1
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
2
|
Litwin I, Nowicka M, Markowska K, Maciaszczyk-Dziubińska E, Tomaszewska P, Wysocki R, Kramarz K. ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 2023; 51:9101-9121. [PMID: 37486771 PMCID: PMC10516642 DOI: 10.1093/nar/gkad612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Małgorzata Nowicka
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Katarzyna Markowska
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubińska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Paulina Tomaszewska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
3
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Matabishi-Bibi L, Challal D, Barucco M, Libri D, Babour A. Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 2022; 13:6331. [PMID: 36284099 PMCID: PMC9596429 DOI: 10.1038/s41467-022-34133-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Cellular homeostasis is maintained by surveillance mechanisms that intervene at virtually every step of gene expression. In the nucleus, the yeast chromatin remodeler Isw1 holds back maturing mRNA ribonucleoparticles to prevent their untimely export, but whether this activity operates beyond quality control of mRNA biogenesis to regulate gene expression is unknown. Here, we identify the mRNA encoding the central effector of the unfolded protein response (UPR) HAC1, as an Isw1 RNA target. The direct binding of Isw1 to the 3' untranslated region of HAC1 mRNA restricts its nuclear export and is required for accurate UPR abatement. Accordingly, ISW1 inactivation sensitizes cells to endoplasmic reticulum (ER) stress while its overexpression reduces UPR induction. Our results reveal an unsuspected mechanism, in which binding of ER-stress induced Isw1 to HAC1 mRNA limits its nuclear export, providing a feedback loop that fine-tunes UPR attenuation to guarantee homeostatic adaptation to ER stress.
Collapse
Affiliation(s)
- Laura Matabishi-Bibi
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Drice Challal
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mara Barucco
- grid.461913.80000 0001 0676 2143Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Domenico Libri
- grid.429192.50000 0004 0599 0285Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anna Babour
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
5
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 2021; 11:4195. [PMID: 33602956 PMCID: PMC7892562 DOI: 10.1038/s41598-021-82842-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Isw1 and Chd1 are ATP-dependent nucleosome-spacing enzymes required to establish regular arrays of phased nucleosomes near transcription start sites of yeast genes. Cells lacking both Isw1 and Chd1 have extremely disrupted chromatin, with weak phasing, irregular spacing and a propensity to form close-packed dinucleosomes. The Isw1 ATPase subunit occurs in two different remodeling complexes: ISW1a (composed of Isw1 and Ioc3) and ISW1b (composed of Isw1, Ioc2 and Ioc4). The Ioc4 subunit of ISW1b binds preferentially to the H3-K36me3 mark. Here we show that ISW1b is primarily responsible for setting nucleosome spacing and resolving close-packed dinucleosomes, whereas ISW1a plays only a minor role. ISW1b and Chd1 make additive contributions to dinucleosome resolution, such that neither enzyme is capable of resolving all dinucleosomes on its own. Loss of the Set2 H3-K36 methyltransferase partly phenocopies loss of Ioc4, resulting in increased dinucleosome levels with only a weak effect on nucleosome spacing, suggesting that Set2-mediated H3-K36 trimethylation contributes to ISW1b-mediated dinucleosome separation. The H4 tail domain is required for normal nucleosome spacing but not for dinucleosome resolution. We conclude that the nucleosome spacing and dinucleosome resolving activities of ISW1b and Chd1 are critical for normal global chromatin organisation.
Collapse
|
7
|
Bhardwaj SK, Hailu SG, Olufemi L, Brahma S, Kundu S, Hota SK, Persinger J, Bartholomew B. Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat Commun 2020; 11:5913. [PMID: 33219211 PMCID: PMC7680125 DOI: 10.1038/s41467-020-19700-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Over the last 3 decades ATP-dependent chromatin remodelers have been thought to recognize chromatin at the level of single nucleosomes rather than higher-order organization of more than one nucleosome. We show the yeast ISW1a remodeler has such higher-order structural specificity, as manifested by large allosteric changes that activate the nucleosome remodeling and spacing activities of ISW1a when bound to dinucleosomes. Although the ATPase domain of Isw1 docks at the SHL2 position when ISW1a is bound to either mono- or di-nucleosomes, there are major differences in the interactions of the catalytic subunit Isw1 with the acidic pocket of nucleosomes and the accessory subunit Ioc3 with nucleosomal DNA. By mutational analysis and uncoupling of ISW1a's dinucleosome specificity, we find that dinucleosome recognition is required by ISW1a for proper chromatin organization at promoters; as well as transcription regulation in combination with the histone acetyltransferase NuA4 and histone H2A.Z exchanger SWR1.
