1
|
McIntyre KL, Waters SA, Zhong L, Hart-Smith G, Raftery M, Chew ZA, Patel HR, Graves JAM, Waters PD. Identification of the RSX interactome in a marsupial shows functional coherence with the Xist interactome during X inactivation. Genome Biol 2024; 25:134. [PMID: 38783307 PMCID: PMC11112854 DOI: 10.1186/s13059-024-03280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.
Collapse
Affiliation(s)
- Kim L McIntyre
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gene Hart-Smith
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zahra A Chew
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | | | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Phung TN, Olney KC, Pinto BJ, Silasi M, Perley L, O’Bryan J, Kliman HJ, Wilson MA. X chromosome inactivation in the human placenta is patchy and distinct from adult tissues. HGG ADVANCES 2022; 3:100121. [PMID: 35712697 PMCID: PMC9194956 DOI: 10.1016/j.xhgg.2022.100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
In humans, one of the X chromosomes in genetic females is inactivated by a process called X chromosome inactivation (XCI). Variation in XCI across the placenta may contribute to observed sex differences and variability in pregnancy outcomes. However, XCI has predominantly been studied in human adult tissues. Here, we sequenced and analyzed DNA and RNA from two locations from 30 full-term pregnancies. Implementing an allele-specific approach to examine XCI, we report evidence that XCI in the human placenta is patchy, with large patches of either maternal or paternal X chromosomes inactivated. Further, using similar measurements, we show that this is in contrast to adult tissues, which generally exhibit mosaic X inactivation, where bulk samples exhibit both maternal and paternal X chromosome expression. Further, by comparing skewed samples in placenta and adult tissues, we identify genes that are uniquely inactivated or expressed in the placenta compared with adult tissues, highlighting the need for tissue-specific maps of XCI.
Collapse
Affiliation(s)
- Tanya N. Phung
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Kimberly C. Olney
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Brendan J. Pinto
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Michelle Silasi
- Department of Maternal-Fetal Medicine, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jane O’Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Melissa A. Wilson
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| |
Collapse
|
3
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Ramos L, Antunes A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022; 114:110277. [PMID: 35104609 DOI: 10.1016/j.ygeno.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.
Collapse
Affiliation(s)
- Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Goszczynski DE, Tinetti PS, Choi YH, Ross PJ, Hinrichs K. Allele-specific expression analysis reveals conserved and unique features of preimplantation development in equine ICSI embryos. Biol Reprod 2021; 105:1416-1426. [PMID: 34515759 DOI: 10.1093/biolre/ioab174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Embryonic genome activation and dosage compensation are major genetic events in early development. Combined analysis of single embryo RNA-seq data and parental genome sequencing was used to evaluate parental contributions to early development and investigate X-chromosome dynamics. In addition, we evaluated dimorphism in gene expression between male and female embryos. Evaluation of parent-specific gene expression revealed a minor increase in paternal expression at the 4-cell stage that increased at the 8-cell stage. We also detected eight genes with allelic expression bias that may have an important role in early development, notably NANOGNB. The main actor in X-chromosome inactivation, XIST, was significantly upregulated at the 8-cell, morula, and blastocyst stages in female embryos, with high expression at the latter. Sexual dimorphism in gene expression was identified at all stages, with strong representation of the X-chromosome in females from the 16-cell to the blastocyst stage. Female embryos showed biparental X-chromosome expression at all stages after the 4-cell stage, demonstrating the absence of imprinted X-inactivation at the embryo level. The analysis of gene dosage showed incomplete dosage compensation (0.5 < X:A < 1) in MII oocytes and embryos up to the 4-cell stage, an increase of the X:A ratio at the 16-cell and morula stages after genome activation, and a decrease of the X:A ratio at the blastocyst stage, which might be associated with the beginning of X-chromosome inactivation. This study represents the first critical analysis of parent- and sex-specific gene expression in early equine embryos produced in vitro.