1
|
Xiao N, Li Q, Liang G, Qian Z, Lin Y, Zhang H, Fu Y, Yang X, Zhang CT, Yang J, Liu A. Regulatory Roles of Exosomes in Aging and Aging-Related Diseases. Biogerontology 2025; 26:61. [PMID: 39966192 DOI: 10.1007/s10522-025-10200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Exosomes are small vesicles with diameters ranging from 30 to 150 nm. They originate from cellular endocytic systems. These vesicles contain a rich payload of biomolecules, including proteins, nucleic acids, lipids, and metabolic products. Exosomes mediate intercellular communication and are key regulators of a diverse array of biological processes, such as oxidative stress and chronic inflammation. Furthermore, exosomes have been implicated in the pathogenesis of infectious diseases, autoimmune disorders, and cancer. Aging is closely associated with the onset and progression of numerous diseases and is significantly influenced by exosomes. Recent studies have consistently highlighted the important functions of exosomes in the regulation of cellular senescence. Additionally, research has explored their potential to delay aging, such as the alleviatory effects of stem cell-derived exosomes on the aging process, which offers broad potential for the development and application of exosomes as anti-aging therapeutic strategies. This review aims to comprehensively investigate the multifaceted impact of exosomes while concurrently evaluating their potential applications and underscoring their strategic significance in advancing anti-aging strategies.
Collapse
Affiliation(s)
- Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yangguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cun-Tai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Costa D, Scalise E, Ielapi N, Bracale UM, Faga T, Michael A, Andreucci M, Serra R. Omics Science and Social Aspects in Detecting Biomarkers for Diagnosis, Risk Prediction, and Outcomes of Carotid Stenosis. Biomolecules 2024; 14:972. [PMID: 39199360 PMCID: PMC11353051 DOI: 10.3390/biom14080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Carotid stenosis is characterized by the progressive narrowing of the carotid arteries due to the formation of atherosclerotic plaque, which can lead to stroke and death as major complications. Numerous biomarkers allow for its study and characterization, particularly those related to "omics" sciences. Through the most common research databases, we report representative studies about carotid stenosis biomarkers based on genomics, transcriptomics, proteomics, and metabolomics in a narrative review. To establish a priority among studies based on their internal validity, we used a quality assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA). Genes, transcriptomes, proteins, and metabolites can diagnose the disease, define plaque connotations, predict consequences after revascularization interventions, and associate carotid stenosis with other patient comorbidities. It also emerged that many aspects determining the patient's psychological and social sphere are implicated in carotid disease. In conclusion, when taking the multidisciplinary approach that combines human sciences with biological sciences, it is possible to comprehensively define a patient's health and thus improve their clinical management through precision medicine.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Roma, Italy;
| | | | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Wang M, Zhang B, Jin F, Li G, Cui C, Feng S. Exosomal MicroRNAs: Biomarkers of moyamoya disease and involvement in vascular cytoskeleton reconstruction. Heliyon 2024; 10:e32022. [PMID: 38868045 PMCID: PMC11168404 DOI: 10.1016/j.heliyon.2024.e32022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Moyamoya disease currently lacks a suitable method for early clinical screening.This study aimed to identify a simple and feasible clinical screening index by investigating microRNAs carried by peripheral blood exosomes. Experimental subjects participated in venous blood collection, and exosomes were isolated using Exquick-related technology. Sequencing was performed on the extracted exosomal ribonucleic acids (RNAs) to identify differential microRNAs. Verification of the results involved selecting relevant samples from the genetic database. The study successfully pinpointed a potential marker for early screening, hsa-miR-328-3p + hsa-miR-200c-3p carried by peripheral blood exosomes. Enrichment analysis of target genes revealed associations with intercellular junctions, impaired cytoskeletal regulation, and increased fibroblast proliferation, leading to bilateral internal carotid artery neointimal expansion and progressive stenosis. These findings establish the diagnostic value of hsa-miR-328-3p+hsa-miR-200c-3p in screening moyamoya disease, while also contributing to a deeper understanding of its underlying pathophysiology. Significant differences in microRNA expressions derived from peripheral blood exosomes were observed between moyamoya disease patients and control subjects. Consequently, the utilization of peripheral blood exosomes, specifically hsa-miR-328-3p + hsa-miR-200c-3p, holds potential for diagnostic screening purposes.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Bin Zhang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| | - Genhua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| |
Collapse
|
4
|
