1
|
Grigore M, Ruscu MA, Hermann DM, Colita IC, Doeppner TR, Glavan D, Popa-Wagner A. Biomarkers of cognitive and memory decline in psychotropic drug users. J Neural Transm (Vienna) 2025; 132:39-59. [PMID: 39377784 PMCID: PMC11735527 DOI: 10.1007/s00702-024-02837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Psychotropic drugs are vital in psychiatry, aiding in the management of mental health disorders. Their use requires an understanding of their pharmacological properties, therapeutic applications, and potential side effects. Ongoing research aims to improve their efficacy and safety. Biomarkers play a crucial role in understanding and predicting memory decline in psychotropic drug users. A comprehensive understanding of biomarkers, including neuroimaging, biochemical, genetic, and cognitive assessments, is essential for developing targeted interventions and preventive strategies. In this narrative review, we performed a comprehensive search on PubMed and Google using review-specific terms. Clinicians should use a multifaceted approach, including neurotransmitter analysis, neurotrophic factors, miRNA profiling, and cognitive tasks for early intervention and personalized treatment. Anxiolytics' mechanisms involve various neurotransmitter systems and emerging targets. Research on biomarkers for memory decline in anxiolytic users can lead to early detection and intervention, enhancing clinical practices and aligning with precision medicine. Mood stabilizer users can benefit from early detection of memory decline through RNA, neurophysiological, and inflammatory biomarkers, promoting timely interventions. Performance-enhancing drugs may boost athletic performance in the short term, but their long-term health risks and ethical issues make their use problematic. Long-term use of psychotropic performance enhancers in athletes shows changes in biomarkers of cognitive decline, necessitating ongoing monitoring and intervention strategies. Understanding these genetic influences on memory decline helps pave the way for personalized approaches to prevent or mitigate cognitive deterioration, emphasizing the importance of genetic screening and early interventions based on an individual's genetic profile. Future research should focus on refining these biomarkers and protective measures against cognitive deterioration. Overall, a comprehensive understanding of biomarkers in psychotropic drug users is essential for developing targeted interventions and preventive strategies.
Collapse
Affiliation(s)
- Monica Grigore
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Petru Rares 2-4, 200349, Romania, Craiova
| | - Mihai Andrei Ruscu
- Doctoral School, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, 45147, Essen, Germany
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ivan-Cezar Colita
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Thorsten Roland Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, Petru Rares 2-4, 200349, Romania, Craiova.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
2
|
Handajani YS, Hogervorst E, Schröder-Butterfill E, Turana Y, Hengky A. Memory impairment and its associated risk and protective factors among older adults in Indonesia. Int J Neurosci 2024; 134:978-986. [PMID: 36856553 DOI: 10.1080/00207454.2023.2183788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
AIMS This study aimed to evaluate the association between memory impairment and its risk and protective factors, focusing on demographic and health-related variables among older adults in Indonesia. METHOD The data analyzed were the Indonesian Family Life Survey-5 (IFLS-5) using cross-sectional variables of 4236 older adults aged 60 years and over included in the 2015 round. Memory impairment was assessed by immediate word list recall from the Telephone Interview for Cognitive Status (TICS). Sociodemographic factors and multiple health variables were included as predictors. Data were analyzed using frequency analyses bivariate and stepwise logistic regression tests. RESULT Among 4236 older adults, 49.7% were male and 50.3% were female. Stepwise backward analyses showed that memory impairment was independently associated with older age, being female, or not in a union (unmarried, separated, divorced, or widowed), having obtained low levels of education, living in a rural area, reporting low life satisfaction, low social capital, higher dependency, and having clinical depression. Only moderate (but not high or low) physical activity levels were associated with a lower risk. Being underweight increased the risk, but being overweight/obese (as assessed by BMI) protective factors for a lower immediate recall score. CONCLUSION Increasing education and continued engagement of older adults in psychosocial activities, including moderate physical activity, improving mental health, preventing weight loss, and maintaining functional ability to decrease dependency, are associated with increased episodic memory, especially in non-married and older women in rural areas of Indonesia.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| | - Eef Hogervorst
- Sport Exercise &Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Yuda Turana
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| | - Antoninus Hengky
- Centers of Health Research, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| |
Collapse
|
3
|
Reparaz-Escudero I, Izquierdo M, Bischoff-Ferrari HA, Martínez-Lage P, Sáez de Asteasu ML. Effect of long-term physical exercise and multidomain interventions on cognitive function and the risk of mild cognitive impairment and dementia in older adults: A systematic review with meta-analysis. Ageing Res Rev 2024; 100:102463. [PMID: 39179115 DOI: 10.1016/j.arr.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