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Matsuno Y, Yamashita T, Wagatsuma M, Yamakage H. Convergence in LINE-1 nucleotide variations can benefit redundantly forming triplexes with lncRNA in mammalian X-chromosome inactivation. Mob DNA 2019; 10:33. [PMID: 31384315 PMCID: PMC6664574 DOI: 10.1186/s13100-019-0173-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Background Associations between X-inactive transcript (Xist)–long noncoding RNA (lncRNA) and chromatin are critical intermolecular interactions in the X-chromosome inactivation (XCI) process. Despite high-resolution analyses of the Xist RNA-binding sites, specific interaction sequences are yet to be identified. Based on elusive features of the association between Xist RNA and chromatin and the possible existence of multiple low-affinity binding sites in Xist RNA, we defined short motifs (≥5 nucleotides), termed as redundant UC/TC (r-UC/TC) or AG (r-AG) motifs, which may help in the mediation of triplex formation between the lncRNAs and duplex DNA. Results The study showed that r-UC motifs are densely dispersed throughout mouse and human Xist/XIST RNAs, whereas r-AG motifs are even more densely dispersed along opossum RNA-on-the-silent X (Rsx) RNA, and also along both full-length and truncated long interspersed nuclear elements (LINE-1s, L1s) of the three species. Predicted secondary structures of the lncRNAs showed that the length range of these sequence motifs available for forming triplexes was even shorter, mainly 5- to 9-nucleotides long. Quartz crystal microbalance (QCM) measurements and Monte Carlo (MC) simulations indicated that minimum-length motifs can reinforce the binding state by increasing the copy number of the motifs in the same RNA or DNA molecule. Further, r-AG motifs in L1s had a similar length-distribution pattern, regardless of the similarities in the length or sequence of L1s across the three species; this also applies to high-frequency mutations in r-AG motifs, which suggests convergence in L1 sequence variations. Conclusions Multiple short motifs in both RNA and duplex DNA molecules could be brought together to form triplexes with either Hoogsteen or reverse Hoogsteen hydrogen bonding, by which their associations are cooperatively enhanced. This novel triplex interaction could be involved in associations between lncRNA and chromatin in XCI, particularly at the sites of L1s. Potential binding of Xist/XIST/Rsx RNAs specifically at L1s is most likely preserved through the r-AG motifs conserved in mammalian L1s through convergence in L1 nucleotide variations and by maintaining a particular r-UC/r-AG motif ratio in each of these lncRNAs, irrespective of their poorly conserved sequences. Electronic supplementary material The online version of this article (10.1186/s13100-019-0173-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoko Matsuno
- 1Division of Clinical Preventive Medicine, Niigata University, Niigata, Japan
| | - Takefumi Yamashita
- 2Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Graves JAM. Marsupial genomics meet marsupial reproduction. Reprod Fertil Dev 2018; 31:1181-1188. [PMID: 30482268 DOI: 10.1071/rd18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
We came from very different backgrounds, with different skills and interests. Marilyn Renfree was recognised as 'a giant of marsupial embryology'; I had spent my working life studying genes and chromosomes. We teamed up out of mutual respect (awe on my side) to form, with Des Cooper, the ARC Centre of Excellence in Kangaroo Genomics. This is the story of how our collaboration came to be, and what it has produced for our knowledge of some of the world's most remarkable animals.
Collapse
|
8
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
9
|
Waters SA, Livernois AM, Patel H, O’Meally D, Craig JM, Marshall Graves JA, Suter CM, Waters PD. Landscape of DNA Methylation on the Marsupial X. Mol Biol Evol 2017; 35:431-439. [DOI: 10.1093/molbev/msx297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Chatterjee RN. Dosage compensation and its roles in evolution of sex chromosomes and phenotypic dimorphism: lessons from Drosophila, C.elegans and mammals. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0223-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Sex disparities in substance abuse research: Evaluating 23 years of structural neuroimaging studies. Drug Alcohol Depend 2017; 173:92-98. [PMID: 28212516 PMCID: PMC5581940 DOI: 10.1016/j.drugalcdep.2016.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sex differences in brain structure and clinical course of substance use disorders underscores the need to include women in structural brain imaging studies. The NIH has supported the need for research to address sex differences. We evaluated female enrollment in substance abuse structural brain imaging research and the methods used to study sex differences in substance effects. METHODS Structural brain imaging studies published through 2016 (n=230) were evaluated for number of participants by sex and substance use status and methods used to evaluate sex differences. Temporal trends in the numbers of participants by sex and substance use status were analyzed. We evaluated how often sex effects were appropriately analyzed and the proportion of studies that found sex by substance interactions on volumetric measures. RESULTS Female enrollment increased over time, but remained significantly lower than male enrollment (p=0.01), with the greatest bias for alcohol and opiate studies. 79% of studies included both sexes; however, 74% did not evaluate sex effects or used an analytic approach that precluded detection of sex by substance use interactions. 85% of studies that stratified by sex reported different substance effects on brain volumes. Only 33% of studies examining two-way interactions found significant interactions, highlighting that many studies were underpowered to detect interactions. CONCLUSIONS Although female participation in substance use studies of brain morphometry has increased, sex disparity persists. Studying adequate numbers of both sexes and employing correct analytic approaches is critical for understanding sex differences in brain morphometric changes in substance abuse.
