1
|
Feng J, Yang J, Chang Y, Qiao L, Dang H, Luo K, Guo H, An Y, Ma C, Shao H, Tian J, Yuan Y, Xie L, Xing W, Cheng J. Caffeine-free hawk tea lowers cholesterol by reducing free cholesterol uptake and the production of very-low-density lipoprotein. Commun Biol 2019; 2:173. [PMID: 31098406 PMCID: PMC6506518 DOI: 10.1038/s42003-019-0396-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
Medicinal plants show important therapeutic value in chronic disease treatment. However, due to their diverse ingredients and complex biological effects, the molecular mechanisms of medicinal plants are yet to be explored. By means of several high-throughput platforms, here we show hawk tea extract (HTE) inhibits Niemann-Pick C1-like 1 (NPC1L1)-mediated free cholesterol uptake, thereby inducing the transcription of low-density lipoprotein receptor (LDLR) downstream of the sterol response element binding protein 2 (SREBP2) pathway. Meanwhile, HTE suppresses hepatocyte nuclear factor 4α (HNF4α)-mediated transcription of microsomal triglyceride transfer protein (MTP) and apolipoprotein B (APOB), thereby decreasing the production of very-low-density lipoprotein. The catechin EGCG ((-)-epigallocatechin gallate) and the flavonoids kaempferol and quercetin are identified as the bioactive components responsible for the effects on the NPC1L1-SREBP2-LDLR axis and HNF4α-MTP/APOB axis, respectively. Overall, hawk tea works as a previously unrecognized cholesterol-lowering agent in a multi-target and multi-component manner.
Collapse
Affiliation(s)
- Juan Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Yujun Chang
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Liansheng Qiao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Yannan An
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Hong Shao
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jie Tian
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Wanli Xing
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| |
Collapse
|
2
|
Nordén R, Samuelsson E, Nyström K. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1. Glycobiology 2018; 27:999-1005. [PMID: 28973293 DOI: 10.1093/glycob/cwx079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Ebba Samuelsson
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
3
|
Zhou L, Irani S, Sirwi A, Hussain MM. MicroRNAs regulating apolipoprotein B-containing lipoprotein production. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2062-2068. [PMID: 26923435 DOI: 10.1016/j.bbalip.2016.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and have been implicated in many pathological conditions. Significant progress has been made to unveil their role in lipid metabolism. This review aims at summarizing the role of different miRs that regulate hepatic assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins. Overproduction and/or impaired clearance of these lipoproteins from circulation increase plasma concentrations of lipids enhancing risk for cardiovascular disease. So far, three miRs, miR-122, miR-34a, and miR-30c have been shown to modulate hepatic production of apoB-containing low density lipoproteins. In this review, we will first provide a brief overview of lipid metabolism and apoB-containing lipoprotein assembly to orient readers to different steps that have been shown to be regulated by miRs. Then, we will discuss the role of each miR on plasma lipids and atherosclerotic burden. Furthermore, we will summarize mechanistic studies explaining how these miRs regulate hepatic lipid synthesis, fatty acid oxidation, and lipoprotein secretion. Finally, we will briefly highlight the potential use of each miR as a therapeutic drug for treating cardiovascular diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Liye Zhou
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Sara Irani
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Alaa Sirwi
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
4
|
Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices. PLoS One 2015; 10:e0124867. [PMID: 25901575 PMCID: PMC4406752 DOI: 10.1371/journal.pone.0124867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency that should be considered when used in cell biology studies and drug toxicity testing.