INTRODUCTION Recent studies have suggested that sustained multidomain interventions, including physical exercise, may be beneficial in preventing cognitive decline. This review aims to assess the impact of prolonged physical exercise and multidomain strategies on overall cognitive faculties and dementia risk among community-dwelling older adults without dementia. METHODS We systematically searched PubMed, Web of Science, PsychInfo, and CINHAL databases from inception until April 1, 2024, for randomized controlled trials that investigated the effects of long-term (≥ 12 months) physical exercise or multidomain interventions on non-demented, community-dwelling older adults. The primary outcomes assessed were changes in global cognition and the risk of mild cognitive impairment (MCI) or dementia. Standardized mean differences (SMD) and risk ratios (RR) with 95 % confidence intervals were computed using a random-effects inverse-variance method with the Hartung-Knapp-Sidik-Jonkman adjustment for effect size calculation. The Cochrane Risk-of-Bias-2 tool (RoB-2) was used for bias assessment, and the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach was applied to evaluate the certainty of evidence. RESULTS Sixteen trials, including 11,402 participants (mean age 73.2 [±5.5] years; 62.3 % female) were examined. The risk of bias was low. Moderate-certainty evidence indicated that physical exercise interventions had modest to no effect on cognitive function (k= 9, SMD: 0.05; 95 % CI: -0.04-0.13; p = 0.25), whereas multidomain interventions were significantly impactful (k=7, SMD: 0.09; 95 % CI: 0.04-0.15; p < 0.01). Physical exercise interventions did not alter MCI risk (k= 4, RR: 0.98; 95 % CI: 0.73-1.31; p = 0.79) or dementia onset (k= 4, RR: 0.61; 95 % CI: 0.25-1.52; p = 0.19), with very low-to low-certainty evidence, respectively. CONCLUSIONS Integrative multidomain strategies incorporating physical exercise may benefit the global cognitive function of older adults. However, long-term physical exercise alone did not yield any cognitive gains. The effectiveness of such exercise interventions to mitigate the overall risk of incident MCI and dementia warrants further research.
Collapse
Affiliation(s)
- Imanol Reparaz-Escudero
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Heike A Bischoff-Ferrari
- Center on Ageing and Mobility, University of Zurich, Zurich, Switzerland; Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland; IHU HealthAge, University Hospital Toulouse and University III Paul Sabatier, Toulouse, France
| | | | - Mikel L Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Rossi C, Amato A, Alesi M, Alioto A, Schiera G, Drid P, Messina G, Pagliaro A, Di Liegro I, Proia P. Hormonal and psychological influences on performance anxiety in adolescent female volleyball players: a multi-approach study. PeerJ 2024; 12:e16617. [PMID: 38390388 PMCID: PMC10883150 DOI: 10.7717/peerj.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 02/24/2024] Open
Abstract
Background The neuroendocrine system has important implications for affiliation behavior among humans and can be used to assess the correlation between social relationships, stress, and health. This can be influenced by social closeness; this aspect is the closeness towards another individual or a group of individuals such as a sports team. Sports performance anxiety is considered an unpleasant emotional reaction composed of physiological, cognitive, affective, and behavioral components. This motivates us to learn about the process that can influence the outcome of competition. Hormones and genetics would seem to influence outcome and performance. In this regard, many studies have focused on the exercise response as a function of ovarian hormones and it has been observed that progesterone is a hormone that plays a key role in reducing anxiety, and thus stress, in humans and other animals. On the other hand, high cortisol concentrations are known to contribute to increased anxiety levels. However, the salivary alpha-amylase (sAA) enzyme has been suggested as marker of acute stress than cortisol. Genetics also seem to influence anxiety and stress management as in the case of brain-derived neurotrophic factor (BDNF) and striatal dopamine transporter (DAT). Therefore, the study aims to investigate social closeness, as a measure of sports team cohesion that can influence athletes' performance results, and its ability to influence the secretion of hormones, such as progesterone and cortisol, that affect the management of sports anxiety while also taking into account genetic background during a volleyball match. Methods Twenty-six female volleyball players who volunteered participated in this study (mean ± SD: age, 12.07 ± 0.7 years), and played in the final of the provincial volleyball championship in Palermo. All girls were during the ovarian cycle, in detail between the follicular and early ovulatory phases. Results The results showed a significant decrease in salivary cortisol only in the winning group (p < 0.039). In fact, whilst in the latter the pre-match level was 7.7 ng/ml and then decreased to 4.5 ng/ml after the match, in the losers group change was not statistically significant (7.8 ng/ml vs 6.6 ng/ml pre- and post-match). As to the sAA concentration, the winning team showed a statistically significant variation between pre- and post-match than the losers (166.01 ± 250 U/ml vs 291.59 ± 241 U/ml) (p = 0.01). Conclusion Analyzing the results of the SAS-2 psychological test it is highlighted that, on average, the loser group was more anxious than the winning group, and this contributed to the final result. In conclusion, there is strong evidence supporting the state of the art that many factors can affect performance anxiety and thus the performance itself.