Chao CT, Kuo FC, Lin SH. Epigenetically regulated inflammation in vascular senescence and renal progression of chronic kidney disease. Semin Cell Dev Biol 2024; 154:305-315. [PMID: 36241561 DOI: 10.1016/j.semcdb.2022.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Chronic kidney disease (CKD) and its complications, including vascular senescence and progressive renal fibrosis, are associated with inflammation. Vascular senescence, in particular, has emerged as an instrumental mediator of vascular inflammation that potentially worsens renal function. Epigenetically regulated inflammation involving histone modification, DNA methylation, actions of microRNAs and other non-coding RNAs, and their reciprocal reactions during vascular senescence and inflammaging are underappreciated. Their synergistic effects can contribute to CKD progression. Vascular senotherapeutics or pharmacological anti-senescent therapies based on epigenetic machineries can therefore be plausible options for ameliorating vascular aging and even halting the worsening of renal fibrosis. These include histone deacetylase modulators, histone methyltransferase modulators, other histone modification effectors, DNA methyltransferase inhibitors, telomerase reverse transcriptase enhancers, microRNA mimic delivery, and small molecules with microRNA-regulating potentials. Some of these molecules have already been tested and have shown anecdotal evidence for treating uremic vasculopathy and renal fibrosis, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Nephrology division, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Jo HR, Hwang J, Jeong JH. MicroRNA miR-214-5p induces senescence of microvascular endothelial cells by targeting the JAG1/Notch signaling pathway. Noncoding RNA Res 2023; 8:385-391. [PMID: 37260583 PMCID: PMC10227379 DOI: 10.1016/j.ncrna.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
During cellular senescence, irreversible cell cycle arrest is accompanied by morphological and genetic alterations. MicroRNAs (miRNAs) play a critical role in regulating senescence by modulating the abundance of crucial senescence regulatory proteins. Therefore, to identify novel senescence-associated miRNAs, we analyzed differentially expressed miRNAs in microvascular endothelial cells (MVEC). Among the 80 differentially expressed miRNAs in replicative senescent MVECs, 16 miRNAs of unknown gene ontology were used in the senescence-associated β-galactosidase assay. Thus, we identified miR-214-5p as having high senescence-inducing activity, inhibiting the proliferation and angiogenesis activity of MVECs. To reveal the senescence-regulating mechanism of miR-214-5p, we searched for target genes through sequence- and literature-based analysis. Molecular manipulation of miR-214-5p demonstrated that miR-214-5p regulated the expression and function of Jagged 1 (JAG1) in senescent MVECs. Silencing JAG1 or downstream genes of JAG1-Notch signaling, accelerated the senescence of MVECs. Additionally, ectopic overexpression of JAG1 reversed the senescence-inducing activity of miR-214-5p. In conclusion, we identified miR-214-5p as a senescence-associated miRNA. Targeting miR-214-5p may be a potential strategy to delay vascular aging and overcome the detrimental effects of senescence and age-related diseases.
Collapse
Affiliation(s)
- Hye-ram Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Jiwon Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
6
|
Manni E, Jeffery N, Chambers D, Slade L, Etheridge T, Harries LW. An evaluation of the role of miR-361-5p in senescence and systemic ageing. Exp Gerontol 2023; 174:112127. [PMID: 36804517 DOI: 10.1016/j.exger.2023.112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.
Collapse
Affiliation(s)
- Emad Manni
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - Nicola Jeffery
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Luke Slade
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
7
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
8
|
Li X, Jin X, Wang J, Li X, Zhang H. Dexamethasone attenuates dry eye-induced pyroptosis by regulating the KCNQ1OT1/miR-214 cascade. Steroids 2022; 186:109073. [PMID: 35779698 DOI: 10.1016/j.steroids.2022.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Dry eye disease (DED) is an inflammatory disorder of the ocular surface seriously affecting the quality of life of patients. Topical dexamethasone (Dex) administration protects the cornea from the hyperosmotic stress (HS) induced by tears. Pyroptosis participates in the activation of epithelial inflammation during DED. However, it remains unclear whether Dex attenuates the progression of DED through pyroptosis. In this study, we aimed to investigate the effect of Dex on DED using both cell and animal models and its underlying mechanism. The inflammatory factors contained in tears were detected using a cytokine assay. The pyroptosis in DED mice and human corneal epithelial cells (HCECs) treated with hyperosmotic medium under various treatments was evaluated by immunohistochemical assays (IHC) or western blotting (WB). RNA expression was manipulated with siRNA or agomir microRNAs and measured using a polymerase chain reaction. The scratch assay was used to assess the migration rate of HCECs. Remaining corneal defects were evaluated using fluorescein staining and photographed using a digital camera. Dex could suppress the release of inflammatory factors and notably attenuate pyroptosis, KCNQ1OT1 expression, and NF-κB activation induced by HS injury in vivo and in vitro. KCNQ1OT1 upregulation could activate pyroptosis by sponging miR-214. Furthermore, KCNQ1OT1 knockdown and miR-214 overexpression reversed the effect of HS, promoted the migration of HCECs, and accelerated corneal wound healing. Dex effectively suppressed HS-induced pyroptosis through the KCNQ1OT1/miR-214/caspase-1 signaling axis by inhibiting the NF-κB activation. Our results provide a novel understanding of the mechanism of Dex as an anti-inflammatory drug in DED.