Collapse
|
5
|
The effect of high glucose levels on the hypermethylation of protein phosphatase 1 regulatory subunit 3C (PPP1R3C) gene in colorectal cancer. J Genet 2015; 94:75-85. [DOI: 10.1007/s12041-015-0492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Azmi AS, Bao GW, Gao J, Mohammad RM, Sarkar FH. Network insights into the genes regulated by hepatocyte nuclear factor 4 in response to drug induced perturbations: a review. Curr Drug Discov Technol 2013; 10:147-154. [PMID: 23237677 PMCID: PMC3820112 DOI: 10.2174/1570163811310020007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Transcription factors (TFs) play central role in normal cellular physiology and their aberrant expression is linked to different diseases. Hepatocyte Nuclear Factors (HNFs) are TFs that have been recognized to play multiple roles in liver physiology. Emerging research has highlighted their function in the sustenance of solid tumors, indicating that HNFs could serve as possible therapeutic targets in cancer. Although, there have been many attempts to develop HNF targeted drugs, the myriad downstream targets associated with these transcription factors, some of which are critical for normal cell homeostasis, led to the realization that HNFs are not easily druggable. Therefore, identifying and optimizing drugs that can selectively inactivate HNFs is a challenge to the pharmaceutical industry. To achieve this, a more in-depth understanding is required of the HNFs binding partners, the protein interaction networks it regulates and the resulting phenotype. This calls for network analysis of the pathways regulated by HNFs and how chemical perturbations can selectively activate or suppress their functions. Network biology is an emerging field of research that is finding applications in cancer drug discovery. Specifically, network pharmacology is cementing its position in cancer research and has various applications such as biomarker identification, in determining synergistic drug pairs and in drug repurposing. Developing a network understanding of HNFs, the target it hits and responses thereof can enhance our ability to design drugs against these TFs. This article reviews how network pharmacology can help in the identification of druggable avenues in TFs and also allow the selection of drugs and their synergistic pairs against HNFs for cancer therapy.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
7
|
Hill JT, Anderson KR, Mastracci TL, Kaestner KH, Sussel L. Novel computational analysis of protein binding array data identifies direct targets of Nkx2.2 in the pancreas. BMC Bioinformatics 2011; 12:62. [PMID: 21352540 PMCID: PMC3050729 DOI: 10.1186/1471-2105-12-62] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/25/2011] [Indexed: 01/09/2023] Open
Abstract
Background The creation of a complete genome-wide map of transcription factor binding sites is essential for understanding gene regulatory networks in vivo. However, current prediction methods generally rely on statistical models that imperfectly model transcription factor binding. Generation of new prediction methods that are based on protein binding data, but do not rely on these models may improve prediction sensitivity and specificity. Results We propose a method for predicting transcription factor binding sites in the genome by directly mapping data generated from protein binding microarrays (PBM) to the genome and calculating a moving average of several overlapping octamers. Using this unique algorithm, we predicted binding sites for the essential pancreatic islet transcription factor Nkx2.2 in the mouse genome and confirmed >90% of the tested sites by EMSA and ChIP. Scores generated from this method more accurately predicted relative binding affinity than PWM based methods. We have also identified an alternative core sequence recognized by the Nkx2.2 homeodomain. Furthermore, we have shown that this method correctly identified binding sites in the promoters of two critical pancreatic islet β-cell genes, NeuroD1 and insulin2, that were not predicted by traditional methods. Finally, we show evidence that the algorithm can also be applied to predict binding sites for the nuclear receptor Hnf4α. Conclusions PBM-mapping is an accurate method for predicting Nkx2.2 binding sites and may be widely applicable for the creation of genome-wide maps of transcription factor binding sites.
Collapse
Affiliation(s)
- Jonathon T Hill
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
8
|
Lauc G, Essafi A, Huffman JE, Hayward C, Knežević A, Kattla JJ, Polašek O, Gornik O, Vitart V, Abrahams JL, Pučić M, Novokmet M, Redžić I, Campbell S, Wild SH, Borovečki F, Wang W, Kolčić I, Zgaga L, Gyllensten U, Wilson JF, Wright AF, Hastie ND, Campbell H, Rudd PM, Rudan I. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet 2010; 6:e1001256. [PMID: 21203500 PMCID: PMC3009678 DOI: 10.1371/journal.pgen.1001256] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022] Open
Abstract
Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Abdelkader Essafi
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Ana Knežević
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Jayesh J. Kattla
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Ozren Polašek
- Gen Info Ltd., Zagreb, Croatia
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jodie L. Abrahams
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Maja Pučić
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Irma Redžić
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Sarah H. Wild
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Wei Wang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Ivana Kolčić
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Lina Zgaga
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Ulf Gyllensten
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - James F. Wilson
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| |
Collapse
|
9
|