Collapse
|
12
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
13
|
The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin Cell Dev Biol 2016; 56:117-121. [PMID: 26806635 DOI: 10.1016/j.semcdb.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022]
Abstract
Marsupials and monotremes represent evolutionarily divergent lineages from the majority of extant mammals which are eutherian, or placental, mammals. Monotremes possess multiple X and Y chromosomes that appear to have arisen independently of eutherian and marsupial sex chromosomes. Dosage compensation of X-linked genes occurs in monotremes on a gene-by-gene basis, rather than through chromosome-wide silencing, as is the case in eutherians and marsupials. Specifically, studies in the platypus have shown that for any given X-linked gene, a specific proportion of nuclei within a cell population will silence one locus, with the percentage of cells undergoing inactivation at that locus being highly gene-specific. Hence, it is perhaps not surprising that the expression level of X-linked genes in female platypus is almost double that in males. This is in contrast to the situation in marsupials where one of the two X chromosomes is inactivated in females by the long non-coding RNA RSX, a functional analogue of the eutherian XIST. However, marsupial X chromosome inactivation differs from that seen in eutherians in that it is exclusively the paternal X chromosome that is silenced. In addition, marsupials appear to have globally upregulated X-linked gene expression in both sexes, thus balancing their expression levels with those of the autosomes, a process initially proposed by Ohno in 1967 as being a fundamental component of the X chromosome dosage compensation mechanism but which may not have evolved in eutherians.
Collapse
|
14
|
How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:33-49. [PMID: 26659486 DOI: 10.1007/978-94-017-7417-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.
Collapse
|
15
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
16
|
Paternal X inactivation does not correlate with X chromosome evolutionary strata in marsupials. BMC Evol Biol 2014; 14:267. [PMID: 25539578 PMCID: PMC4302592 DOI: 10.1186/s12862-014-0267-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. Results We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter’s X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter’s liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. Conclusions We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0267-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014; 15:367-78. [PMID: 24733023 PMCID: PMC4117651 DOI: 10.1038/nrg3687] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
18
|
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
|
19
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014. [PMID: 24733023 DOI: 10.1038/nrg3687,+10.1038/nrn3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
20
|
Cahill L. Equal ≠ the same: sex differences in the human brain. CEREBRUM : THE DANA FORUM ON BRAIN SCIENCE 2014; 2014:5. [PMID: 25009695 PMCID: PMC4087190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
While advances in brain imaging confirm that men and women think in their own way and that their brains are different, the biomedical community mainly uses male animals as testing subjects with the assumption that sex differences in the brain hardly matter. This month's Cerebrum highlights some of the thinking and research that invalidates that assumption.
