1
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Sekar M, Abida. The emerging role of non-coding RNAs in the Wnt/β-catenin signaling pathway in Prostate Cancer. Pathol Res Pract 2024; 254:155134. [PMID: 38277746 DOI: 10.1016/j.prp.2024.155134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia; Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
2
|
Jiang Y, Hu X, Pang M, Huang Y, Ren B, He L, Jiang L. RRM2‑mediated Wnt/β‑catenin signaling pathway activation in lung adenocarcinoma: A potential prognostic biomarker. Oncol Lett 2023; 26:417. [PMID: 37664657 PMCID: PMC10472049 DOI: 10.3892/ol.2023.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
The present study aimed to investigate the role and mechanism of action of ribonucleotide reductase M2 (RRM2) in lung adenocarcinoma and its potential as a therapeutic target. Data of patients with lung adenocarcinoma from The Cancer Genome Atlas database were collected and analyzed to evaluate the potential of RRM2 as a biomarker. The expression of RRM2 was evaluated in the A549 cell line and its cisplatin-resistant A549/DDP cell line derivative by western blot and reverse transcription-quantitative PCR. The study also investigated cell proliferation and the mechanism by which RRM2 controls cellular cisplatin resistance using CCK-8 and colony-formation assays. In addition, cell migration was assessed using Transwell assays, and the cell cycle and apoptosis were examined using flow cytometry. RRM2 was highly expressed in lung adenocarcinoma and was associated with the clinical TMN stage. Functional enrichment analysis showed that RRM2 was enriched in the cell cycle. Immune cell infiltration analysis identified 12 types of immune cell that exhibited differences between patients expressing different levels of RRM2. Cellular assays revealed higher levels of RRM2 expression in A549/DDP cells than A549 cells, and its expression was induced by cisplatin. RRM2 knockdown decreased cell proliferation and migration, accelerated apoptosis and caused cell cycle arrest in the S-phase, increasing the sensitivity of A549 and A549/DDP cells to cisplatin through the Wnt/β-catenin signaling pathway. Overexpression of β-catenin reduced the effects of RRM2 knockdown on A549 cells. Lung adenocarcinoma growth may be influenced by RRM2 through the Wnt/β-catenin signaling pathway, suggesting a potential pathway for cancer progression.
Collapse
Affiliation(s)
- Yongjie Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xing Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Min Pang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuyan Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Bi Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liping He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
3
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Corpuz RL, Bellinger MR, Veillet A, Magnacca KN, Price DK. The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation. Genes (Basel) 2023; 14:1545. [PMID: 37628597 PMCID: PMC10454618 DOI: 10.3390/genes14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.
Collapse
Affiliation(s)
- Renée L. Corpuz
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - M. Renee Bellinger
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, P.O. Box 44, Hawaii National Park, HI 96718, USA
| | - Anne Veillet
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - Karl N. Magnacca
- Department of Land and Natural Resources, Division of Forestry & Wildlife, Native Ecosystem Protection and Management, Hawaii Invertebrate Program, 1151 Punchbowl Street Rm. 325, Honolulu, HI 96813, USA;
| | - Donald K. Price
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA
| |
Collapse
|
5
|
Wang Y, Li X, Gong X, Zhao Y, Wu J. MicroRNA-322 Regulates Self-renewal of Mouse Spermatogonial Stem Cells through Rassf8. Int J Biol Sci 2019; 15:857-869. [PMID: 30906216 PMCID: PMC6429012 DOI: 10.7150/ijbs.30611] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for spermatogenesis and male fertility. MicroRNAs (miRs) are key regulators of gene expression involved in self-renewal, differentiation, and apoptosis. However, the function and mechanisms of individual miR in regulating self-renewal and differentiation of SSCs remain unclear. Here, we report for the first time that miR-322 regulates self-renewal of SSCs. Functional assays revealed that miR-322 was essential for SSC self-renewal. Mechanistically, miR-322 promoted SSC self-renewal by targeting RASSF8 (ras association domain family 8). Moreover, the WNT/β-catenin signaling pathway was involved in the miR-322-mediated regulation. Furthermore, miR-322 overexpression increased GFRα1, ETV5 and PLZF expression but decreased STRA8, C-KIT and BCL6 expression. Our study provides not only a novel insight into molecular mechanisms regulating SSC self-renewal but also a basis for the diagnosis, treatment, and prevention of male infertility.