Collapse
Affiliation(s)
- Saurabh K Bhardwaj
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA
- Worldwide Research and Development, Pfizer Inc, Houston, USA
| | - Solomon G Hailu
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA
- EpiCypher, Inc., Durham, USA
| | - Lola Olufemi
- National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - Sandipan Brahma
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, USA
| | - Soumyadipta Kundu
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA
- ZS Associates, Evanston, USA
| | - Swetansu K Hota
- University of California-San Francisco, Gladstone Institutes, San Francisco, USA
| | - Jim Persinger
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA
| | - Blaine Bartholomew
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, Science Park, Smithville, TX, 78957, USA.
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
8
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
9
|
Klein-Brill A, Joseph-Strauss D, Appleboim A, Friedman N. Dynamics of Chromatin and Transcription during Transient Depletion of the RSC Chromatin Remodeling Complex. Cell Rep 2020; 26:279-292.e5. [PMID: 30605682 PMCID: PMC6315372 DOI: 10.1016/j.celrep.2018.12.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rapid clearance of the remodeler affects nucleosome locations. Specifically, depletion of Sth1, the catalytic subunit of the RSC (remodel the structure of chromatin) complex, leads to rapid fill-in of nucleosome-free regions at gene promoters. These changes are reversible upon reintroduction of Sth1 and do not depend on DNA replication. RSC-dependent nucleosome positioning is pivotal in maintaining promoters of lowly expressed genes free from nucleosomes. In contrast, we observe that upon acute stress, the RSC is not necessary for the transcriptional response. Moreover, RSC-dependent nucleosome positions are tightly related to usage of specific transcription start sites. Our results suggest organizational principles that determine nucleosome positions with and without RSC and how these interact with the transcriptional process. Screen of all yeast ATP-dependent remodelers with a conditional degradation system RSC depletion leads to rapid replication-independent NFR fill-in Recovery of RSC fully reverses NFR fill-in and transcriptional changes RSC-dependent nucleosome positioning directly affect transcription start site choice
Collapse
Affiliation(s)
- Avital Klein-Brill
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daphna Joseph-Strauss
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Appleboim
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Friedman
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
10
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res 2019; 29:407-417. [PMID: 30683752 PMCID: PMC6396426 DOI: 10.1101/gr.242032.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1, and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. The contributions of these remodelers to chromatin organization are largely combinatorial, distinct, and nonredundant, supporting a model in which the +1 nucleosome is positioned by RSC and then used as a reference nucleosome by the spacing enzymes. Defective chromatin organization correlates with altered RNA polymerase II (Pol II) distribution. RSC-depleted cells exhibit low levels of elongating Pol II and high levels of terminating Pol II, consistent with defects in both termination and initiation, suggesting that RSC facilitates both. Cells lacking both ISW1 and CHD1 show the opposite Pol II distribution, suggesting elongation and termination defects. These cells have extremely disrupted chromatin, with high levels of closely packed dinucleosomes involving the second (+2) nucleosome. We propose that ISW1 and CHD1 facilitate Pol II elongation by separating closely packed nucleosomes.
Collapse
|
12
|
Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors. Biochem Soc Trans 2018; 46:1423-1430. [PMID: 30467122 DOI: 10.1042/bst20180043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
All ATP-dependent chromatin remodelers have a DNA translocase domain that moves along double-stranded DNA when hydrolyzing ATP, which is the key action leading to DNA moving through nucleosomes. Recent structural and biochemical data from a variety of different chromatin remodelers have revealed that there are three basic ways in which these remodelers self-regulate their chromatin remodeling activity. In several instances, different domains within the catalytic subunit or accessory subunits through direct protein-protein interactions can modulate the ATPase and DNA translocation properties of the DNA translocase domain. These domains or subunits can stabilize conformations that either promote or interfere with the ability of the translocase domain to bind or retain DNA during translocation or alter the ability of the enzyme to hydrolyze ATP. Second, other domains or subunits are often necessary to anchor the remodeler to nucleosomes to couple DNA translocation and ATP hydrolysis to DNA movement around the histone octamer. These anchors provide a fixed point by which remodelers can generate sufficient torque to disrupt histone-DNA interactions and mobilize nucleosomes. The third type of self-regulation is in those chromatin remodelers that space nucleosomes or stop moving nucleosomes when a particular length of linker DNA has been reached. We refer to this third class as DNA sensors that can allosterically regulate nucleosome mobilization. In this review, we will show examples of these from primarily the INO80/SWR1, SWI/SNF and ISWI/CHD families of remodelers.
