1
|
Čeksterytė V, Kaupinis A, Aleliūnas A, Navakauskienė R, Jaškūnė K. Composition of Proteins Associated with Red Clover ( Trifolium pratense) and the Microbiota Identified in Honey. Life (Basel) 2024; 14:862. [PMID: 39063616 PMCID: PMC11278118 DOI: 10.3390/life14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The nutritional composition of honey is determined by environmental conditions, and botanical and geographical origin. In addition to carbohydrates, honey also contain pollen grains, proteins, free amino acids, and minerals. Although the content of proteins in honey is low, they are an important component that confirms the authenticity and quality of honey; therefore, they became a popular study object. The aim of the study was to evaluate protein content and composition of monofloral red clover and rapeseed honey collected from five different districts of Lithuania. Forty-eight proteins were identified in five different origin honey samples by liquid chromatography. The number of red clover proteins identified in individual honey samples in monofloral red clover honey C3 was 39 in polyfloral honey S22-36, while in monofloral rapeseed honey S5, S15, and S23 there was 33, 32, and 40 respectively. Aphids' proteins and lactic acid bacteria were identified in all honey samples tested. The linear relationship and the strongest correlation coefficient (r = 0.97) were determined between the content of Apilactobacillus kunkeei and Apilactobacillus apinorum, as well as between the number of faba bean (Vicia faba) pollen and lactic acid bacteria (r = 0.943). The data show a strong correlation coefficient between the amount of lactic acid and aphid protein number (r = 0.693). More studies are needed to evaluate the relationship between the pollination efficiency of red clover by bees and the multiplicity of red clover proteins in honey protein, as well as microbiota diversity and the influence of nature or plant diversity on the occurrence of microbiota in honey.
Collapse
Affiliation(s)
- Violeta Čeksterytė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Algirdas Kaupinis
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Andrius Aleliūnas
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Rūta Navakauskienė
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Kristina Jaškūnė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| |
Collapse
|
2
|
Hosaka GK, Correr FH, da Silva CC, Sforça DA, Barreto FZ, Balsalobre TWA, Pasha A, de Souza AP, Provart NJ, Carneiro MS, Margarido GRA. Temporal Gene Expression in Apical Culms Shows Early Changes in Cell Wall Biosynthesis Genes in Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:736797. [PMID: 34966397 PMCID: PMC8710541 DOI: 10.3389/fpls.2021.736797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.
Collapse
Affiliation(s)
- Guilherme Kenichi Hosaka
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Fernando Henrique Correr
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Zatti Barreto
- Plant Biotechnology Laboratory, Centre for Agricultural Sciences, Federal University of São Carlos (CCA-UFSCar), Araras, Brazil
| | | | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of the Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Nicholas James Provart
- Department of Cell and Systems Biology, Centre for the Analysis of the Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Monalisa Sampaio Carneiro
- Plant Biotechnology Laboratory, Centre for Agricultural Sciences, Federal University of São Carlos (CCA-UFSCar), Araras, Brazil
| | | |
Collapse
|
3
|
Brito MS, DePaoli HC, Cossalter V, Avanci NC, Ferreira PB, Azevedo MS, Strini EJ, Quiapim AC, Goldman GH, Peres LEP, Goldman MHS. A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:55-67. [PMID: 30466601 DOI: 10.1016/j.plantsci.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
Plant morphogenesis is dependent on cell proliferation and cell expansion, which are responsible for establishing final organ size and shape during development. Several genes have been described as encoding components of the plant cell development machinery, among which are the plant peptides. Here we describe a novel cysteine-rich plant peptide (68 amino acids), encoded by a small open reading frame gene (sORF). It is specifically expressed in the reproductive organs of Nicotiana tabacum and is developmentally regulated. N- and C-terminal translational fusions with GFP in protoplasts have demonstrated that the peptide is not secreted. Knockdown transgenic plants produced by RNAi exhibited enlarged pistils due to cell expansion and the gene was named Small Peptide Inhibitor of Cell Expansion (SPICE). Estimation of nuclear DNA content using flow cytometry has shown that cell expansion in pistils was not correlated with endoreduplication. Decreased SPICE expression also affected anther growth and pollen formation, resulting in male sterility in at least one transgenic plant. Our results revealed that SPICE is a novel reproductive organ specific gene that controls cell expansion, probably as a component of a signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Brito
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil.