Lu H, Gonzalez FJ, Klaassen C. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha. Toxicol Sci 2010; 118:380-90. [PMID: 20935164 DOI: 10.1093/toxsci/kfq280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
10
|
Leaver MJ, Taggart JB, Villeneuve L, Bron JE, Guy DR, Bishop SC, Houston RD, Matika O, Tocher DR. Heritability and mechanisms of n-3 long chain polyunsaturated fatty acid deposition in the flesh of Atlantic salmon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:62-9. [PMID: 20451480 DOI: 10.1016/j.cbd.2010.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/07/2023]
Abstract
n-3 long chain polyunsaturated fatty acids (n-3LC-PUFA) are essential components of vertebrate membrane lipids and are now at critically low levels in modern Western diets. The main human dietary source for n-3LC-PUFA is fish and seafood, and over 50% of global fish production is currently supplied by aquaculture. However, increasing pressure to include vegetable oils, which are devoid of n-3LC-PUFA, in aquaculture feeds reduces their content in farmed fish flesh. The aim of this study was to measure the heritability and infer mechanisms determining flesh n-3LC-PUFA content in Atlantic salmon. This was achieved by analysing flesh lipid parameters in 48 families of Atlantic salmon and by measuring differences, by high density microarray, in hepatic mRNA expression in families with high and low flesh n-3LC-PUFA. The results show that flesh n-3LC-PUFA composition is a highly heritable trait (h²=0.77±0.14). Gene ontology analysis of differentially expressed genes indicates increased hepatic lipid transport, likely as very low density lipoprotein (VLDL), and implicates family differences in transforming growth factor β1 (Tgfβ1) signalling, activities of a transcription factor Snai1, and considered together may indicate alterations in hepatic nuclear factor 4α (HNF4α), a master controller of lipid homeostasis. This study paves the way for identification of quantitative trait loci and gene interaction networks that are associated with flesh n-3LC-PUFA composition, which will assist the sustainable production of Atlantic salmon and provide optimal levels of critical nutrients for human consumers.
Collapse
|
11
|
Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res 2010; 20:565-77. [PMID: 20363979 DOI: 10.1101/gr.104471.109] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clustering of multiple transcription factor binding sites (TFBSs) for the same transcription factor (TF) is a common feature of cis-regulatory modules in invertebrate animals, but the occurrence of such homotypic clusters of TFBSs (HCTs) in the human genome has remained largely unknown. To explore whether HCTs are also common in human and other vertebrates, we used known binding motifs for vertebrate TFs and a hidden Markov model-based approach to detect HCTs in the human, mouse, chicken, and fugu genomes, and examined their association with cis-regulatory modules. We found that evolutionarily conserved HCTs occupy nearly 2% of the human genome, with experimental evidence for individual TFs supporting their binding to predicted HCTs. More than half of the promoters of human genes contain HCTs, with a distribution around the transcription start site in agreement with the experimental data from the ENCODE project. In addition, almost half of the 487 experimentally validated developmental enhancers contain them as well--a number more than 25-fold larger than expected by chance. We also found evidence of negative selection acting on TFBSs within HCTs, as the conservation of TFBSs is stronger than the conservation of sequences separating them. The important role of HCTs as components of developmental enhancers is additionally supported by a strong correlation between HCTs and the binding of the enhancer-associated coactivator protein Ep300 (also known as p300). Experimental validation of HCT-containing elements in both zebrafish and mouse suggest that HCTs could be used to predict both the presence of enhancers and their tissue specificity, and are thus a feature that can be effectively used in deciphering the gene regulatory code. In conclusion, our results indicate that HCTs are a pervasive feature of human cis-regulatory modules and suggest that they play an important role in gene regulation in the human and other vertebrate genomes.
Collapse
Affiliation(s)
- Valer Gotea
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | | | | | | | |
Collapse
|
12
|
The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase. PLoS Genet 2009; 5:e1000553. [PMID: 19668342 PMCID: PMC2720251 DOI: 10.1371/journal.pgen.1000553] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 06/09/2009] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system. The function of many important biological structures requires the construction of very complex cellular shapes. For example, mammalian kidneys or related renal systems in other animals rely on the formation of elongated tubes that maximize surface area to facilitate the exchange of ions between the body and excreted fluid. Defects in kidney development or function may lead to kidney failure or polycystic kidney disease. Mechanisms involved in orchestrating the formation and function of the elaborate tube structures in renal systems are still poorly characterized. Here, we show a novel transcription factor involved in the growth and elongation of an excretory tube in C. elegans. This factor helps manage tube development by regulating genes involved in ion transport and membrane fusion, likely helping to balance the growth of the inner and outer portions of the excretory tube as this structure elongates. This transcription factor shares significant homology with a mammalian protein that participates in hormone signaling and is present in the kidney tubules, suggesting that elongation and growth of tube structures may rely on a new kind of hormonal communication that occurs between distant parts of the cell; this signaling mechanism may be important for appropriate kidney development in humans.