Collapse
Affiliation(s)
- Xuran Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Jingrao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xinyue Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
9
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
10
|
Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: in vitro and in vivo studies. Aging (Albany NY) 2022; 14:410-429. [PMID: 34996049 PMCID: PMC8791199 DOI: 10.18632/aging.203816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Injury and dysfunction of endothelial cells (ECs) are closely related to the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH), while MicroRNAs (miRNAs) play an essential role in the processes. Extracorporeal shockwave treatment (ESWT) has been used in the non-invasive treatment of various diseases including musculoskeletal and vascular disorders. In particular, ESWT with low energy levels showed a beneficial effect in ischemic tissues. However, there has been no comprehensive assessment of the effect of ESWT and miRNAs on steroid-induced ONFH. In the present study, we investigated the role and mechanism of ESWT and miRNAs both in vitro and in vivo. Using a steroid-induced ONFH rat model, we found that ESWT significantly enhances proliferation and angiogenesis as well as alleviates apoptosis. In two types of ECs, ESWT can promote cell proliferation and migration, enhance angiogenesis, and inhibit apoptosis. Notably, our study demonstrates that miR-135b is downregulated and modulated forkhead box protein O1 (FOXO1) in ECs treated with dexamethasone. Remarkably, both miR-135b knockdown and FOXO1 overexpression reversed the beneficial effect of ESWT on ECs. Additionally, our data suggest that ESWT activates the FOXO1-related pathway to impact proliferation, apoptosis, and angiogenesis. Taken together, this study indicates that ESWT relieves endothelial injury and dysfunction in steroid-induced ONFH via miR-135b targeting FOXO1.
Collapse
|
11
|
Zhang T, Liu R. Dysregulation of miR-637 serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event. Bioengineered 2021; 12:8658-8665. [PMID: 34606407 PMCID: PMC8806938 DOI: 10.1080/21655979.2021.1988369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present research aims to explore the relationship between circulating microRNA and carotid artery stenosis (CAS). To evaluate the diagnostic significance of miR-637 in CAS patients and its potential predictive value for cerebral ischemia events through clinical studies. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to verify the differences in serum miR-637 between enrolled 97 CAS patients and 90 healthy individuals. Logistic regression analysis of the correlation between the level of miR-637 and the degree of carotid artery stenosis. The receiver operating characteristic (ROC) curve evaluated the diagnostic significance of miR-637 in identifying CAS patients from healthy individuals. Kaplan-Meier survival and Cox regression were used to evaluate the potential predictive ability of serum miR-637 levels during follow-up for cerebral ischemia events. Serum miR-637 of CAS patients was significantly reduced which was a good indicator of severe carotid stenosis (P < 0.001). Reduced miR-637 can identify CAS patients from healthy individuals, demonstrating strong diagnostic capabilities. Furthermore, Kaplan-Meier analysis confirmed that the lower miR-637 levels in CAS, the more cerebral ischemia events (log-rank, P = 0.035), and the Multivariate Cox regressions confirmed that miR-637 was an independent predictor of CAS patients (HR = 0.073, 95%CI = 0.017–0.313, P < 0.001). We confirmed that serum miR-637 in CAS patients was significantly reduced. And reduced miR-637 was not only a potentially reliable biomarker for the diagnosis of CAS but also a useful indicator for predicting future cerebral ischemic events.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Preventive Medicine, Dongying People's Hospital, Dongying, China