Collapse
|
21
|
Renfree MB, Chew KY, Shaw G. Hormone-independent pathways of sexual differentiation. Sex Dev 2014; 8:327-36. [PMID: 24577198 DOI: 10.1159/000358447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New observations over the last 25 years of hormone-independent sexual dimorphisms have gradually and unequivocally overturned the dogma, arising from Jost's elegant experiments in the mid-1900s, that all somatic sex dimorphisms in vertebrates arise from the action of gonadal hormones. Although we know that Sry, a Y-linked gene, is the primary gonadal sex determinant in mammals, more recent analysis in marsupials, mice, and finches has highlighted numerous sexual dimorphisms that are evident well before the differentiation of the testis and which cannot be explained by a sexually dimorphic hormonal environment. In marsupials, scrotal bulges and mammary primordia are visible before the testis has differentiated due to the expression of a gene(s) on the X chromosome. ZZ and ZW gynandromorph finches have brains that develop in a sexually dimorphic way dependent on their sex chromosome content. In genetically manipulated mice, it is the X chromosomes, not the gonads, that determine many characters including rate of early development, adiposity, and neural circuits. Even spotted hyenas have sexual dimorphisms that cannot be simply explained by hormonal exposure. This review discusses the recent findings that confirm that there are hormone-independent sexual dimorphisms well before the gonads begin to produce their hormones.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
22
|
Wang X, Douglas KC, Vandeberg JL, Clark AG, Samollow PB. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 2013; 24:70-83. [PMID: 24065774 PMCID: PMC3875863 DOI: 10.1101/gr.161919.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica). The majority of X-linked genes (152 of 176 genes with trackable SNP variants) exhibited paternally imprinted expression, with nearly 100% of transcripts derived from the maternal allele; whereas 24 loci (14%) escaped inactivation, showing varying levels of biallelic expression. In addition to recently reported evidence of marsupial XCI regulation by the noncoding Rsx transcript, strong depletion of H3K27me3 at escaper gene loci in the present study suggests that histone state modifications also correlate strongly with opossum XCI. In contrast to mouse, the opossum did not show an association between X-linked gene expression and promoter DNA methylation, with one notable exception. Unlike all other X-linked genes examined, Rsx was differentially methylated on the maternal and paternal X chromosomes, and expression was exclusively from the inactive (paternal) X chromosome. Our study provides the first comprehensive catalog of parent-of-origin expression status for X-linked genes in a marsupial and sheds light on the regulation and evolution of imprinted XCI in mammals.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
24
|
Livernois AM, Waters SA, Deakin JE, Marshall Graves JA, Waters PD. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet 2013; 9:e1003635. [PMID: 23874231 PMCID: PMC3715422 DOI: 10.1371/journal.pgen.1003635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023] Open
Abstract
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. Dosage compensation is a mechanism that restores the expression of X chromosome genes back to their original level when Y homologues lose function. In placental and marsupial mammals this is achieved by upregulating the single X in males. The carry-through of overexpression to females would result in functional tetraploidy, so there is subsequent inactivation of one X chromosome in the somatic cells of females, leaving males (XY) and females (XX) with a single upregulated X. In contrast, genes on the five platypus (a monotreme mammal) X chromosomes and the chicken Z chromosome (which are orthologous but independently evolved) are expressed globally at a higher level in female platypus and male chicken respectively, indicating partial dosage compensation. Here, for the first time, we provide evidence for inactivation of genes on the chicken Z chromosome in ZZ males, and on all five Xs in female platypus. Our results suggest that the silencing of genes on sex chromosomes has evolved independently in birds and mammals, and is, therefore, a critical step in the pathway to dosage compensate independently evolved amniote sex chromosomes systems.
Collapse
Affiliation(s)
- Alexandra M. Livernois
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (AML); (PDW)
| | - Shafagh A. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Janine E. Deakin
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jennifer A. Marshall Graves
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Paul D. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (AML); (PDW)
| |
Collapse
|
25
|
Smchd1 regulates a subset of autosomal genes subject to monoallelic expression in addition to being critical for X inactivation. Epigenetics Chromatin 2013; 6:19. [PMID: 23819640 PMCID: PMC3707822 DOI: 10.1186/1756-8935-6-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Background Smchd1 is an epigenetic modifier essential for X chromosome inactivation: female embryos lacking Smchd1 fail during midgestational development. Male mice are less affected by Smchd1-loss, with some (but not all) surviving to become fertile adults on the FVB/n genetic background. On other genetic backgrounds, all males lacking Smchd1 die perinatally. This suggests that, in addition to being critical for X inactivation, Smchd1 functions to control the expression of essential autosomal genes. Results Using genome-wide microarray expression profiling and RNA-seq, we have identified additional genes that fail X inactivation in female Smchd1 mutants and have identified autosomal genes in male mice where the normal expression pattern depends upon Smchd1. A subset of genes in the Snrpn imprinted gene cluster show an epigenetic signature and biallelic expression consistent with loss of imprinting in the absence of Smchd1. In addition, single nucleotide polymorphism analysis of expressed genes in the placenta shows that the Igf2r imprinted gene cluster is also disrupted, with Slc22a3 showing biallelic expression in the absence of Smchd1. In both cases, the disruption was not due to loss of the differential methylation that marks the imprint control region, but affected genes remote from this primary imprint controlling element. The clustered protocadherins (Pcdhα, Pcdhβ, and Pcdhγ) also show altered expression levels, suggesting that their unique pattern of random combinatorial monoallelic expression might also be disrupted. Conclusions Smchd1 has a role in the expression of several autosomal gene clusters that are subject to monoallelic expression, rather than being restricted to functioning uniquely in X inactivation. Our findings, combined with the recent report implicating heterozygous mutations of SMCHD1 as a causal factor in the digenically inherited muscular weakness syndrome facioscapulohumeral muscular dystrophy-2, highlight the potential importance of Smchd1 in the etiology of diverse human diseases.
