1
|
Bordbar F, Rigi A, Mastanabad MV, Rohani F, Ghaedi E, Dhiaa SM, Asadi F, Maragheh SM. Investigating miR-9 and miR-222 in CSF and Plasma of Neuroblastoma Patients as Metastatic and Apoptotic-Related Markers. Cell Biochem Biophys 2024:10.1007/s12013-024-01570-9. [PMID: 39663279 DOI: 10.1007/s12013-024-01570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 12/13/2024]
Abstract
Neuroblastoma is a cancer that occurs due to abnormal development of the sympathetic nervous system. The dysregulation of miR-9 and miR-222 plays a crucial role in neuroblastoma development. These microRNAs have a significant relationship with PTEN, caspase-9, and MMP14, which can potentially form the basis for the specific diagnosis and treatment of this disease. In our study, two neuroblastoma cell lines were divided into three groups based on whether they had been treated with miR-9, anti-miR-9, miR-222, or both. We evaluated various parameters in these groups, including migration (through a wound healing assay), apoptosis (using flow cytometry), and gene expression (through qRT-PCR). Additionally, we measured the expression levels of MMP14, miR-9, and miR-222 in plasma and CSF samples from neuroblastoma patients using ELISA and qRT-PCR. We found that patients with neuroblastoma had higher levels of MMP14 and miR-222 mRNA expression but lower levels of miR-9 mRNA expression. Furthermore, after treating the cell lines with anti-miR-9 and anti-miR-222, we observed increased levels of MMP14 expression, as well as PTEN and caspase-9. Additionally, the treatment with anti-miR-222 and anti-miR-9 led to an increase in the frequency of apoptosis and migration of cancer cells. Our research shows that the dysregulation of miR-9, miR-222, and MMP14 could be key indicators in the pathogenesis of neuroblastoma. We also found that up-regulation of miR-9 was associated with decreased disease severity, whereas up-regulation of miR-222 and MMP14 was linked to increased disease severity.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Chicken Genetics, Breeding And Reproduction, Ministry of Agriculture And Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Fattah Rohani
- Faculty of Veterinary Medicine of Shahrekord, Shahrekord, Iran
| | - Elham Ghaedi
- Department of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Fatemeh Asadi
- Department of Genetics, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Salar Momen Maragheh
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Biotechnology, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| |
Collapse
|
2
|
Meco D, Attinà G, Mastrangelo S, Navarra P, Ruggiero A. Emerging Perspectives on the Antiparasitic Mebendazole as a Repurposed Drug for the Treatment of Brain Cancers. Int J Mol Sci 2023; 24:1334. [PMID: 36674870 PMCID: PMC9862092 DOI: 10.3390/ijms24021334] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.
Collapse
Affiliation(s)
- Daniela Meco
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Structural effects driven by rare point mutations in amylin hormone, the type II diabetes-associated peptide. Biochim Biophys Acta Gen Subj 2021; 1865:129935. [PMID: 34044067 DOI: 10.1016/j.bbagen.2021.129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Amylin is a 37-amino-acid peptide hormone co-secreted with insulin, which participates in glucose homeostasis. This hormone is able to aggregate in a β-sheet conformation and deposit in islet amyloids, a hallmark in type II diabetes. Since amylin is a gene-encoded hormone, this peptide has variants caused by point mutations that can impact its functions. METHODS Here, we analyzed the structural effects caused by S20G and G33R point mutations which, according to the 1000 Genomes Project, have frequency in East Asian and European populations, respectively. The analyses were performed by means of aggrescan server, SNP functional effect predictors, and molecular dynamics. RESULTS We found that both mutations have aggregation potential and cause changes in the monomeric forms when compared with wild-type amylin. Furthermore, comparative analyses with pramlintide, an amylin drug analogue, allowed us to infer that second α-helix maintenance may be related to the aggregation potential. CONCLUSIONS The S20G mutation has been described as pathologically related, which is in agreement with our findings. In addition, our data suggest that the G33R mutation might have a deleterious effect. The data presented here also provide new therapy opportunities, whether for creating more effective drugs for diabetes or implementing specific treatment for patients with these mutations. GENERAL SIGNIFICANCE Our data could help to better understand the impact of mutations on the wild-type amylin sequence, as a starting point for the evaluation and characterization of other variations. Moreover, these findings could improve the health of patients with type II diabetes.