| | - Henrique C DePaoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Viviani Cossalter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Nilton C Avanci
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | | | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Brazil
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, 13418-900, Brazil
| | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil.
| |
Collapse
|
4
|
Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:676-88. [PMID: 23146214 DOI: 10.1111/tpj.12071] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 05/03/2023]
Abstract
The phytohormones auxins and brassinosteroids are both essential regulators of physiological and developmental processes, and it has been suggested that they act inter-dependently and synergistically. In rice (Oryza sativa), auxin co-application improves the brassinosteroid response in the rice lamina inclination bioassay. Here, we showed that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor. Auxin treatment increased expression of the rice brassinosteroid receptor gene OsBRI1. The promoter of OsBRI1 contains an auxin-response element (AuxRE) that is targeted by auxin-response factor (ARF) transcription factors. An AuxRE mutation abolished the induction of OsBRI1 expression by auxins, and OsBRI1 expression was down-regulated in an arf mutant. The AuxRE motif in the OsBRI1 promoter, and thus the transient up-regulation of OsBRI1 expression caused by treatment with indole-3-acetic acid, is essential for the indole-3-acetic acid-induced increase in sensitivity to brassinosteroids. These findings demonstrate that some ARFs control the degree of brassinosteroid perception required for normal growth and development in rice. Although multi-level interactions between auxins and brassinosteroids have previously been reported, our findings suggest a mechanism by which auxins control cellular sensitivity to brassinosteroids, and further support the notion that interactions between auxins and brassinosteroids are extensive and complex.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | | | | | | | | |
Collapse
|
5
|
Ursache R, Nieminen K, Helariutta Y. Genetic and hormonal regulation of cambial development. PHYSIOLOGIA PLANTARUM 2013; 147:36-45. [PMID: 22551327 DOI: 10.1111/j.1399-3054.2012.01627.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.
Collapse
Affiliation(s)
- Robertas Ursache
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
6
|
Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, de Oliveira C, Galvão VC, Margis R, Engler G, Sachetto-Martins G. AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. PLANTA 2009; 230:253-65. [PMID: 19434422 DOI: 10.1007/s00425-009-0940-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/22/2009] [Indexed: 05/10/2023]
Abstract
Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, C.P. 68011, 21941-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Papini-Terzi FS, Rocha FR, Vêncio RZN, Felix JM, Branco DS, Waclawovsky AJ, Del Bem LEV, Lembke CG, Costa MDL, Nishiyama MY, Vicentini R, Vincentz MGA, Ulian EC, Menossi M, Souza GM. Sugarcane genes associated with sucrose content. BMC Genomics 2009; 10:120. [PMID: 19302712 PMCID: PMC2666766 DOI: 10.1186/1471-2164-10-120] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/21/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. RESULTS We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. CONCLUSION Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.
Collapse
Affiliation(s)
- Flávia S Papini-Terzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Lemaire-Chamley M. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. PLANT PHYSIOLOGY 2009; 149:1505-28. [PMID: 19144766 PMCID: PMC2649409 DOI: 10.1104/pp.108.133967] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/10/2009] [Indexed: 05/18/2023]
Abstract
Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.
Collapse
Affiliation(s)
- Fabien Mounet
- INRA-UMR 619 Biologie du Fruit, Centre de Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Singla B, Khurana JP, Khurana P. Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa). INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:539402. [PMID: 19756234 PMCID: PMC2742738 DOI: 10.1155/2009/539402] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 06/17/2009] [Indexed: 05/04/2023]
Abstract
Somatic embryogenesis (SE) is the developmental restructuring of somatic cells towards the embryogenic pathway and forms the basis of cellular totipotency in angiosperms. With the availability of full-length cDNA sequences from Knowledge-based Oryza Molecular Biological Encylopedia (KOME), we identified the leucine-rich repeat receptor-like kinase (LRR-RLK) genes from rice (Oryza sativa), which also encompasses genes involved in regulating somatic embryogenesis. Eight out of eleven of the rice SERK and SERL (SERK-like) genes have the TIGR annotation as (putative) brassinosteroid insensitive 1-associated receptor kinase (precursor). Real-time polymerase chain reaction analysis was undertaken to quantify transcript levels of these 11 genes. Most of these genes were upregulated by brassinosteroids although only a few of these displayed auxin induction. The expression profile of these genes is nearly uniform in the zygotic embryogenic tissue, but the expression pattern is more complex in the somatic embryogenic tissue. It is likely that OsSERKs and OsSERLs may be involved in somatic embryogenesis and also perform a role in morphogenesis and various other plant developmental processes. Functional validation of these somatic embryogenesis receptor-like kinase genes may help in elucidating their precise functions in regulating various facets of plant development.