Collapse
Affiliation(s)
- Carlo Rossi
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Research and Innovation, Centro Medico di Fisioterapia “Villa Sarina”, Trapani, Italy
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Marianna Alesi
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Giulia Messina
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Liu T, Li C, Zhang R, Millender EF, Miao H, Ormsbee M, Guo J, Westbrook A, Pan Y, Wang J, Kelly TN. A longitudinal study of polygenic score and cognitive function decline considering baseline cognitive function, lifestyle behaviors, and diabetes among middle-aged and older US adults. Alzheimers Res Ther 2023; 15:196. [PMID: 37950263 PMCID: PMC10636974 DOI: 10.1186/s13195-023-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Genomic study of cognition decline while considering baseline cognition and lifestyle behaviors is scarce. We aimed to evaluate the impact of a polygenic score for general cognition on cognition decline rate, while considering baseline cognition and lifestyle behaviors, among the general population and people with diabetes, a patient group commonly affected by cognition impairment. METHODS We tested associations of the polygenic score for general cognition with annual changing rates of cognition measures in 8 years of follow-up among 12,090 White and 3100 Black participants of the Health and Retirement Study (HRS), a nationally representative sample of adults aged 50 years and older in the USA. Cognition measures including word recall, mental status, and total cognitive score were measured biannually. To maximize sample size and length of follow-up, we treated the 2010 wave of survey as baseline, and follow-up data until 2018 were analyzed. Baseline lifestyle behaviors, APOE status, and measured cognition were sequentially adjusted. Given racial differences in polygenic score, all analyses were conducted by race. RESULTS The polygenic score was significantly associated with annual changing rates of all cognition measures independent of lifestyle behaviors and APOE status. Together with age and sex, the polygenic score explained 29.9%, 15.9%, and 26.5% variances of annual changing rates of word recall, mental status, and total cognitive scores among Whites and explained 17.2%, 13.9%, and 18.7% variance of the three traits among Blacks. Among both White and Black participants, those in the top quartile of polygenic score had the three cognition measures increased annually, while those in the bottom quartile had the three cognition measures decreased annually. After further adjusting for the average cognition assessed in 3 visits around baseline, the polygenic score was still positively associated with annual changing rates of all cognition measures for White (P ≤ 2.89E - 19) but not for Black (P ≥ 0.07) participants. In addition, among participants with diabetes, physical activity offset the genetic susceptibility to decline of mental status (interaction P ≤ 0.01) and total cognitive scores (interaction P = 0.03). CONCLUSIONS Polygenic score predicted cognition changes in addition to measured cognition. Physical activity offset genetic risk for cognition decline among diabetes patients.
Collapse
Affiliation(s)
- Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA.
