1
|
Uhrova V, Parova H, Cervinkova Z, Kucera O, Palicka V. Optimal endogenous controls for microRNA analysis of visceral adipose tissue in the NAFLD mouse model. J Biosci 2025; 50:11. [PMID: 40098399 DOI: 10.1007/s12038-025-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 04/22/2025]
Abstract
The selection of proper reference genes and materials is critical in the design of PCR experiments, especially for differential expression studies. In this study, we propose a method to identify robust endogenous control miRNAs in the visceral adipose tissue of C57BL/6J mice with non-alcoholic fatty liver disease induced by alternating Western and control diets. This study outlines a comprehensive methodology for the analysis of microRNA endogenous controls using microfluidic cards in conjunction with miRNA profiling through small RNA sequencing and subsequent validation by quantitative PCR and the RefFinder algorithm. Criteria included were fold change, p-value, reads per million, and gene stability assessment. A set of six putative endogenous microRNAs was identified (miR-331-3p, let-7a-5p, miR-1839-5p, miR-151a-5p, let-7d-5p, and let-7c-5p). Subsequent validation and analysis using the RefFinder algorithm assessed the stability of the selected genes, and a combination of the three most stable endogenous miRNA controls (miR-331-3p, let-7a- 5p, and miR-1839-5p) exhibiting consistent expression patterns with minimal variability was set. Given the absence of universal endogenous controls, individual evaluation of normalizers for each experiment is imperative for accurate miRNA expression measurements. This approach, which combines multiple techniques and assessments, provides a reliable strategy for identifying and validating endogenous controls in miRNA studies.
Collapse
Affiliation(s)
- Veronika Uhrova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kra´love´ and University Hospital Hradec Kra´love´, Hradec Kra´love´, Czech Republic
| | | | | | | | | |
Collapse
|
2
|
Prasad M, Sekar R, Priya MDL, Varma SR, Karobari MI. A new perspective on diagnostic strategies concerning the potential of saliva-based miRNA signatures in oral cancer. Diagn Pathol 2024; 19:147. [PMID: 39548527 PMCID: PMC11568613 DOI: 10.1186/s13000-024-01575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Oral cancer, the most prevalent cancer worldwide, is far more likely to occur after the age of forty-five, according to the World Health Organization. Although many biomarkers have been discovered over the years using non-invasive saliva samples, biopsies, and human blood, these biomarkers have not been incorporated into standard clinical practice. Investigating the function of microRNAs (miRNAs) in the diagnosis, aetiology, prognosis, and treatment of oral cancer has drawn more attention in recent years. Though salivary microRNA can act as a window into the molecular environment of the tumour, there are challenges due to the heterogeneity of oral squamous cell carcinoma (OSCC), diversity in sample collection, processing techniques, and storage conditions. The up and downregulation of miRNAs has been found to have a profound role in OSCC as it regulates tumour stages by targeting many genes. As a result, the regulatory functions of miRNAs in OSCC underscore their significance in the field of cancer biology. Salivary miRNAs are useful diagnostic and prognostic indicators because their abnormal expression profiles shed light on tumour behaviour and patient prognosis. In addition to their diagnostic and prognostic value, miRNAs hold promise as therapeutic targets for oral cancer intervention. The current review sheds light on the challenges and potentials of microRNA studies that could lead to a better understanding of oral cancer prognosis, diagnosis, and therapeutic intervention. Furthermore, the clinical translation of OSCC biomarkers requires cooperation between investigators, physicians, regulatory bodies, and business partners. There is much potential for improving early identification, tracking therapy response, and forecasting outcomes in OSCC patients by including saliva-based miRNAs as biomarkers.