Collapse
|
13
|
Chereji RV, Clark DJ. Major Determinants of Nucleosome Positioning. Biophys J 2018; 114:2279-2289. [PMID: 29628211 DOI: 10.1016/j.bpj.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
The compact structure of the nucleosome limits DNA accessibility and inhibits the binding of most sequence-specific proteins. Nucleosomes are not randomly located on the DNA but positioned with respect to the DNA sequence, suggesting models in which critical binding sites are either exposed in the linker, resulting in activation, or buried inside a nucleosome, resulting in repression. The mechanisms determining nucleosome positioning are therefore of paramount importance for understanding gene regulation and other events that occur in chromatin, such as transcription, replication, and repair. Here, we review our current understanding of the major determinants of nucleosome positioning: DNA sequence, nonhistone DNA-binding proteins, chromatin-remodeling enzymes, and transcription. We outline the major challenges for the future: elucidating the precise mechanisms of chromatin opening and promoter activation, identifying the complexes that occupy promoters, and understanding the multiscale problem of chromatin fiber organization.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
15
|
The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochem J 2017; 474:3455-3469. [PMID: 28899943 DOI: 10.1042/bcj20170172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022]
Abstract
The ISWI class of proteins consists of a family of chromatin remodeling ATPases that is ubiquitous in eukaryotes and predominantly functions to slide nucleosomes laterally. The yeast Saccharomyces cerevisiae Isw1 partners with several non-essential alternative subunits - Ioc2, Ioc3, or Ioc4 - to form two distinct complexes Isw1a and Isw1b. Besides its ATPase domain, Isw1 presents a C-terminal region formed by HAND, SANT, and SLIDE domains responsible for interaction with the Ioc proteins and optimal association of Isw1 to chromatin. Despite diverse studies on the functions of the Isw1-containing complexes, molecular evidence for a regulation of this chromatin remodeling ATPase is still elusive. Results presented here indicate that Isw1 is not only ubiquitylated but also strongly SUMOylated on multiple lysine residues by the redundant Siz1/Siz2 SUMO E3 ligases. However, Isw1 is a poor substrate of the Ulp1 and Ulp2 SUMO proteases, thus resulting in a high level of modification. Extensive site-directed mutagenesis allowed us to identify the major SUMOylation sites and develop a SUMO-defective mutant of Isw1. Using this molecular tool, we show that SUMOylation of Isw1 specifically facilitates and/or stabilizes its interaction with its cofactor Ioc3 and consequently the efficient recruitment of the Isw1-Ioc3 complex onto chromatin. Together these data reveal a new regulatory mechanism for this fascinating remodeling factor.
Collapse
|
16
|
Dargemont C, Babour A. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription. Nucleus 2017; 8:482-488. [PMID: 28816581 DOI: 10.1080/19491034.2017.1342916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The first step of gene expression results in the production of mRNA ribonucleoparticles (mRNPs) that are exported to the cytoplasm via the NPC for translation into the cytoplasm. During this process, the mRNA molecule synthesized by RNA polymerase II (Pol II) undergoes extensive maturation, folding and packaging events that are intimately coupled to its synthesis. All these events take place in a chromatin context and it is therefore not surprising that a growing number of studies recently reported specific contributions of chromatin dynamics to various steps of mRNP biogenesis. In this extra view, we replace our recent findings highlighting the contribution of the yeast chromatin remodeling complex ISW1 to nuclear mRNA quality control in the context of the recent literature.
Collapse
Affiliation(s)
- Catherine Dargemont
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| | - Anna Babour
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| |
Collapse
|
17
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
18
|
Chen YF, Chou CC, Gartenberg MR. Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 2016; 36:2039-50. [PMID: 27185881 PMCID: PMC4946433 DOI: 10.1128/mcb.00057-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Nocetti N, Whitehouse I. Nucleosome repositioning underlies dynamic gene expression. Genes Dev 2016; 30:660-72. [PMID: 26966245 PMCID: PMC4803052 DOI: 10.1101/gad.274910.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
Nocetti and Whitehouse report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.
Collapse
Affiliation(s)
- Nicolas Nocetti
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
20
|
Ocampo J, Chereji RV, Eriksson PR, Clark DJ. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res 2016; 44:4625-35. [PMID: 26861626 PMCID: PMC4889916 DOI: 10.1093/nar/gkw068] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure.