Collapse
|
26
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
27
|
Abstract
Marsupial and eutherian mammals inactivate one X chromosome in female somatic cells in what is thought to be a means of compensating for the unbalanced X chromosome dosage between XX females and XY males. The hypothesis of X chromosome inactivation (XCI) was first published by Mary Lyon just over 50 years ago, with the discovery of XCI in marsupials occurring a decade later. However, we are still piecing together the evolutionary origins of this fascinating epigenetic mechanism. From the very first studies on marsupial X inactivation, it was apparent that, although there were some similarities between marsupial and eutherian XCI, there were also some striking differences. For instance, the paternally derived X was found to be preferentially silenced in marsupials, although the silencing was often incomplete, which was in contrast to the random and more tightly controlled inactivation of the X chromosome in eutherians. Many of these earlier studies used isozymes to study the activity of just a few genes in marsupials. The sequencing of several marsupial genomes and the advent of molecular cytogenetic techniques have facilitated more in-depth studies into marsupial X chromosome inactivation and allowed more detailed comparisons of the features of XCI to be made. Several important findings have come from such comparisons, among which is the absence of the XIST gene in marsupials, a non-coding RNA gene with a critical role in eutherian XCI, and the discovery of the marsupial RSX gene, which appears to perform a similar role to XIST. Here I review the history of marsupial XCI studies, the latest advances that have been made and the impact they have had towards unravelling the evolution of XCI in mammals.
Collapse
|
28
|
Abstract
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
29
|
Deakin JE, Graves JAM, Rens W. The evolution of marsupial and monotreme chromosomes. Cytogenet Genome Res 2012; 137:113-29. [PMID: 22777195 DOI: 10.1159/000339433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Marsupial and monotreme mammals fill an important gap in vertebrate phylogeny between reptile-mammal divergence 310 million years ago (mya) and the eutherian (placental) mammal radiation 105 mya. They possess many unique features including their distinctive chromosomes, which in marsupials are typically very large and well conserved between species. In contrast, monotreme genomes are divided into several large chromosomes and many smaller chromosomes, with a complicated sex chromosome system that forms a translocation chain in male meiosis. The application of molecular cytogenetic techniques has greatly advanced our understanding of the evolution of marsupial chromosomes and allowed the reconstruction of the ancestral marsupial karyotype. Chromosome painting and gene mapping have played a vital role in piecing together the puzzle of monotreme karyotypes, particularly their complicated sex chromosome system. Here, we discuss the significant insight into karyotype evolution afforded by the combination of recently sequenced marsupial and monotreme genomes with cytogenetic analysis, which has provided a greater understanding of the events that have shaped not only marsupial and monotreme genomes, but the genomes of all mammals.
Collapse
Affiliation(s)
- J E Deakin
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
30
|
Abstract
In eutherian mammals, dosage compensation of X-linked genes is achieved by X chromosome inactivation. X inactivation is random in embryonic and adult tissues, but imprinted X inactivation (paternal X silencing) has been identified in the extra-embryonic membranes of the mouse, rat, and cow. Few other species have been studied for this trait, and the data from studies of the human placenta have been discordant or inconclusive. Here, we quantify X inactivation using RNA sequencing of placental tissue from reciprocal hybrids of horse and donkey (mule and hinny). In placental tissue from the equid hybrids and the horse parent, the allelic expression pattern was consistent with random X inactivation, and imprinted X inactivation can clearly be excluded. We characterized horse and donkey XIST gene and demonstrated that XIST allelic expression in female hybrid placental and fetal tissues is negatively correlated with the other X-linked genes chromosome-wide, which is consistent with the XIST-mediated mechanism of X inactivation discovered previously in mice. As the most structurally and morphologically diverse organ in mammals, the placenta also appears to show diverse mechanisms for dosage compensation that may result in differences in conceptus development across species.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
31
|
Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A 2012; 109:5346-51. [PMID: 22392987 DOI: 10.1073/pnas.1116763109] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.