| | - Ruijie Liu
- Department of Vertigo Division, Dongying People's Hospital, Dongying, China
| |
Collapse
|
12
|
Liu X, Zheng X, Wang Y, Liu J. Dysregulation Serum miR-19a-3p is a Diagnostic Biomarker for Asymptomatic Carotid Artery Stenosis and a Promising Predictor of Cerebral Ischemia Events. Clin Appl Thromb Hemost 2021; 27:10760296211039287. [PMID: 34558328 PMCID: PMC8495512 DOI: 10.1177/10760296211039287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aims to identify the diagnostic potential of microRNA-19a-3p (miR-19a-3p) for asymptomatic carotid artery stenosis (CAS) and clinical predictive potential for cerebral ischemia events (CIEs). Serum samples from 101 asymptomatic CAS patients and 98 healthy controls were collected. And it was found that serum miR-19a-3p in asymptomatic CAS patients was generally elevated (P < .05). Increased miR-19a-3p in asymptomatic CAS was associated with severe CAS (odds ratio = 3.920, 95% confidence interval [CI] = 1.482-10.372, P < .01). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.905, indicating that the level of miR-19a-3p was statistically significant for the diagnosis of asymptomatic CAS. Furthermore, the level of serum miR-19a-3p (hazard ratio [HR] = 8.507, 95% confidence interval [CI] = 2.239-32.328, P = .002) and degree of artery stenosis (HR = 3.695, 95% CI = 1.127-12.109, P = .031) were independent predictors of occurrence of CIE. Moreover, patients with elevated miR-19a-3p levels were more likely to experience CIE than patients with low levels. Upregulated miR-19a-3p can be used as a diagnostic biomarker for asymptomatic CAS patients and as an independent predictor of CIE.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Neurology, Baoji People's Hospital, Baoji, Shaanxi, China
| | - Xiaojun Zheng
- Department of Neurology, Baoji People's Hospital, Baoji, Shaanxi, China
| | - Ying Wang
- Department of Neurology, Baoji People's Hospital, Baoji, Shaanxi, China
| | - Juan Liu
- Department of Neurology, Baoji People's Hospital, Baoji, Shaanxi, China
| |
Collapse
|
13
|
Liu Q, Yan S, Yuan Y, Ji S, Guo L. miR-28-5p improved carotid artery stenosis by regulating vascular smooth muscle cell proliferation and migration. Vascular 2021; 30:764-770. [PMID: 34162296 DOI: 10.1177/17085381211019510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in carotid artery stenosis. The purpose of this study was to investigate the diagnostic value of serum miR-28-5p in asymptomatic carotid artery stenosis and its regulation on the proliferation and migration of VSMCs. METHODS Serum miR-28-5p levels in 65 healthy controls and 68 asymptomatic carotid artery stenosis patients were detected by qRT-PCR. The receiver-operating characteristic curve was applied to elucidate the diagnostic value of serum miR-28-5p for carotid artery stenosis patients. The specificity of miRNA targets was detected by luciferase reporter assay. CCK-8 and Transwell assay were applied to detect proliferation and migration of cells. Pearson correlation test was used to investigate the correlation between Forkhead box subclass O 1 (FOXO1) and serum miR-28-5p. RESULTS Serum miR-28-5p was significantly reduced in asymptomatic carotid artery stenosis patients. Moreover, miR-28-5p could distinguish asymptomatic carotid artery stenosis patients from healthy controls, with sensitivity and specificity of 86.8% and 81.5%, respectively, indicating its high diagnostic value. The overexpression of miR-28-5p inhibited the proliferation and migration of VSMCs, while inhibition of miR-28-5p resulted in the opposite effect. What is more, FOXO1, a direct target of miR-28-5p, was significantly increased in asymptomatic carotid artery stenosis patients. Inhibition of miR-28-5p in VSMCs reversed the reduction of FOXO1 levels in patients. CONCLUSIONS miR-28-5p is a valuable diagnostic biomarker for asymptomatic carotid artery stenosis and can affect the proliferation and migration of VSMCs by regulating FOXO1.
