULTS Patients were categorized into three groups according to tertiles of body mass index (BMI). During ≥30 days after the initiation of CRRT, 39 patients (57.4%) in the highest tertile died, as compared with 58 patients (78.4%) in the lowest tertile (P = 0.02). In a multivariable analysis adjusted for cofounding factors, the highest tertile of BMI was significantly associated with a decreased risk of death (hazard ratio [HR], 0.57; 95% confidence interval [CI], 0.37-0.87; P = 0.01). This significant association remained unaltered for 60-day (HR, 0.64; 95% CI, 0.43-0.94; P = 0.03) and 90-day mortality (HR, 0.66; 95% CI, 0.44-0.97; P = 0.03). CONCLUSION This study showed that a higher BMI confer a survival benefit over a lower BMI in AKI patients undergoing CRRT.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Joohwan Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Changhwan Seo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Misol Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Min-Uk Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Su-Young Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jong Hyun Jhee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Seohyun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hae-Ryong Yun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Youn Kyung Kee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Chang-Yun Yoon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyung Jung Oh
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae Ik Chang
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| |
Collapse
|
19
|
Skrypnyk NI, Siskind LJ, Faubel S, de Caestecker MP. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am J Physiol Renal Physiol 2016; 310:F972-84. [PMID: 26962107 PMCID: PMC4889323 DOI: 10.1152/ajprenal.00552.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The current lack of effective therapeutics for patients with acute kidney injury (AKI) represents an important and unmet medical need. Given the importance of the clinical problem, it is time for us to take a few steps back and reexamine current practices. The focus of this review is to explore the extent to which failure of therapeutic translation from animal studies to human studies stems from deficiencies in the preclinical models of AKI. We will evaluate whether the preclinical models of AKI that are commonly used recapitulate the known pathophysiologies of AKI that are being modeled in humans, focusing on four common scenarios that are studied in clinical therapeutic intervention trials: cardiac surgery-induced AKI; contrast-induced AKI; cisplatin-induced AKI; and sepsis associated AKI. Based on our observations, we have identified a number of common limitations in current preclinical modeling of AKI that could be addressed. In the long term, we suggest that progress in developing better preclinical models of AKI will depend on developing a better understanding of human AKI. To this this end, we suggest that there is a need to develop greater in-depth molecular analyses of kidney biopsy tissues coupled with improved clinical and molecular classification of patients with AKI.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky; and
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver Veterans Affairs Medical Center, Aurora, Colorado
| | - Mark P de Caestecker
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
20
|
Wang X, Xue Q, Yan F, Liu J, Li S, Hu S. Ulinastatin Protects against Acute Kidney Injury in Infant Piglets Model Undergoing Surgery on Hypothermic Low-Flow Cardiopulmonary Bypass. PLoS One 2015; 10:e0144516. [PMID: 26656098 PMCID: PMC4684368 DOI: 10.1371/journal.pone.0144516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/19/2015] [Indexed: 11/19/2022] Open
Abstract
Objective Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass. Methods Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6), and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected. Results The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation. Conclusions HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce such inflammatory response and oxidative stress and the extent of kidney injury.
Collapse
Affiliation(s)
- Xiaocou Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Xue
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuxia Yan
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| | - Jinping Liu
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shoujun Li
- Department of Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- Department of Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Munusamy S, do Carmo JM, Hosler JP, Hall JE. Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin. Am J Physiol Renal Physiol 2015; 309:F731-43. [PMID: 26290368 DOI: 10.1152/ajprenal.00188.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022] Open
Abstract
We investigated obesity-induced changes in kidney lipid accumulation, mitochondrial function, and endoplasmic reticulum (ER) stress in the absence of hypertension, and the potential role of leptin in modulating these changes. We compared two normotensive genetic mouse models of obesity, leptin-deficient ob/ob mice and hyperleptinemic melanocortin-4 receptor-deficient mice (LoxTB MC4R-/-), with their respective lean controls. Compared with controls, ob/ob and LoxTB MC4R-/- mice exhibit significant albuminuria, increased creatinine clearance, and high renal triglyceride content. Renal ATP levels were decreased in both obesity models, and mitochondria isolated from both models showed alterations that would lower mitochondrial ATP production. Mitochondria from hyperleptinemic LoxTB MC4R-/- mice kidneys respired NADH-generating substrates (including palmitate) at lower rates due to an apparent decrease in complex I activity, and these mitochondria showed oxidative damage. Kidney mitochondria of leptin-deficient ob/ob mice showed normal rates of respiration with no evidence of oxidative damage, but electron transfer was partially uncoupled from ATP synthesis. A fourfold induction of C/EBP homologous protein (CHOP) expression indicated induction of ER stress in kidneys of hyperleptinemic LoxTB MC4R-/- mice. In contrast, ER stress was not induced in kidneys of leptin-deficient ob/ob mice. Our findings show that obesity, in the absence of hypertension, is associated with renal dysfunction in mice but not with major renal injury. Alterations to mitochondria that lower cellular ATP levels may be involved in obesity-induced renal injury. The type and severity of mitochondrial and ER dysfunction differs depending upon the presence or absence of leptin.
