1
|
Izaguirre G, Zirou N, Meyers C. Dysregulation of FURIN and Other Proprotein Convertase Genes in the Progression from HPV Infection to Cancer. Int J Mol Sci 2025; 26:461. [PMID: 39859176 PMCID: PMC11764867 DOI: 10.3390/ijms26020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Productive infections of oncogenic human papillomaviruses (HPVs) are closely linked to the differentiation of host epithelial cells, a process that the virus manipulates to create conditions favorable to produce virion progeny. This viral interference involves altering the expression of numerous host genes. Among these, proprotein convertases (PCs) have emerged as potential oncogenes due to their central role in cellular functions. Using RT-qPCR, aberrant PC gene expression was detected across the progression from early HPV infection stages to cancer. These findings demonstrated a progressive disruption of normal PC expression profiles, with FURIN consistently downregulated and other PCs upregulated, transitioning from the episomal stage to neoplastic and carcinoma phenotypes. This pattern of dysregulation was distinct from the broader trends observed in a variety of cancer types through bioinformatic analysis of publicly available transcriptomic datasets, where FURIN expression was predominantly upregulated compared to other PCs. Further bioinformatic investigations revealed a correlation between PC gene expression and cancer phenotype diversity, suggesting a potential link between the loss of normal PC gene expression patterns and the progression of HPV infections toward malignancy.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Natalia Zirou
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Craig Meyers
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Campos-León K, Ferguson J, Günther T, Wood CD, Wingett SW, Pekel S, Varghese CS, Jones LS, Stockton JD, Várnai C, West MJ, Beggs A, Grundhoff A, Noyvert B, Roberts S, Parish JL. Repression of CADM1 transcription by HPV type 18 is mediated by three-dimensional rearrangement of promoter-enhancer interactions. PLoS Pathog 2025; 21:e1012506. [PMID: 39869645 PMCID: PMC11801731 DOI: 10.1371/journal.ppat.1012506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/06/2025] [Accepted: 12/02/2024] [Indexed: 01/29/2025] Open
Abstract
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors. We have previously shown that HPV18 recruits the host protein CTCF to viral episomes to control the differentiation-dependent viral transcriptional programme. Since CTCF is an important regulator of host cell transcription via coordination of epigenetic boundaries and long-range chromosomal interactions, we hypothesised that HPV18 may also manipulate CTCF to contribute to host transcription reprogramming. Analysis of CTCF binding in the host cell genome by ChIP-Seq revealed that while the total number of CTCF binding sites is not altered by the virus, there are a sub-set of CTCF binding sites that are either enriched or depleted of CTCF. Many of these altered sites are clustered within regulatory elements of differentially expressed genes, including the tumour suppressor gene cell adhesion molecule 1 (CADM1), which supresses epithelial cell growth and invasion. We show that HPV18 establishment results in reduced CTCF binding at the CADM1 promoter and upstream enhancer. Loss of CTCF binding is coincident with epigenetic repression of CADM1, in the absence of CpG hypermethylation, while adjacent genes including the transcriptional regulator ZBTB16 are activated. These data indicate that the CADM1 locus is subject to topological rearrangement following HPV18 establishment. We tested this hypothesis using 4C-Seq (circular chromosome confirmation capture-sequencing) and show that HPV18 establishment causes a loss of long-range chromosomal interactions between the CADM1 transcriptional start site and the upstream transcriptional enhancer. These data show that HPV18 manipulates host cell promoter-enhancer interactions to drive transcriptional reprogramming that may contribute to HPV-induced disease progression.
Collapse
Affiliation(s)
- Karen Campos-León
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack Ferguson
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | | | - C. David Wood
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Steven W. Wingett
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Selin Pekel
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Christy S. Varghese
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Leanne S. Jones
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Joanne D. Stockton
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Csilla Várnai
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andrew Beggs
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Boris Noyvert
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
- Birmingham CRUK Centre, University of Birmingham, Birmingham, United Kingdom
| | - Sally Roberts
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Joanna L. Parish
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research, Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yu F, Xu J, Chen H, Song S, Nie C, Hao K, Zhao Z. Proprotein convertase cleavage of Ictalurid herpesvirus 1 spike-like protein ORF46 is modulated by N-glycosylation. Virology 2024; 592:110008. [PMID: 38335866 DOI: 10.1016/j.virol.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Viral spike proteins undergo a special maturation process that enables host cell receptor recognition, membrane fusion, and viral entry, facilitating effective virus infection. Here, we investigated the protease cleavage features of ORF46, a spike-like protein in Ictalurid herpesvirus 1 (IcHV-1) sharing similarity with spikes of Nidovirales members. We noted that during cleavage, full-length ORF46 is cleaved into ∼55-kDa and ∼100-kDa subunits. Moreover, truncation or site-directed mutagenesis at the recognition sites of proprotein convertases (PCs) abolishes this spike cleavage, highlighting the crucial role of Arg506/Arg507 and Arg668/Arg671 for the cleavage modification. ORF46 cleavage was suppressed by specific N-glycosylation inhibitors or mutation of its specific N-glycosylation sites (N192, etc.), suggesting that glycoprotein ORF46 cleavage is modulated by N-glycosylation. Notably, PCs and N-glycosylation inhibitors exhibited potent antiviral effects in host cells. Our findings, therefore, suggested that PCs cleavage of ORF46, modulated by N-glycosylation, is a potent antiviral target for fish herpesviruses.