Collapse
|
4
|
Cheung FKM, Qin J. The Methods and Tools for Molecular Network Construction. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Borisov N, Ilnytskyy Y, Byeon B, Kovalchuk O, Kovalchuk I. System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation. Int J Mol Sci 2020; 22:ijms22010388. [PMID: 33396562 PMCID: PMC7795809 DOI: 10.3390/ijms22010388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
There are many varieties of Cannabis sativa that differ from each other by composition of cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often very different, with some being more efficient than others. This report describes the development of a method and software for the analysis of the efficiency of various cannabis extracts to detect the anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput gene expression profiling data but can potentially use other omics data as well. According to the signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway activities using a signaling pathway impact analysis (SPIA) method. The method was tested by inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then exposing these tissues to various extracts and then performing transcriptome analysis. The analysis showed a different efficiency of the various extracts in restoring the transcriptome changes to the pre-inflammation state, thus allowing to calculate a different cannabis drug efficiency index (CDEI).
Collapse
Affiliation(s)
- Nicolas Borisov
- Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny, Moscow Region 141701, Russia;
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (Y.I.); (B.B.); (O.K.)
- Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada
| | - Boseon Byeon
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (Y.I.); (B.B.); (O.K.)
- Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada
- Biomedical and Health Informatics, Computer Science Department, State University of New York, 2 S Clinton St, Syracuse, NY 13202, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (Y.I.); (B.B.); (O.K.)
- Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (Y.I.); (B.B.); (O.K.)
- Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada
- Correspondence:
| |
Collapse
|
6
|
Ariey-Bonnet J, Carrasco K, Le Grand M, Hoffer L, Betzi S, Feracci M, Tsvetkov P, Devred F, Collette Y, Morelli X, Ballester P, Pasquier E. In silico molecular target prediction unveils mebendazole as a potent MAPK14 inhibitor. Mol Oncol 2020; 14:3083-3099. [PMID: 33021050 PMCID: PMC7718943 DOI: 10.1002/1878-0261.12810] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50 = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.
Collapse
Affiliation(s)
- Jeremy Ariey-Bonnet
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Kendall Carrasco
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Marion Le Grand
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Laurent Hoffer
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Stéphane Betzi
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Mikael Feracci
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Philipp Tsvetkov
- CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Pharm, Aix Marseille Université, France
| | - Francois Devred
- CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Pharm, Aix Marseille Université, France
| | - Yves Collette
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Xavier Morelli
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Pedro Ballester
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| | - Eddy Pasquier
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France
| |
Collapse
|
7
|
Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat Commun 2020; 11:3296. [PMID: 32620799 PMCID: PMC7335104 DOI: 10.1038/s41467-020-17090-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in precision oncology. To optimize patient-specific therapeutic strategies, here we couple pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensitivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of pathways in helping to achieve the goal of precision medicine by uncovering dozens of predictive biomarkers.
Collapse
|
8
|
Chagoyen M, Ranea JAG, Pazos F. Applications of molecular networks in biomedicine. Biol Methods Protoc 2019; 4:bpz012. [PMID: 32395629 PMCID: PMC7200821 DOI: 10.1093/biomethods/bpz012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Due to the large interdependence between the molecular components of living systems, many phenomena, including those related to pathologies, cannot be explained in terms of a single gene or a small number of genes. Molecular networks, representing different types of relationships between molecular entities, embody these large sets of interdependences in a framework that allow their mining from a systemic point of view to obtain information. These networks, often generated from high-throughput omics datasets, are used to study the complex phenomena of human pathologies from a systemic point of view. Complementing the reductionist approach of molecular biology, based on the detailed study of a small number of genes, systemic approaches to human diseases consider that these are better reflected in large and intricate networks of relationships between genes. These networks, and not the single genes, provide both better markers for diagnosing diseases and targets for treating them. Network approaches are being used to gain insight into the molecular basis of complex diseases and interpret the large datasets associated with them, such as genomic variants. Network formalism is also suitable for integrating large, heterogeneous and multilevel datasets associated with diseases from the molecular level to organismal and epidemiological scales. Many of these approaches are available to nonexpert users through standard software packages.
