1
|
Fan Y, Wei J, Lin L, Lin J, Li X, Xu L, Zhou X, Li Y, Yang Y. Cold-Induced RNA-Binding Protein (CIRP) Affects Cerebral Ischemia-Reperfusion Injury Through NF-κB Pathway. Mol Neurobiol 2025:10.1007/s12035-025-05029-7. [PMID: 40381168 DOI: 10.1007/s12035-025-05029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
The pathological and physiological mechanisms for effectively mitigating ischemia-reperfusion (I/R) injury and preserving brain structure and function remain unclear. This study investigates the regulatory mechanism underlying cold-induced RNA-binding protein (CIRP)-mediated NF-κB pathway in cerebral I/R injury and neuronal inflammatory injury. The infarct volume of I/R CIRP-/- mice was significantly mitigated, and the inflammatory factor IL-18 expression in mice serum and the NLRP3 and IL-1β expression in brain tissue was significantly decreased as opposed to the I/R WT mice. The in vitro outcomes manifested that inhibiting CIRP expression led to a significant hindrance in cell apoptosis, a significant drop in the inflammatory factors levels in the cell supernatant, and a significant decline in the expression of pyroptosis-linked proteins ASC, cleaved caspase-1, and gasdermin D (GSDMD) in cells. Following administration of the NF-κB pathway inhibitor PDTC, there was a significant hindrance in cell apoptosis, as well as a significant drop in the inflammatory factors levels IL-1β, TNF-α, and IL-18 in the cell supernatant. After treating BV-2 cells with HT22 cell conditioned medium under OGD condition, the content of LDH in BV-2 cells was increased. Intervention of CIRP expression in HT22 cells resulted in reduced damage to BV-2 cells and decreased expression of M1 marker CD86. CIRP may be involved in neuronal damage in I/R and in vitro OGD models via the NF-κB /NLRP3 pathway, and it may affect microglial polarization.
Collapse
Affiliation(s)
- Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Jingjing Wei
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lili Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jinying Lin
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Xiaohua Li
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Liyu Xu
- Department of Respiratory Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Xiaohui Zhou
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Yongkun Li
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Yongkai Yang
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350009, Fujian, China.
| |
Collapse
|
2
|
Aziz M, Chaudry IH, Wang P. Extracellular Cold-Inducible RNA-Binding Protein: Progress from Discovery to Present. Int J Mol Sci 2025; 26:3524. [PMID: 40332009 PMCID: PMC12026706 DOI: 10.3390/ijms26083524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a critical damage-associated molecular pattern (DAMP) that drives inflammation and tissue injury in hemorrhagic and septic shock, and has emerged as a promising therapeutic target. Since then, extensive research using preclinical models of diseases and patient materials has explored eCIRP's role in driving inflammatory responses and its potential as a biomarker. The main objective of this comprehensive review is to provide a detailed overview of eCIRP, covering its discovery, role in disease pathophysiology, mechanisms of release and action, potential as a biomarker, and therapeutic strategies targeting eCIRP in preclinical models of inflammatory and ischemic diseases. We examine the molecular, cellular, and immunological mechanisms through which eCIRP contributes to disease progression, and explore both well-established and emerging areas of research. Furthermore, we discuss potential therapeutic strategies targeting eCIRP across a broad spectrum of inflammatory conditions, including shock, ischemia-reperfusion injury, neurodegenerative diseases, and radiation injury.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY 11030, USA
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
3
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2025; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Tan C, Reilly B, Ma G, Murao A, Jha A, Aziz M, Wang P. Neutrophils disrupt B-1a cell homeostasis by targeting Siglec-G to exacerbate sepsis. Cell Mol Immunol 2024; 21:707-722. [PMID: 38789529 PMCID: PMC11214631 DOI: 10.1038/s41423-024-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bridgette Reilly
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Gaifeng Ma
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Alok Jha
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA.
| |
Collapse
|
5
|
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol 2022; 13:1034667. [PMID: 36425582 PMCID: PMC9679374 DOI: 10.3389/fphar.2022.1034667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening syndrome caused by anomalous host response to infection. The pathogenesis of sepsis is complex, and immune dysfunction is the central link in its occurrence and development. The sepsis immune response is not a local and transient process but a complex and continuous process involving all major cell types of innate and adaptive immunity. B cells are traditionally studied for their ability to produce antibodies in the context of mediating humoral immunity. However, over the past few years, B cells have been increasingly recognized as key modulators of adaptive and innate immunity, and they can participate in immune responses by presenting antigens, producing cytokines, and modulating other immune cells. Recently, increasing evidence links B-cell dysfunction to mechanisms of immune derangement in sepsis, which has drawn attention to the powerful properties of this unique immune cell type in sepsis. Here, we reviewed the dynamic alterations of B cells and their novel roles in animal models and patients with sepsis, and provided new perspectives for therapeutic strategies targeting B cells in sepsis.
Collapse
Affiliation(s)
- Chengyong Ma
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Reilly B, Tan C, Murao A, Nofi C, Jha A, Aziz M, Wang P. Necroptosis-Mediated eCIRP Release in Sepsis. J Inflamm Res 2022; 15:4047-4059. [PMID: 35873387 PMCID: PMC9304637 DOI: 10.2147/jir.s370615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Extracellular cold-inducible RNA-binding protein (eCIRP) is an endogenous pro-inflammatory mediator that exacerbates injury in inflammation and sepsis. The mechanisms in which eCIRP is released have yet to be fully explored. Necroptosis is a programmed cell death that is dependent on the activation of mixed lineage kinase domain-like pseudo kinase (MLKL) which causes the release of damage-associated molecular patterns. We hypothesize that eCIRP is released through necroptosis and intensifies inflammation in sepsis. Methods RAW264.7 cells were treated with pan-caspase inhibitor z-VAD (15 μM) 1 h before stimulation with LPS (1 μg/mL). Necroptosis inhibitor, Necrostatin-1 (Nec-1) (10 μM) was added to the cells with LPS simultaneously. After 24 h of LPS stimulation, cytotoxicity was determined by LDH assay. eCIRP levels in the culture supernatants and phospho-MLKL (p-MLKL) from cell lysates were assessed by Western blot. p-MLKL interaction with the cell membrane was visualized by immunofluorescence. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Mice were treated with Nec-1 (1 mg/kg) or DMSO. 20 h post-surgery, serum and peritoneal fluid levels of eCIRP, TNF-α and IL-6 were determined by ELISA. H&E staining of lung tissue sections was performed. Results We found that in RAW264.7 cells, LPS+z-VAD induces necroptosis as evidenced by an increase in p-MLKL levels and causes eCIRP release. Nec-1 reduces both p-MLKL activation and eCIRP release in LPS+z-VAD-treated RAW264.7 cells. Nec-1 also inhibits the release of eCIRP, TNF-α and IL-6 in the serum and peritoneal fluid in CLP-induced septic mice. We predicted a transient interaction between eCIRP and MLKL using a computational model, suggesting that eCIRP may exit the cell via the pores formed by p-MLKL. Conclusion Necroptosis is a novel mechanism of eCIRP release in sepsis. Targeting necroptosis may ameliorate inflammation and injury in sepsis by inhibiting eCIRP release.
Collapse
Affiliation(s)
- Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Colleen Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
7
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|