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA
| | - Eugenia Flores Millender
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
- Center of Population Sciences for Health Equity, Florida State University College of Nursing, Tallahassee, FL, 32306, USA
| | - Hongyu Miao
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael Ormsbee
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adrianna Westbrook
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yang Pan
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
6
|
Shkundin A, Halaris A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J Pers Med 2023; 13:1395. [PMID: 37763162 PMCID: PMC10533016 DOI: 10.3390/jpm13091395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is crucial for various aspects of neuronal development and function, including synaptic plasticity, neurotransmitter release, and supporting neuronal differentiation, growth, and survival. It is involved in the formation and preservation of dopaminergic, serotonergic, GABAergic, and cholinergic neurons, facilitating efficient stimulus transmission within the synaptic system and contributing to learning, memory, and overall cognition. Furthermore, BDNF demonstrates involvement in neuroinflammation and showcases neuroprotective effects. In contrast, BDNF antisense RNA (BDNF-AS) is linked to the regulation and control of BDNF, facilitating its suppression and contributing to neurotoxicity, apoptosis, and decreased cell viability. This review article aims to comprehensively overview the significance of single nucleotide polymorphisms (SNPs) in BDNF/BDNF-AS genes within psychiatric conditions, with a specific focus on their associations with depression, schizophrenia, and bipolar disorder. The independent influence of each BDNF/BDNF-AS gene variation, as well as the interplay between SNPs and their linkage disequilibrium, environmental factors, including early-life experiences, and interactions with other genes, lead to alterations in brain architecture and function, shaping vulnerability to mental health disorders. The potential translational applications of BDNF/BDNF-AS polymorphism knowledge can revolutionize personalized medicine, predict disease susceptibility, treatment outcomes, and guide the selection of interventions tailored to individual patients.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
7
|
Vints WAJ, Gökçe E, Langeard A, Pavlova I, Çevik ÖS, Ziaaldini MM, Todri J, Lena O, Sakkas GK, Jak S, Zorba (Zormpa) I, Karatzaferi C, Levin O, Masiulis N, Netz Y. Myokines as mediators of exercise-induced cognitive changes in older adults: protocol for a comprehensive living systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1213057. [PMID: 37520128 PMCID: PMC10374322 DOI: 10.3389/fnagi.2023.1213057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background The world's population is aging, but life expectancy has risen more than healthy life expectancy (HALE). With respect to brain and cognition, the prevalence of neurodegenerative disorders increases with age, affecting health and quality of life, and imposing significant healthcare costs. Although the effects of physical exercise on cognition in advanced age have been widely explored, in-depth fundamental knowledge of the underlying mechanisms of the exercise-induced cognitive improvements is lacking. Recent research suggests that myokines, factors released into the blood circulation by contracting skeletal muscle, may play a role in mediating the beneficial effect of exercise on cognition. Our goal in this ongoing (living) review is to continuously map the rapidly accumulating knowledge on pathways between acute or chronic exercise-induced myokines and cognitive domains enhanced by exercise. Method Randomized controlled studies will be systematically collected at baseline and every 6 months for at least 5 years. Literature search will be performed online in PubMed, EMBASE, PsycINFO, Web of Science, SportDiscus, LILACS, IBECS, CINAHL, SCOPUS, ICTRP, and ClinicalTrials.gov. Risk of bias will be assessed using the Revised Cochrane Risk of Bias tool (ROB 2). A random effects meta-analysis with mediation analysis using meta-analytic structural equation modeling (MASEM) will be performed. The primary research question is to what extent exercise-induced myokines serve as mediators of cognitive function. Secondarily, the pooled effect size of specific exercise characteristics (e.g., mode of exercise) or specific older adults' populations (e.g., cognitively impaired) on the relationship between exercise, myokines, and cognition will be assessed. The review protocol was registered in PROSPERO (CRD42023416996). Discussion Understanding the triad relationship between exercise, myokines and cognition will expand the knowledge on multiple integrated network systems communicating between skeletal muscles and other organs such as the brain, thus mediating the beneficial effects of exercise on health and performance. It may also have practical implications, e.g., if a certain myokine is found to be a mediator between exercise and cognition, the optimal exercise characteristics for inducing this myokine can be prescribed. The living review is expected to improve our state of knowledge and refine exercise regimes for enhancing cognitive functioning in diverse older adults' populations. Registration Systematic review and meta-analysis protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on the 24th of April 2023 (registration number CRD42023416996).