Collapse
Affiliation(s)
- Monica Chagoyen
- Computational Systems Biology Group, Systems Biology Program, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, Systems Biology Program, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, Zorrieh Zahra A, Forouzanfar N, Arabameri H, Tavallaie M. miR-9: From function to therapeutic potential in cancer. J Cell Physiol 2019; 234:14651-14665. [PMID: 30693512 DOI: 10.1002/jcp.28210] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Malignant neoplasms are regarded as the main cause of death around the world; hence, many research studies were conducted to further perceive molecular mechanisms, treatment, and cancer prognosis. Cancer is known as a major factor for health-related problems in the world. The main challenges associated with these diseases are prompt diagnosis, disease remission classification and treatment status forecast. Therefore, progressing in such areas by developing new and optimized methods with the help of minimally invasive biological markers such as circular microRNAs (miRNAs) can be considered important. miRNA interactions with target genes have specified their role in development, apoptosis, differentiation, and proliferation and also, confirm direct miRNA function in cancer. Different miRNAs expression levels in various types of malignant neoplasms have been observed to be associated with prognosis of various carcinomas. miR-9 seems to implement opposite practices in different tissues or under various cancer incidences by influencing different genes. Aberrant miR-9 levels have been observed in many cancer types. Therefore, we intended to investigate the precise role of miR-9 in patients with malignant neoplasms. To this end, in this study, we attempted to examine different studies to clarify the overall role of miR-9 as a prognostic marker in several human tumors. The presented data in this study can help us to find the novel therapeutic avenues for treatment of human cancers.
Collapse
Affiliation(s)
- Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ali Mohammadi
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | | | - Sara Ghavidel
- Department Cell and Molecular Biology, Tonekabon Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Kadkhoda
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Atieh Zorrieh Zahra
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Narjes Forouzanfar
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arabameri
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| |
Collapse
|
10
|
Li Q, Chang Y, Mu L, Song Y. MicroRNA-9 enhances chemotherapy sensitivity of glioma to TMZ by suppressing TOPO II via the NF-κB signaling pathway. Oncol Lett 2019; 17:4819-4826. [PMID: 31186688 PMCID: PMC6507329 DOI: 10.3892/ol.2019.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS) that develops chemotherapy resistance. The microRNA (miRNA) miR-9 is a tissue-specific miRNA of the CNS that may serve a key role in the modulation of chemotherapy sensitivity. The aim of the present study was to investigate the effect of miR-9 on glioma chemotherapy sensitivity by altering the expression of miR-9 in U251 glioma cells by viral transfection and subsequently treating with gradient concentrations of temozolomide (TMZ). Cell viability, apoptosis and the cell cycle were examined, and drug resistance genes were analyzed by western blotting. The role of nuclear factor κB (NF-κB) in this regulation was also examined. The results revealed that the susceptibility of glioma cells to TMZ was enhanced by miR-9 overexpression. When miR-9 and TMZ were applied together, the apoptotic rate and percentage of cells arrested at the G2/M stage were significantly higher compared with either treatment alone. Topoisomerase II expression was suppressed by miR-9 via the NF-κB signaling pathway, which may be responsible for the sensitization. The results of the present study suggested that miR-9 may be a potential target for glioma chemotherapy.