Collapse
|
32
|
Sarkies P, Sale JE. Cellular epigenetic stability and cancer. Trends Genet 2012; 28:118-27. [PMID: 22226176 DOI: 10.1016/j.tig.2011.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
When a cell divides, it must not only accurately duplicate its genome, but also restore its previous levels of gene expression. The information determining gene expression is often not directly encoded in the DNA and is hence termed 'epigenetic'. The molecular basis of epigenetic memory remains a subject of intense debate, but is likely to arise from the collaboration of several mechanisms, including histone post-translational modifications, transcription factors, DNA methylation and noncoding RNAs. In this article, we look at how these mechanisms interact to generate robust epigenetic states. We then consider recent observations that mitotic inheritance of stable gene expression can be compromised by interruption of DNA replication. We discuss how these data may provide direct evidence for a central role for histone modifications in transcriptional memory and how they could potentially provide an explanation for the some of the widespread alterations in transcription seen in cancer cells.
Collapse
Affiliation(s)
- Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
33
|
Watson ET, Demuth JP. Haldane's rule in marsupials: what happens when both sexes are functionally hemizygous? ACTA ACUST UNITED AC 2012; 103:453-8. [PMID: 22378959 DOI: 10.1093/jhered/esr154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During the process of speciation, diverging taxa often hybridize and produce offspring wherein the heterogametic sex (i.e., XY or ZW) is unfit (Haldane's rule). Dominance theory seeks to explain Haldane's rule in terms of the difference in X-linked dominance regimes experienced by the sexes. However, X inactivation in female mammals extends the effects of hemizygosity to both sexes. Here, we highlight where the assumptions of dominance theory are particularly problematic in marsupials, where X inactivation uniformly results in silencing the paternal X. We then present evidence of Haldane's rule for sterility but not for viability in marsupials, as well as the first violations of Haldane's rule for these traits among all mammals. Marsupials represent a large taxonomic group possessing heteromorphic sex chromosomes, where the dominance theory cannot explain Haldane's rule. In this light, we evaluate alternative explanations for the preponderance of male sterility in interspecific hybrids, including faster male evolution, X-Y interactions, and genomic conflict hypotheses.
Collapse
Affiliation(s)
- Eric T Watson
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010-0498, USA.
| | | |
Collapse
|
34
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|
35
|
Livernois AM, Graves JAM, Waters PD. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb) 2011; 108:50-8. [PMID: 22086077 DOI: 10.1038/hdy.2011.106] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.
Collapse
Affiliation(s)
- A M Livernois
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
36
|
Al Nadaf S, Deakin JE, Gilbert C, Robinson TJ, Graves JAM, Waters PD. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 2011; 121:71-8. [PMID: 21947602 PMCID: PMC3260438 DOI: 10.1007/s00412-011-0343-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022]
Abstract
Sex chromosome dosage compensation in both eutherian and marsupial mammals is achieved by X chromosome inactivation (XCI)--transcriptional repression that silences one of the two X chromosomes in the somatic cells of females. We recently used RNA fluorescent in situ hybridization (FISH) to show, in individual nuclei, that marsupial X inactivation (in the absence of XIST) occurs on a gene-by-gene basis, and that escape from inactivation is stochastic and independent of gene location. In the absence of similar data from fibroblast cell lines of eutherian representatives, a meaningful comparison is lacking. We therefore used RNA-FISH to examine XCI in fibroblast cell lines obtained from three distantly related eutherian model species: African savannah elephant (Loxodonta africana), mouse (Mus musculus) and human (Homo sapiens). We show that, unlike the orthologous marsupial X, inactivation of the X conserved region (XCR) in eutherians generally is complete. Two-colour RNA-FISH on female human, mouse and elephant interphase nuclei showed that XCR loci have monoallelic expression in almost all nuclei. However, we found that many loci located in the evolutionarily distinct recently added region (XAR) displayed reproducible locus-specific frequencies of nuclei with either one or two active X alleles. We propose that marsupial XCI retains features of an ancient incomplete silencing mechanism that was augmented by the evolution of the XIST gene that progressively stabilized the eutherian XCR. In contrast, the recently added region of the eutherian X displays an incomplete inactivation profile similar to that observed on the evolutionarily distinct marsupial X and the independently evolved monotreme X chromosomes.