Collapse
Affiliation(s)
- Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- Department of Rehabilitation Medicine, Research School Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
- Adelante Zorggroep Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, Netherlands
| | - Evrim Gökçe
- Sports Rehabilitation Laboratory, Ankara City Hospital, Ankara, Türkiye
| | | | - Iuliia Pavlova
- Department of Theory and Methods of Physical Culture, Lviv State University of Physical Culture, Lviv, Ukraine
| | | | | | - Jasemin Todri
- Department of Physiotherapy, Universidad Catolica San Antonio (UCAM), Murcia, Spain
| | - Orges Lena
- Department of Physiotherapy, Universidad Catolica San Antonio (UCAM), Murcia, Spain
| | - Giorgos K. Sakkas
- Lifestyle Medicine and Experimental Physiology and Myology Lab, Department of Physical Education and Sports Science, The Center of Research and Evaluation of Human Performance (CREHP), University of Thessaly, National and Kapodistrian University of Athens (TEFAA) Campus, Karyes, Greece
| | - Suzanne Jak
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| | | | - Christina Karatzaferi
- Lifestyle Medicine and Experimental Physiology and Myology Lab, Department of Physical Education and Sports Science, The Center of Research and Evaluation of Human Performance (CREHP), University of Thessaly, National and Kapodistrian University of Athens (TEFAA) Campus, Karyes, Greece
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University of Leuven, Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Yael Netz
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- The Levinsky-Wingate Academic Center, Wingate Campus, Netanya, Israel
| |
Collapse
|
8
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
9
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Ballester-Ferrer JA, Bonete-López B, Roldan A, Cervelló E, Pastor D. Effect of acute exercise intensity on cognitive inhibition and well-being: Role of lactate and BDNF polymorphism in the dose-response relationship. Front Psychol 2022; 13:1057475. [PMID: 36570982 PMCID: PMC9780502 DOI: 10.3389/fpsyg.2022.1057475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction There is evidence in the literature that acute exercise can modify cognitive function after the effort. However, there is still some controversy concerning the most effective exercise modality to improve cognitive function in acute interventions. Regarding these different exercise modalities, the dose-response relationship between exercise intensity and cognitive response is one of the most challenging questions in exercise and cognition research. Methods In this study, we tested the impact of moderate-intensity (MICT), high-intensity (HIIT) exercise sessions, or control situation (CTRL) on cognitive inhibition (measured with the Stroop Test). Thirty-six young college students participated in this study, where a within-subject repeated measure design was used. Results ANOVA 2×3 demonstrated that HIIT improved the acute cognitive response to a higher degree when compared to MICT or CTRL (p < 0.05). The cognitive improvements correlated with lactate release, providing a plausible molecular explanation for the cognitive enhancement (r < -0.2 and p < 0.05 for all the Stroop conditions). Moreover, a positive trend in wellbeing was observed after both exercise protocols (HIIT and MICT) but not in the CTRL situation. Genetic BDNF single nucleotide polymorphism did not influence any interactions (p < 0.05). Discussion In this sense, our results suggest that exercise intensity could be a key factor in improved cognitive function following exercise in young college students, with no additional impact of BDNF polymorphism. Moreover, our results also provide evidence that exercise could be a useful tool in improving psychological wellbeing.
Collapse
Affiliation(s)
| | | | - Alba Roldan
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Cervelló
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Diego Pastor
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain,*Correspondence: Diego Pastor,
| |
Collapse
|
11
|
Ballester-Ferrer JA, Roldan A, Cervelló E, Pastor D. Memory Modulation by Exercise in Young Adults Is Related to Lactate and Not Affected by Sex or BDNF Polymorphism. BIOLOGY 2022; 11:biology11101541. [PMID: 36290444 PMCID: PMC9598181 DOI: 10.3390/biology11101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Currently, high-intensity interval exercise (HIIE) is on the rise compared to moderate-intensity exercise (MIE) due to its similar benefits for health and performance with low time requirements. Recent studies show how physical exercise can also influence cognitive function, although the optimal dose and underlying mechanisms remain unknown. Therefore, in our study, we have compared the effects on visuospatial and declarative memory of different exercise intensities (HIIE vs. MIE), including possible implicated factors such as lactate released after each session and the Brain-Derived Neurotrophic Factor (BDNF) genotype. Thirty-six undergraduate students participated in this study. The HIIE session consisted of a 3 min warm-up, four 2 min sets at 90−95% of the maximal aerobic speed (MAS) with 2 min of passive recovery between sets, and a 3 min cooldown, and the MIE session implies the same total duration of continuous exercise at 60% of the MAS. Better improvements were found after HIIE than MIE on the backward condition of the visuospatial memory test (p = 0.014, ηp2 = 0.17) and the 48 h retention of the declarative memory test (p = 0.04; d = 0.34). No differences were observed in the forward condition of the visuospatial memory test and the 7-day retention of the declarative memory test (p > 0.05). Moreover, non-modifiable parameters such as biological sex and BDNF polymorphism (Val/Val, Val/Met, or Met/Met) did not modulate the cognitive response to exercise. Curiously, the correlational analysis showed associations (p < 0.05) between changes in memory (visuospatial and declarative) and lactate release. In this sense, our results suggest an important role for intensity in improving cognitive function with exercise, regardless of genetic factors such as biological sex or BDNF Val66Met polymorphism.