Collapse
Affiliation(s)
- Yinjuan Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowen Gong
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongqiang Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Zheng B, Yu J, Guo Y, Gao T, Shen C, Zhang X, Li H, Huang X. Cellular nucleic acid-binding protein is vital to testis development and spermatogenesis in mice. Reproduction 2018; 156:59-69. [PMID: 29743260 DOI: 10.1530/rep-17-0666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
The cellular nucleic acid-binding protein (CNBP), also known as zinc finger protein 9, is a highly conserved zinc finger protein that is strikingly conserved among vertebrates. Data collected from lower vertebrates showed that CNBP is expressed at high levels and distributed in the testes during spermatogenesis. However, the location and function of CNBP in mammalian testes are not well known. Here, by neonatal mouse testis culture and spermatogonial stem cells (SSC) culture methods, we studied the effect of CNBP knockdown on neonatal testicular development. Our results revealed that CNBP was mainly located in the early germ cells and Sertoli cells. Knockdown of CNBP using morpholino in neonatal testis culture caused disruption of seminiferous tubules, mislocation of Sertoli cells and loss of germ cells, which were associated with the aberrant Wnt/β-catenin pathway activation. However, knockdown of CNBP in SSC culture did not affect the survival of germ cells. In conclusion, our study suggests that CNBP could maintain testicular development by inhibiting the Wnt/β-catenin pathway, particularly by influencing Sertoli cells.
Collapse
Affiliation(s)
- Bo Zheng
- Center for Reproduction and GeneticsSuzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China .,State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Obstetrics and GynecologyAffiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China.,The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical UniversityWuxi, China
| | - Tingting Gao
- State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Center of Clinical Reproductive MedicineThe Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Cong Shen
- Center for Reproduction and GeneticsSuzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xi Zhang
- State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hong Li
- Center for Reproduction and GeneticsSuzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive MedicineDepartment of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Wu XD, Bie QL, Zhang B, Yan ZH, Han ZJ. Wnt10B is critical for the progression of gastric cancer. Oncol Lett 2017; 13:4231-4237. [PMID: 28599424 PMCID: PMC5452953 DOI: 10.3892/ol.2017.5992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/01/2017] [Indexed: 01/26/2023] Open
Abstract
The family of Wnt proteins have been implicated in embryogenesis by regulation of cell fate and pattern formation, and also in human carcinogenesis. Wnt10B was previously shown to be involved in breast cancer development. The present study assessed the association of Wnt10B expression in human gastric cancer tissue specimens with clinicopathological data from these patients. Wnt10B expression in the regulation of gastric cancer cell proliferation and migration capacity in vitro was then investigated. The data revealed that Wnt10B mRNA and protein were upregulated in gastric cancer tissue samples and the upregulated Wnt10B mRNA was associated with gastric cancer metastasizing to lymph nodes. Knockdown of Wnt10B expression reduced gastric cancer cell proliferation and migration, as well as expression of a cell proliferation marker Ki67. Knockdown of Wnt10B expression inhibited tumor cell epithelial-mesenchymal transition by upregulation of E-cadherin and downregulation of N-cadherin. In addition, Wnt10B knockdown also suppressed tumor cell stemness by downregulation of octamer-binding transcription factor 4 and Nanog expression. The present data indicated that Wnt10B expression performs an important role in gastric cancer progression in vitro. Therefore, targeting of Wnt10B expression or activity may be investigated as a possible strategy for the control of gastric cancer.