Collapse
Affiliation(s)
- Qingla Li
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yingnan Chang
- First Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwen Song
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, Cai W, Deng Y. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem 2018; 120:6698-6708. [PMID: 30506951 PMCID: PMC6587862 DOI: 10.1002/jcb.27966] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Glioma is one of the most common primary malignancies of the central nervous system, which has aggressive clinical behavior and a poorer prognosis. MicroRNAs (miRs) are a class of small noncoding RNAs that function as mediators of gene expression, which can be sponged by circRNA provided with a closed circular structure. Dysregulations of circular RNAs (circRNAs) and miRs have been implicated in the development and progression of glioma. In the current study, we investigated the role of circular RNA hsa_circ_0076248 in mediating the oncogenesis of glioma by sponging miR‐181a to modulate silent information regulator 1 (SIRT1) expression in vitro and in vivo. The quantitative real‐time polymerase chain reaction results showed that the expression of miR‐181a was significantly decreased in glioma tissues and cell lines compared with normal brain tissues and normal gliocyte, respectively, and the expression of hsa_circ_0076248 and SIRT1 demonstrated the opposite. Bioinformatics analysis identified hsa_circ_0076248 could sponge miR‐181a, and miR‐181a could target the mRNA of SIRT1. Our results verified that downregulating hsa_circ_0076248 or upregulating miR‐181a could depress the proliferation and invasion of glioma in vitro and in vivo. The experiment also showed that downregulating hsa_circ_0076248 or upregulating miR‐181a could remarkably promote the temozolomide chemotherapy sensitivity. Furthermore, Western blot analysis testified that downregulating hsa_circ_0076248 or upregulating miR‐181a could promote the expression of p53 and SIRT1. In summary, our study sheds light on the regulatory mechanism of hsa_circ_0076248 in glioma growth and invasion via sponging miR‐181a, which downregulates the SIRT1 expression and also suggests that hsa_circ_0076248, miR‐181a, and SIRT1 may serve as potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yutao Huang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiying Zhao
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ashish Jung Thapa
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenpeng Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wangqing Cai
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiol Oncol 2018; 52:422-432. [PMID: 30511935 PMCID: PMC6287177 DOI: 10.2478/raon-2018-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and the most malignant glioma subtype. Among numerous genetic alterations, miRNAs contribute to pathogenesis of GBM and it is suggested that also to GBM recurrence and resistance to therapy. Based on publications, we have selected 11 miRNAs and analyzed their expression in GBM. We hypothesized that selected miRNAs are differentially expressed and involved in primary as well as in recurrent GBM, that show significant expressional differences when different treatment options are in question, and that are related to certain patients and tumor characteristics. Patients and methods Paraffin embedded tissues, obtained from primary and corresponding recurrent tumor from 83 patients with primary GBM were used. Eleven miRNAs (miR-7, miR-9, miR-15b, miR-21, miR-26b, miR-124a, miR-199a, let-7a, let-7b, let-7d, and let-7f) were selected for qPCR expression analysis. For patients who received temozolamide (TMZ) as chemotherapeutic drug, O6-methylguanine-DNA methyltransferase (MGMT) methylation status was defined using the methyl-specific PCR. Results There was a significant change in expression of miR-7, miR-9, miR-21, miR-26b, mirR-124a, miR-199a and let-7f in recurrent tumor compared to the primary. In recurrent tumor, miR-15b, let-7d and let-7f significantly changed comparing both treatment options. We also observed difference in progression free survival between patients that received radiotherapy and patients that received radiotherapy and chemotherapy, and longer survival for patients who received chemotherapy after second surgery compared to not treated patients. miR-26b showed correlation to progression free survival and let-7f to overall survival. We did not find any expression difference between the tumors with and without methylated MGMT. Conclusions Our data suggest that analyzed miRNAs may not only contribute to pathogenesis of primary GBM, but also to tumor progression and its recurrence. Moreover, expression of certain miRNAs appears to be therapy-dependent and as such they might serve as additional biomarker for recurrence prediction and potentially predict a therapy-resistance.