Collapse
Affiliation(s)
- Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Parnell TJ, Schlichter A, Wilson BG, Cairns BR. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 2015; 4:e06073. [PMID: 25821983 PMCID: PMC4423118 DOI: 10.7554/elife.06073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/28/2015] [Indexed: 12/19/2022] Open
Abstract
ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures. DOI:http://dx.doi.org/10.7554/eLife.06073.001 The genome of an organism can contain hundreds to thousands of genes. However, these genes are not all active at the same time. Instead, mechanisms exist that control when genes are switched off or on. One such mechanism alters how tightly DNA is packaged into a structure called chromatin. To form chromatin, DNA is wrapped around histone proteins at different points along its length; these structures are known as nucleosomes. Once formed, chromatin can either adopt a tightly packed form that represses gene activity or a less compact form associated with gene activation. The proteins that control how chromatin is packed are called ‘chromatin remodelers’. These proteins work in complexes that either disassemble chromatin—for example, by repositioning nucleosomes or removing histones—or organize chromatin by replacing nucleosomes and making it more compact. Studies in many organisms have identified two key families of chromatin remodelers. In yeast, the ISWI family of complexes assembles chromatin and a protein complex called RSC disassembles chromatin. Parnell, Schlichter et al. used a range of genetic techniques to investigate whether these two chromatin-remodeling complexes work against each other in a species of yeast called Saccharomyces cerevisiae. The results suggest that this is indeed the case. Both the ISWI complex and the RSC complex bind to regions of DNA called promoters, which are found at the start of a gene and help to regulate its activity. Parnell, Schlichter et al. found that the RSC complex helps to activate genes by establishing or maintaining regions of nucleosome-poor chromatin at a promoter. The chromatin is relaxed in these regions, which allows the proteins that activate genes to access the DNA. This effect is partially counteracted by the ISWI complex, which repositions nucleosomes across the promoters to fill the gaps created by the RSC complex. In comparison, Parnell, Schlichter et al. found that promoters that do not have regions of nucleosome-poor chromatin contain a larger number of both of the remodeling complexes and have a high turnover of histone proteins. This suggests that at these sites, the RSC proteins are needed to overcome the assembly of nucleosomes by the ISWI complex in order to activate the gene. Thus, these two chromatin remodelers, ISWI and RSC, compete at promoters to determine whether they contain or lack nucleosomes, which helps determine whether the gene is silent or active, respectively. Future work will look further at how the ‘winner’ is determined: how transcription factors or signaling systems within the cell bias the recruitment or activity of RSC or ISWI at particular promoters, to determine gene activity. DOI:http://dx.doi.org/10.7554/eLife.06073.002
Collapse
Affiliation(s)
- Timothy J Parnell
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Alisha Schlichter
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Boris G Wilson
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Bradley R Cairns
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
22
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
23
|
Park D, Shivram H, Iyer VR. Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 2014; 7:32. [PMID: 25395991 PMCID: PMC4230344 DOI: 10.1186/1756-8935-7-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/09/2014] [Indexed: 12/03/2022] Open
Abstract
Background Chromatin consists of ordered nucleosomal arrays that are controlled by highly conserved adenosine triphosphate (ATP)-dependent chromatin remodeling complexes. One such remodeler, chromodomain helicase DNA binding protein 1 (Chd1), is believed to play an integral role in nucleosomal organization, as the loss of Chd1 is known to disrupt chromatin. However, the specificity and basis for the functional and physical localization of Chd1 on chromatin remains largely unknown. Results Using genome-wide approaches, we found that the loss of Chd1 significantly disrupted nucleosome arrays within the gene bodies of highly transcribed genes. We also found that Chd1 is physically recruited to gene bodies, and that its occupancy specifically corresponds to that of the early elongating form of RNA polymerase, RNAPII Ser 5-P. Conversely, RNAPII Ser 5-P occupancy was affected by the loss of Chd1, suggesting that Chd1 is associated with early transcription elongation. Surprisingly, the occupancy of RNAPII Ser 5-P was affected by the loss of Chd1 specifically at intron-containing genes. Nucleosome turnover was also affected at these sites in the absence of Chd1. We also found that deletion of the histone methyltransferase for H3K36 (SET2) did not affect either Chd1 occupancy or nucleosome organization genome-wide. Conclusions Chd1 is specifically recruited onto the gene bodies of highly transcribed genes in an elongation-dependent but H3K36me3-independent manner. Chd1 co-localizes with the early elongating form of RNA polymerase, and affects the occupancy of RNAPII only at genes containing introns, suggesting a role in relieving splicing-related pausing of RNAPII. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-7-32) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daechan Park
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, TX 78712 USA
| | - Haridha Shivram
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, TX 78712 USA
| | - Vishwanath R Iyer
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, TX 78712 USA
| |
Collapse
|
24
|
Bartholomew B. ISWI chromatin remodeling: one primary actor or a coordinated effort? Curr Opin Struct Biol 2014; 24:150-5. [PMID: 24561830 DOI: 10.1016/j.sbi.2014.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 01/20/2023]
Abstract
The ISWI family of ATP-dependent chromatin remodelers regulates transcription of coding and noncoding RNA by mobilizing nucleosomes and controlling the length of linker DNA separating nucleosomes (spacing). Nucleosome movement is tightly coupled to the DNA translocation activity of the helicase domain in the catalytic subunit. There may be other domains besides the helicase domain needed to move DNA in and out of nucleosomes. The C terminus of the ISWI catalytic subunit with the conserved HAND, SANT, and SLIDE domains may be involved in nucleosome spacing. There are several models of how the C terminus may facilitate in ISWI remodeling such as regulating the activity of the helicase domain and causing the helicase domain to translocate more efficiently on DNA or to enhance its selectivity for nucleosomes. Another possibility is that domains like SLIDE promote linker DNA entering into nucleosomes in a coordinated manner with the helicase domain.