Collapse
Affiliation(s)
- Qiangrui Liu
- Department of Neurology, Affiliated Hospital of Gansu Medical College, Pingliang, China
| | - Shibiao Yan
- Department of Cardiology, Shanxian Haijiya Hospital, Shandong, China
| | - Yangyi Yuan
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Shishun Ji
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Long Guo
- Department of Neurology, Affiliated Hospital of Gansu Medical College, Pingliang, China
| |
Collapse
|
14
|
Circulating miR-342-5p serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event. Ir J Med Sci 2021; 191:713-718. [PMID: 33844160 DOI: 10.1007/s11845-021-02623-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Carotid artery stenosis (CAS) is an important risk factor for cerebral ischemia events (CIE). Previous studies have shown that microRNAs (miRNAs) are involved in the occurrence and development of CAS. AIMS The purpose of this study was to reveal the clinical diagnostic value of miR-342-5p for asymptomatic CAS (ACAS) and to evaluate its predictive value for the occurrence of CIE in patients. METHODS A total of 92 ACAS patients and 86 healthy controls were enrolled as subjects. The expression level of serum miR-342-5p was detected by qRT-PCR. The receiver operating characteristic (ROC) curve was used to detect the diagnostic value of miR-342-5p in ACAS. Kaplan-Meier survival and Cox regression analysis assessed the predictive value of miR-342-5p for the occurrence of CIE in ACAS patients. RESULTS The level of serum miR-342-5p in ACAS patients was significantly higher than that in healthy controls (P < 0.05). ROC curve showed the high diagnostic value of serum miR-342-5p, which could distinguish ACAS patients from healthy controls. Multivariate Cox regression analysis confirmed that miR-342-5p was an independent predictor (HR = 5.512, 95%CI = 1.370-22.176, P = 0.016). What is more, Kaplan-Meier analysis confirmed that patients with high miR-342-5p expression develop more CIE (log-rank, P = 0.020). CONCLUSIONS miR-342-5p was significantly overexpressed in ACAS. And the upregulation of serum miR-342-5p is a valuable diagnostic biomarker and can predict the occurrence of CIE.
Collapse
|
15
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
16
|
Lu T, Li X, Long C, Ji W, Jiang L, Tian J. Circulating miR-27b as a Biomarker of the Development and Progression of Carotid Artery Stenosis. Clin Appl Thromb Hemost 2021; 27:10760296211057903. [PMID: 34806417 PMCID: PMC8649086 DOI: 10.1177/10760296211057903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE A close relationship of microRNAs (miRNAs) with various human diseases has been widely reported, including cardiovascular disease. The current study attempted to examine the abnormal expression of miR-27b in asymptomatic carotid artery stenosis (ACAS), its diagnostic value and predictive value for the development of ACAS were also assessed. METHODS Clinical serum samples were collected from both ACAS patients and healthy individuals, and levels of miR-27b in the clinical samples were detected using Real-time quantitative PCR. Cerebral ischemia events (CIEs) of patients during the 5-year follow-up were collected. The diagnostic and predictive values of serum miR-27b was assessed via plotting Receiver operating characteristic (ROC) and Kaplan-Meier curves. Multivariate cox regression analysis was performed for clinical independent index analysis. RESULTS ACAS patients had higher levels of miR-27b than the healthy subjects. There were close association of serum miR-27b levels with total cholesterol (TC) level, absence of hypertension and degree of carotid stenosis. High levels of miR-27b could differentiate ACAS cases from healthy subjects, and predicted the high incidence of CIEs. MiR-27b could be used as an independent predictor of cerebrovascular events via multiple Cox regression analysis (P = .031). CONCLUSION The high level of miR-27b can predict the occurrence of ACAS, and is closely related to the subsequent occurrence of CIEs. The present results provide evidence for circulating miR-27b as a diagnostic and prognostic marker in patients with ACAS.
Collapse
Affiliation(s)
- Tingting Lu
- Encephalopathy Rehabilitation Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Xin Li
- Encephalopathy Rehabilitation Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chunxi Long
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyuan Ji
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linjun Jiang
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianquan Tian
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
17
|
Du S, Ling H, Guo Z, Cao Q, Song C. Roles of exosomal miRNA in vascular aging. Pharmacol Res 2020; 165:105278. [PMID: 33166733 DOI: 10.1016/j.phrs.2020.105278] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Aging is a major risk factor for human diseases. As global average life expectancy has lengthened, delaying or reducing aging and age-related diseases has become an urgent issue for improving the quality of life. The vascular aging process represents an important link between aging and age-related diseases. Exosomes are small extracellular vesicles (EV) that can be secreted by almost all eukaryotic cells, and they deliver characteristic biological information about donor cells to regulate the cellular microenvironment, mediate signal transmission between neighboring or distant cells, and affect the expression of target genes in recipient cells. Many recent studies have shown that exosomal microribonucleic acids (miRNA) are involved in the regulation of vascular aging by participating in the physiological functions of vascular cells and the destruction and remodeling of the extracellular matrix (ECM). This review summarizes the regulatory functions of exosomal miRNA in vascular aging because they interact with the ECM, and participate in vascular cell senescence, and the regulation of senescence-related functions such as proliferation, migration, apoptosis, inflammation, and differentiation.
Collapse
Affiliation(s)
- Shuangshuang Du
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ling
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ziyuan Guo
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qidong Cao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunli Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|