Collapse
|
13
|
Inference of Genome-Scale Gene Regulatory Networks: Are There Differences in Biological and Clinical Validations? MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2018. [DOI: 10.3390/make1010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Causal networks, e.g., gene regulatory networks (GRNs) inferred from gene expression data, contain a wealth of information but are defying simple, straightforward and low-budget experimental validations. In this paper, we elaborate on this problem and discuss distinctions between biological and clinical validations. As a result, validation differences for GRNs reflect known differences between basic biological and clinical research questions making the validations context specific. Hence, the meaning of biologically and clinically meaningful GRNs can be very different. For a concerted approach to a problem of this size, we suggest the establishment of the HUMAN GENE REGULATORY NETWORK PROJECT which provides the information required for biological and clinical validations alike.
Collapse
|
14
|
A Glimpse to Background and Characteristics of Major Molecular Biological Networks. BIOMED RESEARCH INTERNATIONAL 2015; 2015:540297. [PMID: 26491677 PMCID: PMC4605226 DOI: 10.1155/2015/540297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/22/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
Recently, biology has become a data intensive science because of huge data sets produced by high throughput molecular biological experiments in diverse areas including the fields of genomics, transcriptomics, proteomics, and metabolomics. These huge datasets have paved the way for system-level analysis of the processes and subprocesses of the cell. For system-level understanding, initially the elements of a system are connected based on their mutual relations and a network is formed. Among omics researchers, construction and analysis of biological networks have become highly popular. In this review, we briefly discuss both the biological background and topological properties of major types of omics networks to facilitate a comprehensive understanding and to conceptualize the foundation of network biology.
Collapse
|
15
|
Mucaj V, Lee SS, Skuli N, Giannoukos DN, Qiu B, Eisinger-Mathason TK, Nakazawa MS, Shay JE, Gopal PP, Venneti S, Lal P, Minn AJ, Simon MC, Mathew LK. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene 2015; 34:2204-14. [PMID: 24954504 PMCID: PMC4275412 DOI: 10.1038/onc.2014.168] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023]
Abstract
Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. As miR-124 expression is repressed in various cancer types (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared with regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 reintroduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression.
Collapse
Affiliation(s)
- Vera Mucaj
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel S. Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- INSERM U1037, Institute Claudius Regaud, 20-24 Rue du Pont St Pierre, Toulouse, France
| | - Dionysios N. Giannoukos
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Qiu
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T.S. Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S. Nakazawa
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica E.S. Shay
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pallavi P. Gopal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sriram Venneti
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy J. Minn
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lijoy K. Mathew
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Xavier-Magalhães A, Nandhabalan M, Jones C, Costa BM. Molecular prognostic factors in glioblastoma: state of the art and future challenges. CNS Oncol 2015; 2:495-510. [PMID: 25054820 DOI: 10.2217/cns.13.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gliomas account for the majority of primary tumors of the CNS, of which glioblastoma (GBM) is the most common and malignant, and for which survival is very poor. Despite significant inter- and intra-tumor heterogeneity, all patients are treated with a standardized therapeutic approach. While some clinical features of GBM patients have already been established as classic prognostic factors (e.g., patient age at diagnosis and Karnofsky performance status), one of the most important research fields in neuro-oncology today is the identification of novel molecular determinants of patient survival and tumor response to therapy. Here, we aim to review and discuss some of the most relevant and novel prognostic biomarkers in adult and pediatric GBM patients that may aid in stratifying subgroups of GBMs and rationalizing treatment decisions.