Collapse
Affiliation(s)
- Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China.
| |
Collapse
|
5
|
Kryukov AI, Romanenko SG, Oteyami AB. [Epidemiological features papillomatosis of the larynx in adults: a literature review]. Vestn Otorinolaringol 2024; 89:66-70. [PMID: 38805466 DOI: 10.17116/otorino20248902166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The literature review presents current data on the epidemiology, drug, and surgical treatment of laryngeal papillomatosis in adults. Possible prospects for further study of the prevalence and incidence of the disease and provoking factors of recurrence of the disease for the development of possible preventive measures are considered.
Collapse
Affiliation(s)
- A I Kryukov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - S G Romanenko
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A B Oteyami
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Izaguirre G, Phan LMU, Asif S, Alam S, Meyers C, Rong L. Diversity in Proprotein Convertase Reactivity among Human Papillomavirus Types. Viruses 2023; 16:39. [PMID: 38257739 PMCID: PMC10820984 DOI: 10.3390/v16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The cleavage of viral surface proteins by furin is associated with some viruses' high virulence and infectivity. The human papillomavirus (HPV) requires the proteolytic processing of its capsid proteins for activation before entry. Variability in reactivity with furin and other proprotein convertases (PCs) among HPV types was investigated. HPV16, the most prevalent and carcinogenic HPV type, reacted with PCs with the broadest selectivity compared to other types in reactions of pseudoviral particles with the recombinant PCs, furin, PC4, PC5, PACE4, and PC7. Proteolytic preactivation was assessed using a well-established entry assay into PC-inhibited cells based on the green fluorescent protein as a reporter. The inhibition of the target cell PC activity with serpin-based PC-selective inhibitors also showed a diversity of PC selectivity among HPV types. HPV16 reacted with furin at the highest rate compared to the other types in time-dependent preactivation reactions and produced the highest entry values standardized to pseudoviral particle concentration. The predominant expression of furin in keratinocytes and the high reactivity of HPV16 with this enzyme highlight the importance of selectively targeting furin as a potential antiviral therapeutic approach.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lam Minh Uyen Phan
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaan Asif
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Samina Alam
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Craig Meyers
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Lijun Rong
- Departments of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. PLoS One 2023; 18:e0292368. [PMID: 37792852 PMCID: PMC10550192 DOI: 10.1371/journal.pone.0292368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Esha V. Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, Arizona, United States of America
| | - Reid S. Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences, College of Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Caitlyn E. Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
8
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
9
|
Papayannakos CJ, DeVoti JA, Israr M, Alsudani H, Bonagura V, Steinberg BM. Extracellular vesicles produced by primary human keratinocytes in response to TLR agonists induce stimulus-specific responses in antigen-presenting cells. Cell Signal 2021; 83:109994. [PMID: 33781846 DOI: 10.1016/j.cellsig.2021.109994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Cells can communicate through the extracellular vesicles (EVs) they secrete. Pathogen associated molecular patterns (PAMPs), alter the biophysical and communicative properties of EVs released from cells, but the functional consequences of these changes are unknown. Characterization of keratinocyte-derived EVs after poly(I:C) treatment (poly(I:C)-EVs) showed slight differences in levels of EV markers TSG101 and Alix, a loss of CD63 and were positive for autophagosome marker LC3b-II and the cytokine IL36γ compared to EVs from unstimulated keratinocytes (control-EVs). Flagellin treatment (flagellin-EVs) led to an EV marker profile like control-EVs but lacked LC3b-II. Flagellin-EVs also lacked IL-36γ despite nearly identical intracellular levels. While poly(I:C) treatment led to the clear emergence of a > 200 nm diameter EV sub-population, these were not found in flagellin-EVs. EV associated IL-36γ colocalized with LC3b-II in density gradient analysis, equilibrating to 1.10 g/mL, indicating a common EV species. Poly(I:C), but not flagellin, induced intracellular vesicles positive for IL-36γ, LC3b-II, Alix and TSG101, consistent with fusion of autophagosomes and multivesicular bodies. Simultaneous rapamycin and flagellin treatment induced similar intracellular vesicles but was insufficient for the release of IL-36γ+/LC3b-II+ EVs. Finally, a qRT-PCR array screen showed eight cytokine/chemokine transcripts were altered (p < 0.05) in monocyte-derived Langerhans cells (LCs) when stimulated with poly(I:C)-EVs while three were altered when LCs were stimulated with flagellin-EVs compared to control-EVs. After independent confirmation, poly(I:C)-EVs upregulated BMP6 (p = 0.035) and flagellin-EVs upregulated CXCL8 (p = 0.005), VEGFA (p = 0.018) and PTGS2 (p = 0.020) compared to control-EVs. We conclude that exogenous signals derived from pathogens can alter keratinocyte-mediated modulation of the local immune responses by inducing changes in the types of EVs secreted and responses in antigen presenting cells.