Collapse
Affiliation(s)
- Blaine Bartholomew
- The University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Smithville, TX 78957, United States.
| |
Collapse
|
25
|
Mueller-Planitz F, Klinker H, Becker PB. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 2013; 20:1026-32. [PMID: 24008565 DOI: 10.1038/nsmb.2648] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023]
Abstract
Nucleosomes, the basic organizational units of chromatin, package and regulate eukaryotic genomes. ATP-dependent nucleosome-remodeling factors endow chromatin with structural flexibility by promoting assembly or disruption of nucleosomes and the exchange of histone variants. Furthermore, most remodeling factors induce nucleosome movements through sliding of histone octamers on DNA. We summarize recent progress toward unraveling the basic nucleosome sliding mechanism and the interplay of the remodelers' DNA translocases with accessory domains. Such domains optimize and regulate the basic sliding reaction and exploit sliding to achieve diverse structural effects, such as nucleosome positioning or eviction, or the regular spacing of nucleosomes in chromatin.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- 1] Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, Munich, Germany. [2] Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | |
Collapse
|
26
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
27
|
Abstract
Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called "nucleosome remodeling" ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone-DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. "Remodeling" may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states.
Collapse
|
28
|
Balancing chromatin remodeling and histone modifications in transcription. Trends Genet 2013; 29:621-9. [PMID: 23870137 DOI: 10.1016/j.tig.2013.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive crosstalk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relations between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the imitation-switch (ISWI) and chromodomain helicase DNA-binding protein 1 (CHD1) chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast.
Collapse
|
29
|
van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 2013; 9:e1003479. [PMID: 23658529 PMCID: PMC3642058 DOI: 10.1371/journal.pgen.1003479] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. The genome in eukaryotic cells is packaged into nucleosomes, which play critical roles in regulating where and when different genes are expressed. For example, nucleosomes can physically block access of transcription factor to sites on DNA or direct regulatory proteins to DNA. Consistent with these roles, nucleosomes assume a stereotypical pattern around genes: they are depleted at the promoter region that marks the start of genes and assume a regularly spaced array within genes. To identify factors involved in this organization, we generated high-resolution nucleosome and transcriptome maps for 50 loss-of-function mutants with known or suspected roles in nucleosome biology in budding yeast. We show that nucleosome organization is determined by the combined effects of many factors that often exert opposing forces on nucleosomes. We further demonstrate that specific nucleosomes can be positioned independently within genes and that repositioning of nucleosomes at the start of genes may affect expression of these genes in response to environmental stimuli. Data mining of this extensive resource allowed us to show that general transcription factors act as insulators at diverging promoters to prevent the formation of cryptic transcripts, and also revealed 36 novel transcripts regulated by the Tup1/Cyc8 complex.
Collapse
Affiliation(s)
- Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kyle Tsui
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Sanie Mnaimneh
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
30
|
Teif VB, Erdel F, Beshnova DA, Vainshtein Y, Mallm JP, Rippe K. Taking into account nucleosomes for predicting gene expression. Methods 2013; 62:26-38. [PMID: 23523656 DOI: 10.1016/j.ymeth.2013.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/10/2013] [Indexed: 01/10/2023] Open
Abstract
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum-DKFZ & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 2013; 50:93-103. [PMID: 23478442 DOI: 10.1016/j.molcel.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/15/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here, we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a mechanism for the recruitment of a chromatin remodeling enzyme and define a function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes.
Collapse
|
32
|
Zentner GE, Tsukiyama T, Henikoff S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet 2013; 9:e1003317. [PMID: 23468649 PMCID: PMC3585014 DOI: 10.1371/journal.pgen.1003317] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, Saccharomyces cerevisiae ISWI and CHD remodelers require ∼30-85 bp of extranucleosomal DNA to reposition nucleosomes, but linker DNA in S. cerevisiae averages <20 bp. To address this discrepancy between in vitro and in vivo observations, we have mapped the genomic distributions of the yeast Isw1, Isw2, and Chd1 remodelers at base-pair resolution on native chromatin. Although these remodelers act in gene bodies, we find that they are also highly enriched at nucleosome-depleted regions (NDRs), where they bind to extended regions of DNA adjacent to particular transcription factors. Surprisingly, catalytically inactive remodelers show similar binding patterns. We find that remodeler occupancy at NDRs and gene bodies is associated with nucleosome turnover and transcriptional elongation rate, suggesting that remodelers act on regions of transient nucleosome unwrapping or depletion within gene bodies subsequent to transcriptional elongation.