Collapse
Affiliation(s)
- Shankar Munusamy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and College of Pharmacy, Qatar University, Doha, Qatar
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jonathan P Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
22
|
Guo SX, Fang Q, You CG, Jin YY, Wang XG, Hu XL, Han CM. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J Transl Med 2015; 13:183. [PMID: 26047940 PMCID: PMC4467622 DOI: 10.1186/s12967-015-0548-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/26/2015] [Indexed: 01/21/2023] Open
Abstract
Background Early acute kidney injury (AKI) in severely burned patients predicts a high mortality that is multi-factorial. Hydrogen has been reported to alleviate organ injury via selective quenching of reactive oxygen species. This study investigated the potential protective effects of hydrogen against severe burn-induced early AKI in rats. Methods Severe burn were induced via immersing the shaved back of rats into a 100°C bath for 15 s. Fifty-six Sprague–Dawley rats were randomly divided into Sham, Burn + saline, and Burn + hydrogen-rich saline (HS) groups, and renal function and the apoptotic index were measured. Kidney histopathology and immunofluorescence staining, quantitative real-time PCR, ELISA and western blotting were performed on the sera or renal tissues of burned rats to explore the underlying effects and mechanisms at varying time points post burn. Results Renal function and tubular apoptosis were improved by HS treatment. In addition, the oxidation–reduction potential and malondialdehyde levels were markedly reduced with HS treatment, whereas endogenous antioxidant enzyme activities were significantly increased. HS also decreased the myeloperoxidase levels and influenced the release of inflammatory mediators in the sera and renal tissues of the burned rats. The regulatory effects of HS included the inhibition of p38, JNK, ERK and NF-κB activation, and an increase in Akt phosphorylation. Conclusion Hydrogen can attenuate severe burn-induced early AKI; the mechanisms of protection include the inhibition of oxidative stress induced apoptosis and inflammation, which may be mediated by regulation of the MAPKs, Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Song-Xue Guo
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Quan Fang
- Department of Plastic Surgery, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 310000, Zhejiang, China.
| | - Chuan-Gang You
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yun-Yun Jin
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Gang Wang
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Lei Hu
- Department of Orthopedic, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 31000, Zhejiang, China.
| | - Chun-Mao Han
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
23
|
Ghorbel MT, Patel NN, Sheikh M, Angelini GD, Caputo M, Murphy GJ. Changes in renal medulla gene expression in a pre-clinical model of post cardiopulmonary bypass acute kidney injury. BMC Genomics 2014; 15:916. [PMID: 25331815 PMCID: PMC4210505 DOI: 10.1186/1471-2164-15-916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 10/08/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication of cardiac surgery using cardiopulmonary bypass (CPB). The pathogenesis is poorly understood and the study of AKI in rodent models has not led to improvements in clinical outcomes. We sought to determine the changes in renal medullary gene expression in a novel and clinically relevant porcine model of CPB-induced AKI. RESULTS Adult pigs (n = 12 per group) were randomised to undergo sham procedure, or 2.5 hours CPB. AKI was determined using biochemical (Cr51 EDTA clearance, CrCl, urinary IL-18 release) and histological measures. Transcriptomic analyses were performed on renal medulla biopsies obtained 24 hours post intervention or from sham group. Microarray results were validated with real-time polymerase chain reaction and Western Blotting.Of the transcripts examined, 66 were identified as differentially expressed in CPB versus Sham pig's kidney samples, with 19 (29%) upregulated and 47 (71%) down-regulated. Out of the upregulated and downregulated transcripts 4 and 16 respectively were expression sequence tags (EST). The regulated genes clustered into three classes; Immune response, Cell adhesion/extracellular matrix and metabolic process. Upregulated genes included Factor V, SLC16A3 and CKMT2 whereas downregulated genes included GST, CPE, MMP7 and SELL. CONCLUSION Post CPB AKI, as defined by clinical criteria, is characterised by molecular changes in renal medulla that are associated with both injury and survival programmes. Our observations highlight the value of large animal models in AKI research and provide insights into the failure of findings in rodent models to translate into clinical progress.
Collapse
Affiliation(s)
- Mohamed T Ghorbel
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Level 7, Bristol Royal Infirmary; Upper Maudlin Street, Bristol BS2 8HW, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Attenuated Blood-Brain Barrier Dysfunction by XQ-1H Following Ischemic Stroke in Hyperlipidemic Rats. Mol Neurobiol 2014; 52:162-75. [DOI: 10.1007/s12035-014-8851-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 01/16/2023]
|
25
|
|
26
|
Hafner S, Hillenbrand A, Knippschild U, Radermacher P. The obesity paradox and acute kidney injury: beneficial effects of hyper-inflammation? Crit Care 2013; 17:1023. [PMID: 24326122 PMCID: PMC4059416 DOI: 10.1186/cc13152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the general population, obesity is associated with an increased mortality risk, whereas several epidemiological studies demonstrated a protective effect of obesity in critically ill patients. In this context, Sleeman and colleagues investigated the effects of obesity on kidney function in a well-established porcine model of cardiopulmonary bypass. The authors confirm literature data that obesity per se is associated with a chronic hyper-inflammatory status. Nevertheless, obese swine undergoing the surgical procedure presented with attenuated kidney dysfunction and tissue apoptosis. The authors suggest that the chronic inflammation causes pre-conditioning against excessive acute hyper-inflammation. The authors have to be commended for using a long-term, clinically relevant model that, moreover, addresses a variety of putative mechanisms. The study is discussed in the context of the controversial findings that, in contrast to the existing literature on improved survival, most studies available suggest a higher incidence and severity of acute kidney injury in obese patients when compared with lean controls.
Collapse
Affiliation(s)
- Sebastian Hafner
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Andreas Hillenbrand
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Uwe Knippschild
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Peter Radermacher
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|