Collapse
Affiliation(s)
- Shafagh Al Nadaf
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, ACT 2601, Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, Rens W, Waters PD, Pharo EA, Shaw G, Wong ESW, Lefèvre CM, Nicholas KR, Kuroki Y, Wakefield MJ, Zenger KR, Wang C, Ferguson-Smith M, Nicholas FW, Hickford D, Yu H, Short KR, Siddle HV, Frankenberg SR, Chew KY, Menzies BR, Stringer JM, Suzuki S, Hore TA, Delbridge ML, Mohammadi A, Schneider NY, Hu Y, O'Hara W, Al Nadaf S, Wu C, Feng ZP, Cocks BG, Wang J, Flicek P, Searle SMJ, Fairley S, Beal K, Herrero J, Carone DM, Suzuki Y, Sugano S, Toyoda A, Sakaki Y, Kondo S, Nishida Y, Tatsumoto S, Mandiou I, Hsu A, McColl KA, Lansdell B, Weinstock G, Kuczek E, McGrath A, Wilson P, Men A, Hazar-Rethinam M, Hall A, Davis J, Wood D, Williams S, Sundaravadanam Y, Muzny DM, Jhangiani SN, Lewis LR, Morgan MB, Okwuonu GO, Ruiz SJ, Santibanez J, Nazareth L, Cree A, Fowler G, Kovar CL, Dinh HH, Joshi V, Jing C, Lara F, Thornton R, Chen L, Deng J, Liu Y, Shen JY, Song XZ, Edson J, Troon C, Thomas D, Stephens A, Yapa L, Levchenko T, Gibbs RA, Cooper DW, Speed TP, Fujiyama A, M Graves JA, O'Neill RJ, et alRenfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, Rens W, Waters PD, Pharo EA, Shaw G, Wong ESW, Lefèvre CM, Nicholas KR, Kuroki Y, Wakefield MJ, Zenger KR, Wang C, Ferguson-Smith M, Nicholas FW, Hickford D, Yu H, Short KR, Siddle HV, Frankenberg SR, Chew KY, Menzies BR, Stringer JM, Suzuki S, Hore TA, Delbridge ML, Mohammadi A, Schneider NY, Hu Y, O'Hara W, Al Nadaf S, Wu C, Feng ZP, Cocks BG, Wang J, Flicek P, Searle SMJ, Fairley S, Beal K, Herrero J, Carone DM, Suzuki Y, Sugano S, Toyoda A, Sakaki Y, Kondo S, Nishida Y, Tatsumoto S, Mandiou I, Hsu A, McColl KA, Lansdell B, Weinstock G, Kuczek E, McGrath A, Wilson P, Men A, Hazar-Rethinam M, Hall A, Davis J, Wood D, Williams S, Sundaravadanam Y, Muzny DM, Jhangiani SN, Lewis LR, Morgan MB, Okwuonu GO, Ruiz SJ, Santibanez J, Nazareth L, Cree A, Fowler G, Kovar CL, Dinh HH, Joshi V, Jing C, Lara F, Thornton R, Chen L, Deng J, Liu Y, Shen JY, Song XZ, Edson J, Troon C, Thomas D, Stephens A, Yapa L, Levchenko T, Gibbs RA, Cooper DW, Speed TP, Fujiyama A, M Graves JA, O'Neill RJ, Pask AJ, Forrest SM, Worley KC. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 2011; 12:R81. [PMID: 21854559 PMCID: PMC3277949 DOI: 10.1186/gb-2011-12-8-r81] [Show More Authors] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/22/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
Collapse
Affiliation(s)
- Marilyn B Renfree
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anthony T Papenfuss
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Janine E Deakin
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - James Lindsay
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Thomas Heider
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Katherine Belov
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Willem Rens
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Paul D Waters
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Elizabeth A Pharo
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Geoff Shaw
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Emily SW Wong
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe M Lefèvre
- Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria, 3214, Australia
| | - Kevin R Nicholas
- Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria, 3214, Australia
| | - Yoko Kuroki
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Matthew J Wakefield
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kyall R Zenger
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Chenwei Wang
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Malcolm Ferguson-Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Frank W Nicholas
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Danielle Hickford
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hongshi Yu
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hannah V Siddle
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen R Frankenberg
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keng Yih Chew
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brandon R Menzies
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Jessica M Stringer
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shunsuke Suzuki
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Timothy A Hore
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Margaret L Delbridge
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Amir Mohammadi
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Nanette Y Schneider
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yanqiu Hu
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - William O'Hara
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Shafagh Al Nadaf
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Chen Wu
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi-Ping Feng
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin G Cocks
- Biosciences Research Division, Department of Primary Industries, Victoria, 1 Park Drive, Bundoora 3083, Australia
| | - Jianghui Wang
- Biosciences Research Division, Department of Primary Industries, Victoria, 1 Park Drive, Bundoora 3083, Australia
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephen MJ Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Susan Fairley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kathryn Beal
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Javier Herrero
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Dawn M Carone
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8560, Japan
| | - Sumio Sugano
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8560, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshiyuki Sakaki
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shinji Kondo
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuichiro Nishida
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shoji Tatsumoto
