1
|
Zhu M, Xiang W, Zhu Z, Nie B, Zhen X, Chen C, Wang T. Bibliometric analysis of autophagy in the diagnosis and treatment of osteosarcoma: a bibliometric analysis (2007-2023). Cancer Biol Ther 2025; 26:2484825. [PMID: 40146196 PMCID: PMC11951729 DOI: 10.1080/15384047.2025.2484825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/14/2024] [Accepted: 03/23/2025] [Indexed: 03/28/2025] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and adolescents. Its pathogenesis is complex and poses difficulties in treatment. Autophagy is a cell biological process that plays a crucial role in the mechanistic study and treatment of osteosarcoma. The objective of this study is to evaluate the past research progress from 2007 to 2023 and visualize the key research directions through bibliometric methods. Relevant publications published from the start of 2007 to the end of 2023 were searched and screened in the Web of Science Core Collection. They were analyzed and visualized using CiteSpace and the Bibliometric online analysis platform in terms of country, institution, author, journal, cited references, and keywords. In total, 619 publications from 522 journals with 682 authors from 42 countries were screened. The country with the highest number of publications is China (n = 445, 71.890%), followed by the United States (n = 60, 9.693%). The research institution with the highest number of publications is Shanghai Jiao Tong University (n = 42, 6.785%). The author with the highest number of publications is Cai, Zhengdong (n = 7), while the most cited author is Mizushimma N (n = 93). Among many journals, AUTOPHAGY has the most citations (n = 342), while CANCER LETT shows the greatest centrality (Centrality = 0.05). "Autophagy" is the most cited keyword (n = 177), and the keyword with the largest burst intensity is "cancer cells" (Strength = 6.27), which lasted from 2011 to 2014. China is a major contributor to autophagy research in the field of osteosarcoma, followed by the United States. All publications are in high-quality journals. "Autophagy" is a hot research topic in this field.
Collapse
Affiliation(s)
- Min Zhu
- Department of Anesthesiology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Xiang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhoujun Zhu
- Department of Joint Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bingjie Nie
- Department of Anesthesiology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinyue Zhen
- Department of Anesthesiology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chen Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tianhai Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Chen X, Tian B, Wang Y, Zheng J, Kang X. Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review). Int J Mol Med 2025; 55:92. [PMID: 40242955 PMCID: PMC12021390 DOI: 10.3892/ijmm.2025.5533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Osteosarcoma, the most prevalent primary bone malignancy in children and adolescents, poses significant challenges due to its aggressive nature and propensity for metastasis. Despite advances in treatment, survival rates for high‑risk patients remain unsatisfactory, underscoring the urgent need for innovative approaches. This review explores the vital role of multi‑omics‑integrating genomics, transcriptomics, proteomics and metabolomics‑in unraveling the complex biological landscapes of osteosarcoma. By providing comprehensive insights into tumor heterogeneity, signaling pathways and metabolic reprogramming, multi‑omics facilitates the identification of novel biomarkers and therapeutic targets. The objective of the present study was to highlight the transformative potential of multi‑omics in enhancing the understanding and management of osteosarcoma, ultimately paving the way for personalized treatment strategies and improved patient outcomes. Through this synthesis, the study calls for a concerted effort to integrate multi‑omics into clinical practice, fostering a more precise approach to osteosarcoma care.
Collapse
Affiliation(s)
| | | | | | - Jiang Zheng
- Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xin Kang
- Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
3
|
Shen Y, Dong X, Li X, Shi Z, Shao T, Jiang J, Song J. WNT inhibitor SP5-mediated SERPING1 suppresses lung adenocarcinoma progression via TSC2/mTOR pathway. Cell Death Dis 2025; 16:103. [PMID: 39962118 PMCID: PMC11832940 DOI: 10.1038/s41419-025-07440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
The long-term outlook for patients grappling with lung cancer (LC) remains bleak, with lung adenocarcinoma (LUAD) emerging as the most predominant histological subtype. Our Mendelian randomization (MR) investigation spotlighted that heightened levels of the circulating protein serpin peptidase inhibitor family G1 (SERPING1) substantially mitigated LC risk. The fusion of multi-omics strategies unveiled that SERPING1 exhibited diminished expression in LUAD patients compared to healthy individuals both in tissues and serum, with LUAD individuals showcasing elevated SERPING1 expression demonstrating improved prognoses. Furthermore, SERPING1 expression exhibited a robust correlation with the efficacy of immunotherapy. Through meticulous in vivo and in vitro analyses, we unraveled that SERPING1 impeded the proliferation, migration, invasion and wound healing of LUAD cells via the tuberous sclerosis 2 (TSC2)/mammalian target of rapamycin (mTOR) pathway. Mechanistically, WNT inhibitor- Specificity Protein (SP5) was delineated as facilitator of SERPING1 transcription by binding to the SERPING1 gene promoter. Intriguingly, aside from the association between SERPING1 and systolic blood pressure, glycosylated hemoglobin (HbA1c), type I diabetes, no discernible link between SERPING1 overexpression and heightened risks of other cardiometabolic conditions and diseases was evident. In summary, SERPING1 emerges as a novel tumor suppressor gene and SP5/SERPING1/TSC2 is a promising therapeutic target in the context of LUAD.