Collapse
Affiliation(s)
- Gabriel E. Zentner
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
33
|
Reese JC. The control of elongation by the yeast Ccr4-not complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:127-33. [PMID: 22975735 PMCID: PMC3545033 DOI: 10.1016/j.bbagrm.2012.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The Ccr4-Not complex is a highly conserved nine-subunit protein complex that has been implicated in virtually all aspects of gene control, including transcription, mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. Understanding its mechanisms of action has been difficult due to the size of the complex and the fact that it regulates mRNAs and proteins at many levels in both the cytoplasm and the nucleus. Recently, biochemical and genetic studies on the yeast Ccr4-Not complex have revealed insights into its role in promoting elongation by RNA polymerase II. This review will describe what is known about the Ccr4-Not complex in regulating transcription elongation and its possible collaboration with other factors traveling with RNAPII across genes. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Joseph C Reese
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Vasicova P, Stradalova V, Halada P, Hasek J, Malcova I. Nuclear import of chromatin remodeler Isw1 is mediated by atypical bipartite cNLS and classical import pathway. Traffic 2012; 14:176-93. [PMID: 23121014 DOI: 10.1111/tra.12025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
Abstract
The protein Isw1 of Saccharomyces cerevisiae is an imitation-switch chromatin-remodeling factor. We studied the mechanisms of its nuclear import and found that the nuclear localization signal (NLS) mediating the transport of Isw1 into the nucleus is located at the end of the C-terminus of the protein (aa1079-1105). We show that it is an atypical bipartite signal with an unconventional linker of 19 aa (KRIR X(19) KKAK) and the only nuclear targeting signal within the Isw1 molecule. The efficiency of Isw1 nuclear import was found to be modulated by changes to the amino acid composition in the vicinity of the KRIR motif, but not by the linker length. Live-cell imaging of various karyopherin mutants and in vitro binding assays of Isw1NLS to importin-α revealed that the nuclear translocation of Isw1 is mediated by the classical import pathway. Analogous motifs to Isw1NLS are highly conserved in Isw1 homologues of other yeast species, and putative bipartite cNLS were identified in silico at the end of the C-termini of imitation switch (ISWI) proteins from higher eukaryotes. We suggest that the C-termini of the ISWI family proteins play an important role in their nuclear import.
Collapse
Affiliation(s)
- Pavla Vasicova
- Laboratory of Cell Reproduction, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, Cz-14220, Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 2012; 31:4388-403. [PMID: 23103765 DOI: 10.1038/emboj.2012.289] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022] Open
Abstract
Nucleosome positioning governs access to eukaryotic genomes. Many genes show a stereotypic organisation at their 5'end: a nucleosome free region just upstream of the transcription start site (TSS) followed by a regular nucleosomal array over the coding region. The determinants for this pattern are unclear, but nucleosome remodelers are likely critical. Here we study the role of remodelers in global nucleosome positioning in S. pombe and the corresponding changes in expression. We find a striking evolutionary shift in remodeler usage between budding and fission yeast. The S. pombe RSC complex does not seem to be involved in nucleosome positioning, despite its prominent role in S. cerevisiae. While S. pombe lacks ISWI-type remodelers, it has two CHD1-type ATPases, Hrp1 and Hrp3. We demonstrate nucleosome spacing activity for Hrp1 and Hrp3 in vitro, and that together they are essential for linking regular genic arrays to most TSSs in vivo. Impaired arrays in the absence of either or both remodelers may lead to increased cryptic antisense transcription, but overall gene expression levels are only mildly affected.
Collapse
Affiliation(s)
- Julia Pointner
- Adolf-Butenandt-Institut, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Teif VB, Vainshtein Y, Caudron-Herger M, Mallm JP, Marth C, Höfer T, Rippe K. Genome-wide nucleosome positioning during embryonic stem cell development. Nat Struct Mol Biol 2012; 19:1185-92. [PMID: 23085715 DOI: 10.1038/nsmb.2419] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/19/2012] [Indexed: 01/13/2023]
Abstract
We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lafon A, Petty E, Pillus L. Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet 2012; 8:e1002994. [PMID: 23055944 PMCID: PMC3464200 DOI: 10.1371/journal.pgen.1002994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 08/13/2012] [Indexed: 12/30/2022] Open
Abstract
Chromatin-modifying enzymes and ATP-dependent remodeling complexes have been intensely studied individually, yet how these activities are coordinated to ensure essential cell functions such as transcription, replication, and repair of damage is not well understood. In this study, we show that the critical loss of Sas3 and Gcn5 acetyltransferases in yeast can be functionally rescued by inactivation of ISWI remodelers. This genetic interaction depends on the ATPase activities of Isw1 and Isw2, suggesting that it involves chromatin remodeling activities driven by the enzymes. Genetic dissection of the Isw1 complexes reveals that the antagonistic effects are mediated specifically by the Isw1a complex. Loss of Sas3 and Gcn5 correlates with defective RNA polymerase II (RNAPII) occupancy at actively transcribed genes, as well as a significant loss of H3K14 acetylation. Inactivation of the Isw1a complex in the acetyltransferase mutants restores RNAPII recruitment at active genes, indicating that transcriptional regulation may be the mechanism underlying suppression. Dosage studies and further genetic dissection reveal that the Isw1b complex may act in suppression through down-regulation of Isw1a. These studies highlight the importance of balanced chromatin modifying and remodeling activities for optimal transcription and cell growth. In eukaryotes, essential processes such as transcription, replication, and repair of damage occur in the context of chromatin. The structure of chromatin is tightly regulated during the cell cycle by chromatin-modifying enzymes, including acetyltransferases, and ATP-dependent remodeling complexes. Although there has been extensive characterization of their individual functions, little is known about how their activities are coordinated to maintain cell viability. In this study, we show that the critical loss of Sas3 and Gcn5 acetyltransferases can be functionally rescued by inactivation of ISWI remodelers. At a molecular level, the effects on cell viability tightly correlate with the recruitment of RNA polymerase II (RNAPII) at active genes, suggesting that transcriptional regulation may be the mechanism underlying cell viability rescue. Our genetic analyses reveal distinct roles for the two Isw1a and Isw1b complexes; in particular, the antagonistic effects are mediated specifically by the Isw1a complex. These studies highlight the importance of balanced chromatin modifying and remodeling activities for optimal transcription and cell growth.