Collapse
|
12
|
Shen T, Pu JL, Jiang YS, Yue YM, He TT, Qu BY, Zhao S, Yan YP, Lai HY, Zhang BR. Impact of cognition-related single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Neural Regen Res 2022; 18:1154-1160. [PMID: 36255006 PMCID: PMC9827791 DOI: 10.4103/1673-5374.355764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson's disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Forty-eight Parkinson's disease patients and 39 matched healthy controls underwent genotyping and 7T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson's disease diagnosis. We found that, in Parkinson's disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein (SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson's disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jia-Li Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Si Jiang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu-Mei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting-Ting He
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bo-Yi Qu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shuai Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Ping Yan
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| | - Bao-Rong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| |
Collapse
|
13
|
Carbonell-Hernandez L, Ballester-Ferrer JA, Sitges-Macia E, Bonete-Lopez B, Roldan A, Cervello E, Pastor D. Different Exercise Types Produce the Same Acute Inhibitory Control Improvements When the Subjective Intensity Is Equal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9748. [PMID: 35955103 PMCID: PMC9368332 DOI: 10.3390/ijerph19159748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Twenty-eight active older people (67.19 ± 4.91 years) who engaged in physical exercise activity twice a week were recruited to participate in a counterbalanced experimental protocol. The participants performed three different exercise sessions on three different days, one based on aerobic activities, one based on strength exercises with elastic bands, and one based on stationary balance games. During all three sessions, they were encouraged to maintain a moderate subjective intensity (5-6 on the RPE10 scale), and their heart rate was recorded. In addition, all of the participants took a digital version of the Stroop test before and after each session. The study aimed to compare the acute cognitive impacts of different types of exercise sessions in older adults. The participants' heart rate differed between the exercise sessions, but they maintained the RPE intensity. There was a significant improvement in inhibitory control (Stroop test) after all sessions, with no differences between exercise sessions. Moreover, some participants agreed to be genotyped to record the single nucleotide polymorphism of BDNF rs6265. There were no differences between Val/Val and Met carriers at the beginning or end of the exercise sessions. The present study showed similar cognitive improvements with different exercise type sessions when the subjective intensity was maintained.
Collapse
Affiliation(s)
- Laura Carbonell-Hernandez
- Sports Research Center, Department of Sport Sciences, Miguel Hernández University of Elche, 03202 Elche, Spain
| | | | - Esther Sitges-Macia
- Department of Psychology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Beatriz Bonete-Lopez
- Department of Psychology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Alba Roldan
- Sports Research Center, Department of Sport Sciences, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Eduardo Cervello
- Sports Research Center, Department of Sport Sciences, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Diego Pastor
- Sports Research Center, Department of Sport Sciences, Miguel Hernández University of Elche, 03202 Elche, Spain
| |
Collapse
|
14
|
Brown BM, de Frutos Lucas J, Porter T, Frost N, Vacher M, Peiffer JJ, Laws SM. Non-Modifiable Factors as Moderators of the Relationship Between Physical Activity and Brain Volume: A Cross-Sectional UK Biobank Study. J Alzheimers Dis 2022; 88:1091-1101. [PMID: 35754269 DOI: 10.3233/jad-220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research suggests physical activity attenuates grey and white matter loss; however, there appears to be individual variability in this effect. Understanding factors that can influence the relationship between physical activity and brain volume may enable prediction of individual response. OBJECTIVE The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) ɛ4 allele carriage. METHODS Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine the study objectives. All participants underwent a magnetic resonance imaging scan to quantify grey and white matter volumes, physical activity monitoring via actigraphy, and genotyping. RESULTS Physical activity was associated with total grey matter volume, total white matter volume, and right hippocampal volume. Only males had an association between higher physical activity levels and greater cortical grey matter volume, total grey matter volume, and right hippocampal volume. Age moderated the relationship between physical activity and white matter volume. CONCLUSION Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Age may also play a role in impacting the relationship between physical activity and brain volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of age and sex-effects on the physical activity and brain volume relationship.