Collapse
Affiliation(s)
- Yefeng Shen
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region (Guangxi Academy of Medical Sciences), Nanning, China
| | - Xujia Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Tingting Shao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junlan Jiang
- Department of Pathology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Pathology Center, Anhui Medical University, Hefei, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China.
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Zhang S, Xing Z, Ke J. Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation. J Bone Oncol 2025; 50:100655. [PMID: 39850453 PMCID: PMC11755076 DOI: 10.1016/j.jbo.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment. Methods Osteosarcoma stem cells were isolated and induced for DOX resistance. In vitro and in vivo models were employed to assess β-elemene's impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene. Results In vivo animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. In vitro experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, in vivo animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis. Conclusion β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Shaochun Zhang
- Orthopedics Department, The Central Hospital of Ezhou, Ezhou 436000, China
| | - Zhijie Xing
- Orthopedics Department, The Central Hospital of Ezhou, Ezhou 436000, China
| | - Jing Ke
- Department of Endocrinology, The Central Hospital of Ezhou, Ezhou 436000, China
| |
Collapse
|
5
|
Zhao J, Shi W, Zheng Y, Wang J, Yuan M, Anwar Y, He Y, Ma H, Wu J. Mechanism of mTOR/RILP-regulated autophagic flux in increased susceptibility to myocardial ischemia-reperfusion in diabetic mice. Front Pharmacol 2025; 15:1506401. [PMID: 39958873 PMCID: PMC11825452 DOI: 10.3389/fphar.2024.1506401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/23/2024] [Indexed: 02/18/2025] Open
Abstract
Background The increased myocardial vulnerability that occurs in diabetic patients following an ischemia-reperfusion injury (I/RI) represents a significant perioperative safety risk. A comprehensive understanding of the intrinsic mechanisms underlying this phenomenon is therefore of paramount importance. Purposes The objective of this study is to investigate the potential mechanism of action between impaired autophagic flux and increased vulnerability in diabetic myocardium. This will provide a foundation for the clinical search for effective preventive and curative measures. Methods The transcriptomic alterations in autophagy-related genes following myocardial exposure to I/RI were analyzed by single-cell sequencing. This was followed by the validation of potential mechanisms of action between impaired autophagic flux and increased susceptibility at the cellular and animal levels, respectively. Results After I/RI in diabetic myocardium, there was a significant increase in the number of CM1 subgroups and a specific downregulation of 239 autophagy-related genes led by RILP. HE staining revealed that myocardial injury was exacerbated in diabetic mice subjected to I/RI. Transmission electron microscopy revealed that the accumulation of autophagic vesicles in cardiomyocytes of diabetic mice resulted in impaired autophagic flux. qRT-PCR revealed that the expression of RILP was significantly reduced in diabetic mice subjected to I/RI. WB showed that P62 was significantly increased and RILP was significantly decreased in diabetic mice subjected to I/RI compared to healthy mice. Inhibition of mTOR during hypoxia/reoxygenation (H/R) injury restored RILP expression and attenuated cellular injury in cardiomyocytes cultured with high glucose. Conclusion Following I/RI in diabetic myocardium, an increase in the CM1 subpopulation and a reduction in RILP expression result in impaired autophagic flux. Regulation of the mTOR/RILP pathway can restore impaired autophagic flux and improve myocardial vulnerability, thereby exerting cardioprotective effects.
