1
|
Santos AL, Preta G. Lipids in the cell: organisation regulates function. Cell Mol Life Sci 2018; 75:1909-1927. [PMID: 29427074 PMCID: PMC11105414 DOI: 10.1007/s00018-018-2765-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Collapse
Affiliation(s)
- Ana L Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulio Preta
- Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
2
|
Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y, Zheng J. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:62-73. [PMID: 27864281 DOI: 10.1093/abbs/gmw117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.
Collapse
Affiliation(s)
- Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - John Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - Jiaojiao Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua Liang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanxia Sui
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Kristensen VN, Lingjærde OC, Russnes HG, Vollan HKM, Frigessi A, Børresen-Dale AL. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer 2014; 14:299-313. [PMID: 24759209 DOI: 10.1038/nrc3721] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combined analyses of molecular data, such as DNA copy-number alteration, mRNA and protein expression, point to biological functions and molecular pathways being deregulated in multiple cancers. Genomic, metabolomic and clinical data from various solid cancers and model systems are emerging and can be used to identify novel patient subgroups for tailored therapy and monitoring. The integrative genomics methodologies that are used to interpret these data require expertise in different disciplines, such as biology, medicine, mathematics, statistics and bioinformatics, and they can seem daunting. The objectives, methods and computational tools of integrative genomics that are available to date are reviewed here, as is their implementation in cancer research.
Collapse
Affiliation(s)
- Vessela N Kristensen
- 1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, 1478 Ahus, Norway
| | - Ole Christian Lingjærde
- 1] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [2] Division for Biomedical Informatics, Department of Computer Science, University of Oslo, 0316 Oslo, Norway
| | - Hege G Russnes
- 1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Pathology, Oslo University Hospital, 0450 Oslo, Norway
| | - Hans Kristian M Vollan
- 1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway. [3] Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, 0450 Oslo, Norway
| | - Arnoldo Frigessi
- 1] Statistics for Innovation, Norwegian Computing Center, 0314 Oslo, Norway. [2] Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, PO Box 1122 Blindern, 0317 Oslo, Norway
| | - Anne-Lise Børresen-Dale
- 1] Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. [2] K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
4
|
Integrative genomics with mediation analysis in a survival context. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:413783. [PMID: 24454535 PMCID: PMC3878392 DOI: 10.1155/2013/413783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022]
Abstract
DNA copy number aberrations (DCNA) and subsequent altered gene expression profiles may have a major impact on tumor initiation, on development, and eventually on recurrence and cancer-specific mortality. However, most methods employed in integrative genomic analysis of the two biological levels, DNA and RNA, do not consider survival time. In the present note, we propose the adoption of a survival analysis-based framework for the integrative analysis of DCNA and mRNA levels to reveal their implication on patient clinical outcome with the prerequisite that the effect of DCNA on survival is mediated by mRNA levels. The specific aim of the paper is to offer a feasible framework to test the DCNA-mRNA-survival pathway. We provide statistical inference algorithms for mediation based on asymptotic results. Furthermore, we illustrate the applicability of the method in an integrative genomic analysis setting by using a breast cancer data set consisting of 141 invasive breast tumors. In addition, we provide implementation in R.
Collapse
|
5
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
6
|
Vuletic S, Dong W, Wolfbauer G, Day JR, Albers JJ. PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:584-91. [PMID: 19321130 PMCID: PMC2692677 DOI: 10.1016/j.bbamcr.2009.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 01/05/2009] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP), one of the key lipid transfer proteins in plasma and cerebrospinal fluid, is nearly ubiquitously expressed in cells and tissues. Functions of secreted PLTP have been extensively studied. However, very little is known about potential intracellular PLTP functions. In the current study, we provide evidence for PLTP localization in the nucleus of cells that constitutively express PLTP (human neuroblastoma cells, SK-N-SH; and human cortical neurons, HCN2) and in cells transfected with human PLTP (Chinese hamster ovary and baby hamster kidney cells). Furthermore, we have shown that incubation of these cells with leptomycin B (LMB), a specific inhibitor of nuclear export mediated by chromosome region maintenance 1 (CRM1), leads to intranuclear accumulation of PLTP, suggesting that PLTP nuclear export is CRM1-dependent. We also provide evidence for entry of secreted PLTP into the cell and its translocation to the nucleus, and show that intranuclear PLTP is active in phospholipid transfer. These findings suggest that PLTP is involved in novel intracellular functions.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Weijiang Dong
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
- Xi’an Jiaotong University School of Medicine, Department of Human Anatomy and Histology & Embryology, Yanta West Road 76, Xi’an 710061, People’s Republic of China
| | - Gertrud Wolfbauer
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Joseph R. Day
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - John J. Albers
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Zhu M, Yu M, Zhao S. Understanding quantitative genetics in the systems biology era. Int J Biol Sci 2009; 5:161-70. [PMID: 19173038 PMCID: PMC2631226 DOI: 10.7150/ijbs.5.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/21/2009] [Indexed: 01/06/2023] Open
Abstract
Biology is now entering the new era of systems biology and exerting a growing influence on the future development of various disciplines within life sciences. In early classical and molecular periods of Biology, the theoretical frames of classical and molecular quantitative genetics have been systematically established, respectively. With the new advent of systems biology, there is occurring a paradigm shift in the field of quantitative genetics. Where and how the quantitative genetics would develop after having undergone its classical and molecular periods? This is a difficult question to answer exactly. In this perspective article, the major effort was made to discuss the possible development of quantitative genetics in the systems biology era, and for which there is a high potentiality to develop towards "systems quantitative genetics". In our opinion, the systems quantitative genetics can be defined as a new discipline to address the generalized genetic laws of bioalleles controlling the heritable phenotypes of complex traits following a new dynamic network model. Other issues from quantitative genetic perspective relating to the genetical genomics, the updates of network model, and the future research prospects were also discussed.
Collapse
Affiliation(s)
| | | | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|