Collapse
Affiliation(s)
- Anne Lafon
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, La Jolla, California, United States of America
| | - Emily Petty
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, La Jolla, California, United States of America
| | - Lorraine Pillus
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 2012; 149:1461-73. [PMID: 22726434 DOI: 10.1016/j.cell.2012.04.036] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 01/10/2023]
Abstract
How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.
Collapse
Affiliation(s)
- Kuangyu Yen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
39
|
Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 2012; 19:884-92. [PMID: 22922743 PMCID: PMC3560298 DOI: 10.1038/nsmb.2312] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 05/31/2012] [Indexed: 12/25/2022]
Abstract
Set2-mediated methylation of histone H3 Lys36 (H3K36) is a mark associated with the coding sequences of actively transcribed genes, yet plays a negative role during transcription elongation. It prevents trans-histone exchange over coding regions and signals for histone deacetylation in the wake of RNA polymerase II (RNAPII) passage. We have found that in Saccharomyces cerevisiae the Isw1b chromatin-remodeling complex is specifically recruited to open reading frames (ORFs) by H3K36 methylation through the PWWP domain of its Ioc4 subunit in vivo and in vitro. Isw1b acts in conjunction with Chd1 to regulate chromatin structure by preventing trans-histone exchange from taking place over coding regions and thus maintains chromatin integrity during transcription elongation by RNA polymerase II.
Collapse
|
40
|
Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 2012; 32:3479-85. [PMID: 22751925 DOI: 10.1128/mcb.00389-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H3 lysine 36 methylation is a ubiquitous hallmark of productive transcription elongation. Despite the prevalence of this histone posttranslational modification, however, the downstream functions triggered by this mark are not well understood. In this study, we showed that H3K36 methylation promoted the chromatin interaction of the Isw1b chromatin-remodeling complex in Saccharomyces cerevisiae. Similar to H3K36 methylation, Isw1b was found at the mid- and 3' regions of transcribed genes genome wide, and its presence at active genes was dependent on H3K36 methylation and the PWWP domain of the Isw1b subunit, Ioc4. Moreover, purified Isw1b preferentially interacted with recombinant nucleosomes that were methylated at lysine 36, and this interaction also required the Ioc4 PWWP domain. While H3K36 methylation has been shown to regulate the binding of numerous factors, this is the first time that it has been shown to facilitate targeting of a chromatin-remodeling complex.
Collapse
|
41
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
42
|
Owen-Hughes T, Gkikopoulos T. Making sense of transcribing chromatin. Curr Opin Cell Biol 2012; 24:296-304. [PMID: 22410403 PMCID: PMC3432231 DOI: 10.1016/j.ceb.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/03/2022]
Abstract
Eukaryotic cells package their genomes into a nucleoprotein form called chromatin. The basic unit of chromatin is the nucleosome, formed by the wrapping of ∼147bp of DNA around an octameric complex of core histones. Advances in genomic technologies have enabled the locations of nucleosomes to be mapped across genomes. This has revealed a striking organisation with respect to transcribed genes in a diverse range of eukaryotes. This consists of a nucleosome depleted region upstream of promoters, with an array of well spaced nucleosomes extending into coding regions. This observation reinforces the links between chromatin organisation and transcription. Central to this is the paradox that while chromatin is required by eukaryotes to restrict inappropriate access to DNA, this must be overcome in order for genetic information to be expressed. This conundrum is at its most flagrant when considering the need for nucleic acid polymerase's to transit 1000's of based pairs of DNA wrapped as arrays of nucleosomes.