Collapse
Affiliation(s)
- Jiyao Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Shi
- Catheterization Laboratory, Changji Prefecture People’s Hospital, Changji Hui Autonomous Prefecture, China
| | - Yan Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junjie Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muzhao Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yultuz Anwar
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuxuan He
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Ma X, Tian F, Xiao Y, Huang M, Song D, Chen X, Xu H. Synergistic effects of bloom helicase (BLM) inhibitor AO/854 with cisplatin in prostate cancer. Sci Rep 2024; 14:24962. [PMID: 39438537 PMCID: PMC11496540 DOI: 10.1038/s41598-024-75938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
To determine the synergistic effect and mechanism of AO/854, a new Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, cell viability assays, neutral comet assays, and Western blotting (WB) were performed on prostate cancer (PCa) cells. According to our findings, combining AO/854 and CDDP enhanced the antiproliferative capabilities of PC3 cell lines. As evidenced by the upregulation of γH2AX, cleaved caspase-3/caspase-3, and BAX/Bcl-2, AO/854 dramatically increased PC3 apoptosis and DNA damage induced by CDDP. Furthermore, combining AO/854 and CDDP synergistically inhibited PC3 cell migration and invasion. In addition, AO/854 inhibited CDDP-induced S-phase cell-cycle arrest in PC3 cells while enhancing G2/M-phase cell-cycle arrest. In vivo, the antitumor efficacy of the combination therapy group was greater than that of the groups treated with AO/854 or CDDP alone. Our findings indicate that synergistic chemotherapy with AO/854 and CDDP may be a novel anticancer strategy for PCa.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Yuanpin Xiao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564500, China
| | - Xinlin Chen
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Han Y, Liu X, Xu L, Wei Z, Gu Y, Ren Y, Hua W, Zhang Y, Liu X, Jiang C, Zhuang R, Hong W, Wang T. RILP Induces Cholesterol Accumulation in Lysosomes by Inhibiting Endoplasmic Reticulum-Endolysosome Interactions. Cells 2024; 13:1313. [PMID: 39195203 PMCID: PMC11352460 DOI: 10.3390/cells13161313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Endoplasmic reticulum (ER)-endolysosome interactions regulate cholesterol exchange between the ER and the endolysosome. ER-endolysosome membrane contact sites mediate the ER-endolysosome interaction. VAP-ORP1L (vesicle-associated membrane protein-associated protein- OSBP-related protein 1L) interaction forms the major contact site between the ER and the lysosome, which is regulated by Rab7. RILP (Rab7-interacting lysosomal protein) is the downstream effector of Rab7, but its role in the organelle interaction between the ER and the lysosome is not clear. In this study, we found RILP interacts with ORP1L to competitively inhibit the formation of the VAP-ORP1L contact site. Immunofluorescence microscopy revealed that RILP induces late endosome/lysosome clustering, which reduces the contact of endolysosomes with the ER, interfering with the ER-endolysosome interaction. Further examination demonstrated that over-expression of RILP results in the accumulation of cholesterol in the clustered endolysosomes, which triggers cellular autophagy depending on RILP. Our results suggest that RILP interferes with the ER-endolysosome interaction to inhibit cholesterol flow from the endolysosome to the ER, which feedbacks to trigger autophagy.
Collapse
Affiliation(s)
- Yang Han
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Xiaoqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Liju Xu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Ziheng Wei
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Yueting Gu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Yandan Ren
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Wenyi Hua
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Yongtao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Xiaoxi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Cong Jiang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Ruijuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| | - Wanjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research), Singapore 138673, Singapore
| | - Tuanlao Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China; (Y.H.); (X.L.); (L.X.); (Z.W.); (Y.G.); (Y.R.); (W.H.); (Y.Z.); (X.L.); (C.J.); (R.Z.)
| |
Collapse
|
8
|
Wang M, Luo K, Sha T, Li Q, Dong Z, Dou Y, Zhang H, Zhou G, Ba Y, Yu F. Apoptosis and Inflammation Involved with Fluoride-Induced Bone Injuries. Nutrients 2024; 16:2500. [PMID: 39125380 PMCID: PMC11313706 DOI: 10.3390/nu16152500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. METHODS We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected to enrichment analyses. A TF (transcription factor)-mRNA-miRNA network and protein-protein interaction (PPI) network were constructed using Cytoscape, and the Human Protein Atlas (HPA) database was used to screen the expression of key proteins. The candidate pharmacological targets were predicted using the Drug Signature Database. RESULTS A total of 85 studies were included in this study, and 112 osteoblast-, 35 osteoclast-, and 41 chondrocyte-related differential expression genes (DEGs) were identified. Functional enrichment analyses showed that the Atf4, Bcl2, Col1a1, Fgf21, Fgfr1 and Il6 genes were significantly enriched in the PI3K-Akt signaling pathway of osteoblasts, Mmp9 and Mmp13 genes were enriched in the IL-17 signaling pathway of osteoclasts, and Bmp2 and Bmp7 genes were enriched in the TGF-beta signaling pathway of chondrocytes. With the use of the TF-mRNA-miRNA network, the Col1a1, Bcl2, Fgfr1, Mmp9, Mmp13, Bmp2, and Bmp7 genes were identified as the key regulatory factors. Selenium methyl cysteine, CGS-27023A, and calcium phosphate were predicted to be the potential drugs for skeletal fluorosis. CONCLUSIONS These results suggested that the PI3K-Akt signaling pathway being involved in the apoptosis of osteoblasts, with the IL-17 and the TGF-beta signaling pathways being involved in the inflammation of osteoclasts and chondrocytes in fluoride-induced bone injuries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (K.L.); (T.S.); (Q.L.); (Z.D.); (Y.D.); (H.Z.); (G.Z.); (Y.B.)
| |
Collapse
|
9
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
10
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|