Collapse
Affiliation(s)
- Ana Xavier-Magalhães
- Life & Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
17
|
Ibarrola-Villava M, Kumar R, Nagore E, Benfodda M, Guedj M, Gazal S, Hu HH, Guan J, Rachkonda PS, Descamps V, Basset-Seguin N, Bensussan A, Bagot M, Saiag P, Schadendorf D, Martin-Gonzalez M, Mayor M, Grandchamp B, Ribas G, Nadem S. Genes involved in the WNT and vesicular trafficking pathways are associated with melanoma predisposition. Int J Cancer 2014; 136:2109-19. [DOI: 10.1002/ijc.29257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | - Eduardo Nagore
- Department of Dermatology; Instituto Valenciano de Oncologia; Valencia 46009 Spain
| | - Meriem Benfodda
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Mickael Guedj
- Laboratoire Statistiques et Genomes; Evry 91000 France
| | - Steven Gazal
- UMR S738; Faculté de Médecine Xavier Bichat; Paris 75018 France
| | - Hui-Han Hu
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Jian Guan
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | | | - Vincent Descamps
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Nicole Basset-Seguin
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Armand Bensussan
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
| | - Martine Bagot
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Saint Louis, APHP; Paris 75010 France
| | - Philippe Saiag
- Department of Dermatology; Hopital Ambroise Paré, APHP; Paris 92100 France
| | - Dirk Schadendorf
- Department of Dermatology; University Hospital Essen; Esse 45147 Germany
| | | | - Matias Mayor
- Department of Dermatology; Hospital La Paz; Madrid 28046 Spain
| | | | - Gloria Ribas
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Soufir Nadem
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| |
Collapse
|
18
|
|
19
|
Wu Z, Wang L, Li G, Liu H, Fan F, Li Z, Li Y, Gao G. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem 2014; 384:263-8. [PMID: 24122417 DOI: 10.1007/s11010-013-1805-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
microRNA-9 (miR-9) has been found to be upregulated along with tumor progression of gliomas by microarray-based expression profiling, and also be strongly linked to glioblastoma subtypes. However, its prognostic value in glioma is still elusive. miR-9 expression in human gliomas and nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay. miR-9 expression in glioma tissues was significantly higher than that in corresponding nonneoplastic brain tissues (P\0.001). The increased expression of miR-9 was more frequently observed in glioma tissues with high WHO grade than those with low WHO grade tissues (P = 0.001). The expression levels of miR-9 in glioma tissues with low Karnofsky performance score (KPS) were also significantly higher than those with high KPS (P = 0.008). Moreover, the overall survival of glioma patients with high miR-9 expression was obviously lower than that with low miR-9 expression (P\0.001). Multivariate analysis further showed that high miR-9 expression was an independent prognostic factor for overall survival in glioma patients (P = 0.01). More importantly, the subgroup analyses indicated that the overall survival of glioma patients with high WHO grade (III–IV) was significantly worse for high miR-9 expression group than for low miR-9 expression group (P\0.001), but no significant difference was found for patients with low WHO grade (I–II). These findings suggest for the first time that the increased expression of miR-9 may play an important role in tumor progression in human gliomas. miR-9 might be a useful marker for predicting the clinical outcome of glioma patients, especially for advanced subtypes.
Collapse
|
20
|
Emmert-Streib F, Dehmer M, Haibe-Kains B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front Cell Dev Biol 2014; 2:38. [PMID: 25364745 PMCID: PMC4207011 DOI: 10.3389/fcell.2014.00038] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
In recent years gene regulatory networks (GRNs) have attracted a lot of interest and many methods have been introduced for their statistical inference from gene expression data. However, despite their popularity, GRNs are widely misunderstood. For this reason, we provide in this paper a general discussion and perspective of gene regulatory networks. Specifically, we discuss their meaning, the consistency among different network inference methods, ensemble methods, the assessment of GRNs, the estimated number of existing GRNs and their usage in different application domains. Furthermore, we discuss open questions and necessary steps in order to utilize gene regulatory networks in a clinical context and for personalized medicine.
Collapse
Affiliation(s)
- Frank Emmert-Streib
- Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto Canada
| |
Collapse
|
21
|
Emmert-Streib F, Zhang SD, Hamilton P. Dry computational approaches for wet medical problems. J Transl Med 2014; 12:26. [PMID: 24460894 PMCID: PMC3905162 DOI: 10.1186/1479-5876-12-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/23/2014] [Indexed: 11/10/2022] Open
Abstract
This is a report on the 4th international conference in 'Quantitative Biology and Bioinformatics in Modern Medicine' held in Belfast (UK), 19-20 September 2013. The aim of the conference was to bring together leading experts from a variety of different areas that are key for Systems Medicine to exchange novel findings and promote interdisciplinary ideas and collaborations.