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ion Mandiou
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Arthur Hsu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kaighin A McColl
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Benjamin Lansdell
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - George Weinstock
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth Kuczek
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
- Westmead Institute for Cancer Research, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Annette McGrath
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter Wilson
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Artem Men
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mehlika Hazar-Rethinam
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Allison Hall
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - John Davis
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - David Wood
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sarah Williams
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yogi Sundaravadanam
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret B Morgan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Geoffrey O Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - San Juana Ruiz
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lynne Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald Fowler
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandita Joshi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Chyn Jing
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Fremiet Lara
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Jixin Deng
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Y Shen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Xing-Zhi Song
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Janette Edson
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Carmen Troon
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Daniel Thomas
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amber Stephens
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lankesha Yapa
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tanya Levchenko
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Desmond W Cooper
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Terence P Speed
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Jennifer A M Graves
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Pask
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Susan M Forrest
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X inactivation. Hum Genet 2011; 130:237-45. [PMID: 21614513 PMCID: PMC3136209 DOI: 10.1007/s00439-011-1011-z] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/17/2011] [Indexed: 12/30/2022]
Abstract
To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.
Collapse
Affiliation(s)
- Joel B. Berletch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Fan Yang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jun Xu
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Christine M. Disteche
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA. Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011; 12:542-53. [PMID: 21765457 DOI: 10.1038/nrg3035] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In female mammals, one of the two X chromosomes is silenced for dosage compensation between the sexes. X-chromosome inactivation is initiated in early embryogenesis by the Xist RNA that localizes to the inactive X chromosome. During development, the inactive X chromosome is further modified, a specialized form of facultative heterochromatin is formed and gene repression becomes stable and independent of Xist in somatic cells. The recent identification of several factors involved in this process has provided insights into the mechanism of Xist localization and gene silencing. The emerging picture is complex and suggests that chromosome-wide silencing can be partitioned into several steps, the molecular components of which are starting to be defined.
Collapse
Affiliation(s)
- Anton Wutz
- Wellcome Trust Centre for Stem Cell Research, Cambridge, UK.
| |
Collapse
|
40
|
The single active X in human cells: evolutionary tinkering personified. Hum Genet 2011; 130:281-93. [PMID: 21655936 DOI: 10.1007/s00439-011-1016-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
All mammals compensate for sex differences in numbers of X chromosomes by transcribing only a single X chromosome in cells of both sexes; however, they differ from one another in the details of the compensatory mechanisms. These species variations result from chance mutations, species differences in the staging of developmental events, and interactions between events that occur concurrently. Such variations, which have only recently been appreciated, do not interfere with the strategy of establishing a single active X, but they influence how it is carried out. In an overview of X dosage compensation in human cells, I point out the evolutionary variations. I also argue that it is the single active X that is chosen, rather than inactive ones. Further, I suggest that the initial events in the process-those that precede silencing of future inactive X chromosomes-include randomly choosing the future active X, most likely by repressing its XIST locus.
Collapse
|
41
|
Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Marshall Graves JA. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 2011; 6:e19040. [PMID: 21541345 PMCID: PMC3081832 DOI: 10.1371/journal.pone.0019040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.
Collapse
Affiliation(s)
- Julie Chaumeil
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Paul D. Waters
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Edda Koina
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Clément Gilbert
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Jennifer A. Marshall Graves
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|