Collapse
Affiliation(s)
- Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
43
|
Teif VB, Shkrabkou AV, Egorova VP, Krot VI. Nucleosomes in gene regulation: Theoretical approaches. Mol Biol 2012. [DOI: 10.1134/s002689331106015x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Abstract
Genome-wide patterns of nucleosome occupancy and positioning have greatly impacted on studies of chromatin structure, yet these studies require extensive computational analysis which is crucial for the quality of the resulting datasets and inferred conclusions. This chapter describes the computational steps required in order to estimate genome-wide patterns of nucleosome occupancy and positioning from raw data obtained from high-throughput sequencing of mononucleosome DNA fragments. Potential pitfalls that may be encountered in such analysis and computational quality controls are further discussed in Subheading 3.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
45
|
Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 2011; 25:2254-65. [PMID: 22056671 DOI: 10.1101/gad.177238.111] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).
Collapse
Affiliation(s)
- Kiran Batta
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | | | | | | | | |
Collapse
|
46
|
Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, Workman JL, Barton G, Owen-Hughes T. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 2011; 333:1758-60. [PMID: 21940898 PMCID: PMC3428865 DOI: 10.1126/science.1206097] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here, we show that the combined action of Isw1 and Chd1 nucleosome-spacing enzymes is required to maintain this organization. In the absence of these enzymes, regular positioning of the majority of nucleosomes is lost. Exceptions include the region upstream of the promoter, the +1 nucleosome, and a subset of locations distributed throughout coding regions where other factors are likely to be involved. These observations indicate that adenosine triphosphate-dependent remodeling enzymes are responsible for directing the positioning of the majority of nucleosomes within the Saccharomyces cerevisiae genome.
Collapse
Affiliation(s)
- Triantaffyllos Gkikopoulos
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pieta Schofield
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Division of Biological Chemistry and Drug discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vijender Singh
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marina Pinskaya
- Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU
| | - Jane Mellor
- Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU
| | - Michaela Smolle
- Stowers Institute for Medical Research, 1000E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L. Workman
- Stowers Institute for Medical Research, 1000E. 50 Street, Kansas City, MO 64110, USA
| | - Geoffrey Barton
- Division of Biological Chemistry and Drug discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
47
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
|
48
|
Hu G, Schones DE, Cui K, Ybarra R, Northrup D, Tang Q, Gattinoni L, Restifo NP, Huang S, Zhao K. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1. Genome Res 2011; 21:1650-8. [PMID: 21795385 DOI: 10.1101/gr.121145.111] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enhancers of transcription activate transcription via binding of sequence-specific transcription factors to their target sites in chromatin. In this report, we identify GATA1-bound distal sites genome-wide and find a global reorganization of the nucleosomes at these potential enhancers during differentiation of hematopoietic stem cells (HSCs) to erythrocytes. We show that the catalytic subunit BRG1 of BAF complexes localizes to these distal sites during differentiation and generates a longer nucleosome linker region surrounding the GATA1 sites by shifting the flanking nucleosomes away. Intriguingly, we find that the nucleosome shifting specifically facilitates binding of TAL1 but not GATA1 and is linked to subsequent transcriptional regulation of target genes.
Collapse
Affiliation(s)
- Gangqing Hu
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei W, Pelechano V, Järvelin AI, Steinmetz LM. Functional consequences of bidirectional promoters. Trends Genet 2011; 27:267-76. [PMID: 21601935 PMCID: PMC3123404 DOI: 10.1016/j.tig.2011.04.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Several studies have shown that promoters of protein-coding genes are origins of pervasive non-coding RNA transcription and can initiate transcription in both directions. However, only recently have researchers begun to elucidate the functional implications of this bidirectionality and non-coding RNA production. Increasing evidence indicates that non-coding transcription at promoters influences the expression of protein-coding genes, revealing a new layer of transcriptional regulation. This regulation acts at multiple levels, from modifying local chromatin to enabling regional signal spreading and more distal regulation. Moreover, the bidirectional activity of a promoter is regulated at multiple points during transcription, giving rise to diverse types of transcripts.
Collapse
Affiliation(s)
| | | | | | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
50
|
Zhang L, Ma H, Pugh BF. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 2011; 21:875-84. [PMID: 21515815 DOI: 10.1101/gr.117465.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plasticity of chromatin organization as chromosomes undergo a full compendium of transactions including DNA replication, recombination, chromatin compaction, and changes in transcription during a developmental program is unknown. We generated genome-wide maps of individual nucleosome organizational states, including positions and occupancy of all nucleosomes, and H3K9 acetylation and H3K4, K36, K79 tri-methylation, during meiotic spore development (gametogenesis) in Saccharomyces. Nucleosome organization was remarkably constant as the genome underwent compaction. However, during an acute meiotic starvation response, nucleosomes were repositioned to alter the accessibility of select transcriptional start sites. Surprisingly, the majority of the meiotic programs did not use this nucleosome repositioning, but was dominated by antisense control. Histone modification states were also remarkably stable, being abundant at specific nucleosome positions at three-quarters of all genes, despite most genes being rarely transcribed. Our findings suggest that, during meiosis, the basic features of genomic chromatin organization are essentially a fixed property of chromosomes, but tweaked in a restricted and program-specific manner.
Collapse
Affiliation(s)
- Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|