Collapse
|
13
|
Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60:311-57. [PMID: 18922966 DOI: 10.1124/pr.108.00001] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Steatosis of the liver may arise from a variety of conditions, but the molecular basis for lipid droplet formation is poorly understood. Although a certain amount of lipid storage may even be hepatoprotective, prolonged lipid storage can result in an activation of inflammatory reactions and loss of metabolic competency. Apart from drug-induced steatosis, certain metabolic disorders associated with obesity, insulin resistance, and hyperlipidemia give also rise to nonalcoholic fatty liver diseases (NAFLD). It is noteworthy that advanced stages of nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis. In this regard, the lipid droplets (LDs) have been discovered to be metabolically highly active structures that play major roles in lipid transport, sorting, and signaling cascades. In particular, LDs maintain a dynamic communication with the endoplasmic reticulum (ER) and the plasma membrane via sphingolipid-enriched domains of the plasma membrane-the lipid rafts. These microdomains frequently harbor receptor tyrosine kinases and other signaling molecules and connect extracellular events with intracellular signaling cascades. Here, we review recent knowledge on the molecular mechanisms of drug and metabolically induced hepatic steatosis and its progression to steatohepatitis (NASH). The contribution of cytokines and other signaling molecules, as well as activity of nuclear receptors, lipids, transcription factors, and endocrine mediators toward cellular dysfunction and progression of steatotic liver disease to NASH is specifically addressed, as is the cross-talk of different cell types in the pathogenesis of NAFLD. Furthermore, we provide an overview of recent therapeutic approaches in NASH therapy and discuss new as well as putative targets for pharmacological interventions.
Collapse
Affiliation(s)
- Nora Anderson
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|
14
|
Niehof M, Borlak J. HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 2008; 57:1069-77. [PMID: 18184923 DOI: 10.2337/db07-1065] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The nuclear receptor hepatic nuclear factor 4 alpha (HNF 4 alpha) is a master regulatory protein and an essential player in the control of a wide range of metabolic processes. Dysfunction of HNF 4 alpha is associated with metabolic disorders including diabetes. We were particularly interested in investigating molecular causes associated with diabetic nephropathy. RESEARCH DESIGN AND METHODS Novel disease candidate genes were identified by the chromatin immunoprecipitation-cloning assay and by sequencing of immunoprecipitated DNA. Expression of candidate genes was analyzed in kidney and liver of Zucker diabetic fatty (ZDF) and of streptozotocin (STZ)-administered rats and after siRNA-mediated silencing of HNF 4 alpha. RESULTS We identified the calcium-permeable nonselective transient receptor potential cation channel, subfamily C, member 1 (TRPC1) as a novel HNF 4 alpha gene target. Strikingly, TRPC1 is localized on human chromosome 3q22-24, i.e., a region considered to be a hotspot for diabetic nephropathy. We observed a significant reduction of TRPC1 gene expression in kidney and liver of diabetic ZDF and of STZ-administered rats as a result of HNF 4 alpha dysfunction. We found HNF 4 alpha and TRPC1 protein expression to be repressed in kidneys of diabetic patients diagnosed with nodular glomerulosceloris as evidenced by immunohistochemistry. Finally, siRNA-mediated functional knock down of HNF 4 alpha repressed TRPC1 gene expression in cell culture experiments. CONCLUSIONS Taken collectively, results obtained from animal studies could be translated to human diabetic nephropathy; there is evidence for a common regulation of HNF 4 alpha and TRPC1 in human and rat kidney pathologies. We propose dysregulation of HNF 4 alpha and TRPC1 as a possible molecular rationale in diabetic nephropathy.
Collapse
Affiliation(s)
- Monika Niehof
- Fraunhofer Institute of Toxicology and Experimental Medicine, Center of Molecular Medicine and Medical Biotechnology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|