Collapse
Affiliation(s)
- Christopher J Papayannakos
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA.
| | - James A DeVoti
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohd Israr
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, New York, USA
| | - Vincent Bonagura
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bettie M Steinberg
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Molecular Medicine, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
10
|
Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered Monocyte and Langerhans Cell Innate Immunity in Patients With Recurrent Respiratory Papillomatosis (RRP). Front Immunol 2020; 11:336. [PMID: 32210959 PMCID: PMC7076114 DOI: 10.3389/fimmu.2020.00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.
Collapse
Affiliation(s)
- Mohd Israr
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - James A DeVoti
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fung Lam
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Allan L Abramson
- Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Bettie M Steinberg
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Vincent R Bonagura
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
11
|
Ivancic R, Iqbal H, deSilva B, Pan Q, Matrka L. Immunological tolerance of low-risk HPV in recurrent respiratory papillomatosis. Clin Exp Immunol 2019; 199:131-142. [PMID: 31628850 DOI: 10.1111/cei.13387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is characterized by benign exophytic lesions of the respiratory tract caused by the human papillomavirus (HPV), in particular low-risk HPV6 and HPV11. Aggressiveness varies greatly among patients. Surgical excision is the current standard of care for RRP, with adjuvant therapy used when surgery cannot control disease recurrence. Numerous adjuvant therapies have been used to control RRP with some success, but none are curative. Current literature supports a polarization of the adaptive immune response to a T helper type 2 (Th2)-like or T regulatory phenotype, driven by a complex interplay between innate immunity, adaptive immunity and HPV6/11 proteins. Additionally, certain immunogenetic polymorphisms can predispose individuals to an HPV6/11-tolerant microenvironment. As a result, immunomodulatory efforts are being made to restore the host immune system to a more balanced T cell phenotype and clear viral infection. Literature has shown exciting evidence for the role of HPV vaccination with Gardasil or Gardasil-9 as both primary prevention, by decreasing incidence through childhood vaccinations, and secondary prevention, by treating active RRP disease. Multi-institution randomized clinical trials are needed to better assess their efficacy as treatment for active disease. Interestingly, a DNA vaccine has recently shown in-vitro success in generating a more robust CD8+ T cell response. Furthermore, clinical trials for programmed death 1 (PD-1) inhibitors are under investigation for RRP management. Molecular insights into RRP, in particular the interplay between RRP and the immune system, are needed to advance our understanding of this disease and may lead to the identification of immunomodulatory agents to better manage RRP.
Collapse
Affiliation(s)
- R Ivancic
- College of Medicine, The Ohio State University, OH, USA
| | - H Iqbal
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - B deSilva
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Q Pan
- Case Comprehensive Cancer Center, Cleveland, OH
| | - L Matrka
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
12
|
Izaguirre G. The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein Convertases. Viruses 2019; 11:v11090837. [PMID: 31505793 PMCID: PMC6784293 DOI: 10.3390/v11090837] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis. mSphere 2019; 4:4/2/e00129-19. [PMID: 30918060 PMCID: PMC6437273 DOI: 10.1128/msphere.00129-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets. Although the role of high-risk human papillomaviruses (hrHPVs) as etiological agents in cancer development has been intensively studied during the last decades, there is still the necessity of understanding the impact of the HPV E6 and E7 oncogenes on host cells, ultimately leading to malignant transformation. Here, we used newly established immortalized human keratinocytes with a well-defined HPV16 E6E7 expression cassette to get a more complete and less biased overview of global changes induced by HPV16 by employing transcriptome sequencing (RNA-Seq) and stable isotope labeling by amino acids in cell culture (SILAC). This is the first study combining transcriptome and proteome data to characterize the impact of HPV oncogenes in human keratinocytes in comparison with their virus-negative counterparts. To enhance the informative value and accuracy of the RNA-Seq data, four different bioinformatic workflows were used. We identified potential novel upstream regulators (e.g., CNOT7, SPDEF, MITF, and PAX5) controlling distinct clusters of genes within the HPV-host cell network as well as distinct factors (e.g., CPPED1, LCP1, and TAGLN) with essential functions in cancer. Validated results in this study were compared to data sets from The Cancer Genome Atlas (TCGA), demonstrating that several identified factors were also differentially expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and HPV-positive head and neck squamous cell carcinomas (HNSCs). This highly integrative approach allows the identification of novel HPV-induced cellular changes that are also reflected in cancer patients, providing a promising omics data set for future studies in both basic and translational research. IMPORTANCE Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets.
Collapse
|