Collapse
Affiliation(s)
- Bhumica Singla
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- *Paramjit Khurana:
| |
Collapse
|
10
|
Dong MA, Bufford JL, Oono Y, Church K, Dau MQ, Michels K, Haughton M, Tallman G. Heat suppresses activation of an auxin-responsive promoter in cultured guard cell protoplasts of tree tobacco. PLANT PHYSIOLOGY 2007; 145:367-77. [PMID: 17704234 PMCID: PMC2048722 DOI: 10.1104/pp.107.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/13/2007] [Indexed: 05/16/2023]
Abstract
Cultured guard cell protoplasts (GCP) of tree tobacco (Nicotiana glauca) comprise a novel system for investigating the cell signaling mechanisms that lead to acquired thermotolerance and thermoinhibition. At 32 degrees C in a medium containing an auxin (1-naphthaleneacetic acid [NAA]) and a cytokinin (6-benzylaminopurine), GCP expand, regenerate cell walls, dedifferentiate, and divide. At 38 degrees C, GCP acquire thermotolerance within 24 h, but their expansion is limited and they neither regenerate walls nor reenter the cell cycle. These putative indicators of auxin insensitivity led us to hypothesize that heat suppresses induction of auxin-regulated genes in GCP. Protoplasts were transformed with BA-mgfp5-ER, in which the BA auxin-responsive promoter regulates transcription of mgfp5-ER encoding thermostable green fluorescent protein (GFP) or with a similar 35S-cauliflower mosaic virus constitutive promoter construct. Heat suppressed NAA-mediated activation of BA. After 21 h at 32 degrees C in media with NAA, 49.0% +/- 3.9% of BA-mgfp5-ER transformants strongly expressed GFP; expression percentages were similar to those of 35S-mgfp5-ER transformants at 32 degrees C or 38 degrees C. After 21 h at 38 degrees C in media with NAA, 7.9% +/- 1.6% of BA-mgfp5-ER transformants weakly expressed GFP, similar to GCP cultured at 32 degrees C in media lacking NAA. Expression at 38 degrees C was not increased by incubating for 48 h or increasing NAA concentrations 20-fold. After 9 to 12 h at 38 degrees C, BA was no longer activated when cells were transferred to 32 degrees C. Heat-stressed cells accumulate reactive oxygen species, and hydrogen peroxide (H(2)O(2)) suppresses auxin-responsive promoter activation in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. H(2)O(2) did not suppress BA activation at 32 degrees C, nor did superoxide and H(2)O(2) scavengers prevent BA suppression at 38 degrees C.
Collapse
Affiliation(s)
- Malia A Dong
- Willamette University, Department of Biology, Salem, Oregon 97301, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi KI, Nozaki H, Asami T, Yoshida S, Fujioka S. Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:193-205. [PMID: 16367964 DOI: 10.1111/j.1365-313x.2005.02582.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We examined whether auxin/indole-3-acetic acid (Aux/IAA) proteins, which are key players in auxin-signal transduction, are involved in brassinosteroid (BR) responses. iaa7/axr2-1 and iaa17/axr3-3 mutants showed aberrant BR sensitivity and aberrant BR-induced gene expression in an organ-dependent manner. Two auxin inhibitors were tested in terms of BR responses. Yokonolide B inhibited BR responses, whereas p-chlorophenoxyisobutyric acid did not inhibit BR responses. DNA microarray analysis revealed that 108 genes were up-regulated, while only eight genes were down-regulated in iaa7. Among the genes that were up- or down-regulated in axr2, 22% were brassinolide-inducible genes, 20% were auxin-inducible genes, and the majority were sensitive neither to BR nor to auxin. An inhibitor of BR biosynthesis, brassinazole, inhibited auxin induction of the DR5-GUS gene, which consists of a synthetic auxin-response element, a minimum promoter, and a beta-glucuronidase. These results suggest that Aux/IAA proteins function in auxin- and BR-signaling pathways, and that IAA proteins function as the signaling components modulating BR sensitivity in a manner dependent on organ type.
Collapse
Affiliation(s)
- Ayako Nakamura
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|