Collapse
Affiliation(s)
- Xiao-Dan Wu
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Qing-Li Bie
- The Key Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zi-He Yan
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhi-Jun Han
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
8
|
McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 2011; 11:1223-32. [PMID: 21916576 DOI: 10.1586/era.11.94] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary bone malignancy, with a high propensity for local invasion, early metastasis and relapse. While the molecular mechanisms behind osteosarcoma development and metastasis have not yet been fully elucidated, research has highlighted an important role for Wnt signaling. Several Wnt ligands, receptors and coreceptors are highly expressed in osteosarcoma cell lines, while Wnt inhibitors are downregulated. As a result, research has begun to identify mechanisms with which to inhibit Wnt signaling. The use of Wnt pathway inhibitors and the targeting of c-Met, a Wnt regulated proto-oncogene, may be two possible mechanisms for treatment of osteosarcoma. In addition, as the Wnt signaling pathway is a regulator of stem cells, reagents that function as Wnt inhibitors are currently under investigation as inhibitors of cancer stem cell proliferation. Research involving the Wnt signaling pathway and cancer stem cells holds promise for novel treatment options in the future.
Collapse
Affiliation(s)
- Peter McQueen
- Department of Orthopaedic Surgery, University of California at Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
9
|
Guest ST, Yu J, Liu D, Hines JA, Kashat MA, Finley RL. A protein network-guided screen for cell cycle regulators in Drosophila. BMC SYSTEMS BIOLOGY 2011; 5:65. [PMID: 21548953 PMCID: PMC3113730 DOI: 10.1186/1752-0509-5-65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
Abstract
Background Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. Results We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. Conclusions Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival.
Collapse
Affiliation(s)
- Stephen T Guest
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | |
Collapse
|
10
|
Balentine CJ, Berger DH, Liu SH, Chen C, Nemunaitis J, Brunicardi FC. Defining the cancer master switch. World J Surg 2011; 35:1738-45. [PMID: 21286716 DOI: 10.1007/s00268-010-0941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent research has focused on signaling cascades and their interactions yielding considerable insight into which genetic pathways are targeted and how they tend to be altered in tumors. Therapeutic interventions now can be designed based on the knowledge of pathways vital to tumor growth and survival. These critical targets for intervention, master switches for cancer, are termed so because the tumor attempts to "flip the switch" in a way that promotes its survival, whereas molecular therapy aims to "switch off" signals important for tumor-related processes. METHODS Literature review. CONCLUSIONS Defining useful targets for therapy depends on identifying pathways that are crucial for tumor growth, survival, and metastasis. Because not all signaling cascades are created equal, selecting master switches or targets for intervention needs to be done in a systematic fashion. This discussion proposes a set of criteria to define what it means to be a cancer master switch and provides examples to illustrate their application.
Collapse
|
11
|
Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLoS One 2010; 5:e13708. [PMID: 21060843 PMCID: PMC2965670 DOI: 10.1371/journal.pone.0013708] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 10/04/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.
Collapse
Affiliation(s)
- Omprakash Mittapalli
- Department of Entomology, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.
Collapse
Affiliation(s)
- Stephanie Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
13
|
Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A, Dym M. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 2009; 138:151-62. [PMID: 19419993 DOI: 10.1530/rep-08-0510] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spermatogonial stem cells (SSCs) self-renew throughout life to produce progenitor cells that are able to differentiate into spermatozoa. However, the mechanisms underlying the cell fate determination between self-renewal and differentiation have not yet been delineated. Culture conditions and growth factors essential for self-renewal and proliferation of mouse SSCs have been investigated, but no information is available related to growth factors that affect fate determination of human spermatogonia. Wnts form a large family of secreted glycoproteins, the members of which are involved in cell proliferation, differentiation, organogenesis, and cell migration. Here, we show that Wnts and their receptors Fzs are expressed in mouse spermatogonia and in the C18-4 SSC line. We demonstrate that WNT3A induces cell proliferation, morphological changes, and cell migration in C18-4 cells. Furthermore, we show that beta-catenin is activated during testis development in 21-day-old mice. In addition, our study demonstrates that WNT3A sustained adult human embryonic stem (ES)-like cells derived from human germ cells in an undifferentiated stage, expressing essential human ES cell transcription factors. These results demonstrate for the first time that Wnt/beta-catenin pathways, especially WNT3A, may play an important role in the regulation of mouse and human spermatogonia.
Collapse
Affiliation(s)
- Nady Golestaneh
- Departments of, Biochemistry and Molecular and Cellular Biology Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Northwest, Washington, District of Columbia 20057, USA
| | | | | | | | | | | |
Collapse
|