Collapse
Affiliation(s)
- Monisha Prasad
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Ramya Sekar
- Department of Oral and Maxillofacial Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | | | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman University, Ajman - 346, Ajman, UAE
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
3
|
Toraih EA, Hussein MH, Al Ageeli E, Ellaban M, Kattan SW, Moroz K, Fawzy MS, Kandil E. Matrix Metalloproteinase 9/microRNA-145 Ratio: Bridging Genomic and Immunological Variabilities in Thyroid Cancer. Biomedicines 2023; 11:2953. [PMID: 38001954 PMCID: PMC10669161 DOI: 10.3390/biomedicines11112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP9) and microRNA-145 (miR-145) have emerged as essential biomarkers in thyroid cancer progression and metastasis. However, their combined evaluation and clinical utility as a unified prognostic marker across diverse thyroid cancer subgroups remain unexplored. We investigated the diagnostic and prognostic value of the MMP9/miR-145 ratio in thyroid cancer, hypothesizing it may overcome inter-patient heterogeneity and serve as a versatile biomarker regardless of genetic mutations or autoimmune status. MMP9 and miR-145 expressions were analyzed in 175 paired papillary thyroid cancer (PTC) and normal tissues. Plasma levels were assessed perioperatively and longitudinally over 12-18 months in 86 matched PTC patients. The associations with clinicopathological parameters and patient outcomes were evaluated. MMP9 was upregulated, and miR-145 downregulated in cancer tissues, with a median MMP9/miR-145 ratio 17.6-fold higher versus controls. The tissue ratio accurately diagnosed thyroid malignancy regardless of BRAF mutation or Hashimoto's thyroiditis status, overcoming genetic and autoimmune heterogeneity. A high preoperative circulating ratio predicted aggressive disease features, including lymph node metastasis, extrathyroidal extension, progression/relapse, and recurrence. Although the preoperative plasma ratio was elevated in patients with unfavorable outcomes, it had limited utility for post-surgical monitoring. In conclusion, the MMP9/miR-145 ratio is a promising biomarker in PTC that bridges genetic and immunological variabilities, enhancing preoperative diagnosis and prognostication across diverse patient subgroups. It accurately stratifies heterogenous cases by aggressiveness. The longitudinal trends indicate decreasing applicability for post-thyroidectomy surveillance. Further large-scale validation and protocol standardization can facilitate clinical translation of the MMP9/miR-145 ratio to guide personalized thyroid cancer management.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohamad Ellaban
- Faculty of Medicine, Port Said University, Port Said 42526, Egypt;
| | - Shahd W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia;
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| |
Collapse
|
4
|
Murray A, Banota T, Guo GL, Smith LC, Meshanni JA, Lee J, Kong B, Abramova EV, Goedken M, Gow AJ, Laskin JD, Laskin DL. Farnesoid X receptor regulates lung macrophage activation and injury following nitrogen mustard exposure. Toxicol Appl Pharmacol 2022; 454:116208. [PMID: 35998709 PMCID: PMC9960619 DOI: 10.1016/j.taap.2022.116208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.
Collapse
Affiliation(s)
- Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Tanvi Banota
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Pu J, Zhang Y, Wang A, Qin Z, Zhuo C, Li W, Xu Z, Tang Q, Wang J, Wei H. ADORA2A-AS1 Restricts Hepatocellular Carcinoma Progression via Binding HuR and Repressing FSCN1/AKT Axis. Front Oncol 2021; 11:754835. [PMID: 34733789 PMCID: PMC8558402 DOI: 10.3389/fonc.2021.754835] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Increasing evidence revealed that long noncoding RNAs (lncRNAs) were frequently involved in various malignancies. Here, we explored the clinical significances, roles, and mechanisms of lncRNA ADORA2A antisense RNA 1 (ADORA2A-AS1) in HCC. Methods The clinical significances of ADORA2A-AS1 in HCC were analyzed using RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) project. The expressions of ADORA2A-AS1, Fascin Actin-Bundling Protein 1 (FSCN1), Matrix Metallopeptidase 2 (MMP2), and Baculoviral IAP Repeat Containing 7 (BIRC7) in HCC tissues and cells were measured by qRT-PCR. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), caspase-3 activity assay, transwell migration and invasion assays, and xenograft growth and metastasis experiments were performed to evaluate the roles of ADORA2A-AS1 in HCC. RNA pull-down, RNA immunoprecipitation, qRT-PCR, Western blot, and RNA stability assay were performed to elucidate the mechanisms of ADORA2A-AS1 in HCC. Results ADORA2A-AS1 was identified as an HCC-related lncRNA, whose low expression was correlated with advanced stage and poor outcome in HCC. Gain- and loss-of functional experiments demonstrated that ADORA2A-AS1 inhibited HCC cell proliferation, induced cell apoptosis, repressed cell migration and invasion, and repressed xenograft growth and metastasis in vivo. Mechanistically, ADORA2A-AS1 competitively bound HuR (Hu Antigen R), repressed the binding of HuR to FSCN1 transcript, decreased FSCN1 transcript stability, and downregulated FSCN1 expression. The expression of FSCN1 was negatively correlated with ADORA2A-AS1 in HCC tissues. Through downregulating FSCN1, ADORA2A-AS1 repressed AKT pathway activation. Functional rescue assays showed that blocking of FSCN1/AKT axis abrogated the roles of ADORA2A-AS1 in HCC. Conclusion Low-expression ADORA2A-AS1 is correlated with poor survival of HCC patients. ADORA2A-AS1 exerts tumor-suppressive roles in HCC via binding HuR and repressing FSCN1/AKT axis.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya Zhang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zebang Qin
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Chenyi Zhuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
7
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|