Collapse
Affiliation(s)
- Frank Emmert-Streib
- Computational Biology and Machine Learning Laboratory, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Lisburn Road 97, Belfast, UK.
| | | | | |
Collapse
|
22
|
Li SZ, Hu YY, Zhao J, Zhao YB, Sun JD, Yang YF, Ji CC, Liu ZB, Cao WD, Qu Y, Liu WP, Cheng G, Fei Z. MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun 2014; 444:6-12. [PMID: 24393844 DOI: 10.1016/j.bbrc.2013.12.136] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma. METHODS The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot. RESULTS MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells. CONCLUSION MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.
Collapse
Affiliation(s)
- San-Zhong Li
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhao
- Department of Anesthesiology, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yong-Bo Zhao
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Dong Sun
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yue-Fan Yang
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chen-Cheng Ji
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zao-Bin Liu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Dong Cao
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Qu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liu
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guang Cheng
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Song Y, Mu L, Han X, Li Q, Dong B, Li H, Liu X. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression. J Neurooncol 2013; 115:381-90. [PMID: 24043603 DOI: 10.1007/s11060-013-1245-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the functions of microRNA-9, which is a tissue-specific microRNA in central nervous system, in the vasculogenic mimicry (VM) of glioma cell lines in vitro and in vivo. Glioma cell lines U87MG, U251 and SHG44 were transfected with microRNA-9 mimic, microRNA-9 inhibitor or scramble sequences. The amount of microRNA-9 and Stathmin (STMN1) mRNA was determined by quantitative real-time PCR, and the protein expression of STMN1 was determined by western blot. Cell proliferation and apoptosis were assessed. The interactions between the 3'UTR of STMN1 and miR-9 was determined by luciferase reporter assay. The VM capacity in vitro was evaluated using VM formation assay, and the rescue experiment of STMN1 was carried out in U251 cells. The in vivo experiment was applied with animal models implanted with U87MG cells.MicroRNA-9 mimic transfection reduced proliferation and increased apoptosis in glioma cell lines (p < 0.05). MicroRNA-9 mimic up-regulated STMN1 mRNA levels but reduced its protein levels (p < 0.05), and luciferase activity of STMN1 was suppressed by microRNA-9 mimic transfection (p < 0.05). Furthermore, microRNA-9 mimic transfection suppressed tumor volume growth, as well as VM both in vitro and in vivo. The cell viability and microtube density were upregulated in U251 cells after STMN1 up-regulation (p < 0.05). STMN1 is a target of microRNA-9, and microRNA-9 could modulate cell proliferation, VM and tumor volume growth through controlling STMN1 expression. MicroRNA-9 and its targets may represent a novel panel of molecules for the development of glioma treatment.
Collapse
Affiliation(s)
- Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan street, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Antoon JW, Nitzchke AM, Martin EC, Rhodes LV, Nam S, Wadsworth S, Salvo VA, Elliott S, Collins-Burow B, Nephew KP, Burow ME. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int J Oncol 2013; 42:1139-50. [PMID: 23403951 PMCID: PMC3622654 DOI: 10.3892/ijo.2013.1814] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/21/2012] [Indexed: 12/26/2022] Open
Abstract
Acquired chemoresistance and epithelial-to-mesenchymal transition (EMT) are hallmarks of cancer progression and of increasing clinical relevance. We investigated the role of miRNA and p38 mitogen-activated protein kinase (MAPK) signaling in the progression of breast cancer to a drug-resistant and mesenchymal phenotype. We demonstrate that acquired death receptor resistance results in increased hormone-independent tumorigenesis compared to hormone-sensitive parental cells. Utilizing global miRNA gene expression profiling, we identified miRNA alterations associated with the development of death receptor resistance and EMT progression. We further investigated the role of p38 MAPK in this process, showing dose-dependent inactivation of p38 by its inhibitor RWJ67657 and decreased downstream ATF and NF-κB signaling. Pharmacological inhibition of p38 also decreased chemoresistant cancer tumor growth in xenograft animal models. Interestingly, inhibition of p38 partially reversed the EMT changes found in this cell system, as illustrated by decreased gene expression of the EMT markers Twist, Snail, Slug and ZEB and protein and mRNA levels of Twist, a known EMT promoter, concomitant with decreased N-cadherin protein. RWJ67657 treatment also altered the expression of several miRNAs known to promote therapeutic resistance, including miR-200, miR-303, miR-302, miR-199 and miR-328. Taken together, our results demonstrate the roles of multiple microRNAs and p38 signaling in the progression of cancer and demonstrate the therapeutic potential of targeting the p38 MAPK pathway for reversing EMT in an advanced tumor phenotype.
Collapse
Affiliation(s)
- James W Antoon
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ben-Hamo R, Efroni S. Correction: Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and drug control over the p38 network in glioblastoma multiforme progression. Genome Med 2012. [PMID: 23194430 PMCID: PMC3580421 DOI: 10.1186/gm388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, 1 Keren-Hayesod St, Ramat-Gan, 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, 1 Keren-Hayesod St, Ramat-Gan, 52900, Israel
| |
Collapse
|
26
|
Karsy M, Arslan E, Moy F. Current Progress on Understanding MicroRNAs in Glioblastoma Multiforme. Genes Cancer 2012; 3:3-15. [PMID: 22893786 DOI: 10.1177/1947601912448068] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 04/19/2012] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive grade IV astrocytoma with a 1-year median survival rate despite current treatment modalities. A thorough understanding of the vast genetic aberrations and signaling pathways involved in gliomagenesis as well as heterogeneous clinicopathological presentation remains elusive. The recent discovery of microRNAs (miRs) and their capability of simultaneously regulating multiple downstream genes may play a key role in explaining the complex mechanisms underlying GBM formation. miRs are 19 to 25 nucleotide non-protein-coding small RNA molecules involved in the suppression of mRNA translation. This review will summarize and discuss the most recent findings regarding miRs in GBM including downstream targets, functional effects, and therapeutic potentials. Specifically discussed miRs include miR-7, miR-9/miR-9*, miR-10a/miR-10a*/miR-10b, miR-15b, miR-17-92, miR-21, miR-26a, miR-34a, miR-93, miR-101, miR-124, miR-125a, miR-125b, miR-128, miR-137, miR-146b-5p, miR-153, miR-181a/miR-181b, miR-196a/miR-196b, miR-218, miR-221/miR-222, miR-296, miR-302-367, miR-326, miR-381, miR-451, and let-7a. In addition to gene regulatory roles, miRs have demonstrated significant diagnostic, prognostic, and therapeutic potential. These small molecules may both help in the understanding of GBM and in developing new therapeutic options.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
27
|
Annibali D, Gioia U, Savino M, Laneve P, Caffarelli E, Nasi S. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS One 2012; 7:e40269. [PMID: 22848373 PMCID: PMC3405103 DOI: 10.1371/journal.pone.0040269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/03/2012] [Indexed: 11/21/2022] Open
Abstract
The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells – miR-9 and miR-103 – restrain ID2 expression by directly targeting the coding sequence and 3′ untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.
Collapse
Affiliation(s)
- Daniela Annibali
- Consiglio Nazionale delle Ricerche-Istituto di Biologia e Patologia Molecolari (CNR-IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
| | | | | | | | | | | |
Collapse
|
28
|
Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro Oncol 2012; 14:958-78. [PMID: 22573310 DOI: 10.1093/neuonc/nos116] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood-brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma.
Collapse
Affiliation(s)
- Wei Li
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, 94 Mallett St, Camperdown, Sydney, NSW 2050, Australia
| | | |
Collapse
|