Collapse
Affiliation(s)
- Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jaisalmer de Frutos Lucas
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, UPM-UCM, Pozuelo de Alarcón, Spain
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natalie Frost
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Vacher
- Australian e-Health Research Centre, CSIRO, Floreat, Western Australia, Australia
| | - Jeremiah J Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
15
|
Kaučič BM, Štemberger Kolnik T, Filej B. Connection between Lifestyle and Life Satisfaction of Older Adults in Relation to the Living Environment. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Physical activity, healthy diet and avoiding risk factors are essential for a healthy lifestyle of older adults and for their life satisfaction.
AIM: The aim of the research was to determine the connection between lifestyle and life satisfaction of older adults in relation to the living environment (home environment, institutional environment).
METHODS: The research was based on a non-experimental quantitative research approach. We used the Oldwellactive standardised questionnaire to obtain lifestyle data and the SWLS scale to determine life satisfaction. The study included 656 older adults with an average age of 78.2 years who lived in a domestic (n = 380) and institutional environment (276).
RESULTS: Older adults living in the home environment rate their lifestyle higher (AV = 2.38, SD = 0.77) than those in the institutional environment (AV = 2.31, SD = 0.88), the difference is not statistically significant p = 0.304). Eating habits with regard to the location of residence showed statistically significant differences in the consumption of meat, fish and fish products and milk and dairy products (p <0.001). In the institutional environment, older adults are more likely to perform balance-enhancing exercises, while they consume more alcohol in the home environment. By assessing conditional associations, we establish a positive association between life satisfaction and lifestyle (estimated value = 21,600, p = 0,000). Older adults living in the institutional environment are more satisfied with life (v= 23,097) than those living in the home environment (N= 21.774).
CONCLUSION: The satisfaction of older adults with their life increases if an individual’s lifestyle improves. Older adults living in the institutional environment are more satisfied with life than those living in the home environment. In the future, it will be necessary to pay more attention to the study of living in a home environment, in accordance with the strategy of long-term care for the older adults.
Collapse
|
16
|
Hu J, Wang X, Kong W, Jiang Q. Tooth Loss Suppresses Hippocampal Neurogenesis and Leads to Cognitive Dysfunction in Juvenile Sprague–Dawley Rats. Front Neurosci 2022; 16:839622. [PMID: 35573291 PMCID: PMC9095951 DOI: 10.3389/fnins.2022.839622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Both animal studies and prospective observational studies on patients with neurodegenerative disease have reported a positive link between oral diseases and cognitive function. However, the effect of early tooth loss on hippocampal morphology remains unknown. Methods In this study, 6-week-old, male, juvenile Sprague–Dawley (SD) rats were randomized into the control (C) and tooth loss (TL) groups. In the TL group, all right maxillary molars of SD rats were extracted, while in the C group, no teeth were extracted. After 3 months, the learning and memory behavior were examined by Morris Water Maze (MWM), and the protein expression and mechanic signaling pathways were analyzed by real-time polymerase chain reaction, and cresyl violet staining. Results Two days after the operation, the body weight of both groups recovered and gradually returned to the level before operation. Three months after tooth extraction, the completion time of the C group in the MWM was significantly shorter than the TL group. The mRNA expression of BDNF, TrkB, AKT1, and NR2B in the C group were significantly higher than in the TL group. The pyramidal neurons in the TL group was fewer than in the C group. Conclusion Tooth loss in the juvenile SD rats will reduce the number of pyramidal neurons in the hippocampus, inhibit the expression of BDNF, TrkB, AKT1, and NR2B, and eventually lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Jiangqi Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- *Correspondence: Qingsong Jiang,
| |
Collapse
|
17
|
Zarza-Rebollo JA, Molina E, López-Isac E, Pérez-Gutiérrez AM, Gutiérrez B, Cervilla JA, Rivera M. Interaction Effect between Physical Activity and the BDNF Val66Met Polymorphism on Depression in Women from the PISMA-ep Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042068. [PMID: 35206257 PMCID: PMC8872527 DOI: 10.3390/ijerph19042068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
The relationship between depression and the Val66Met polymorphism at the brain-derived neurotrophic factor gene (BDNF), has been largely studied. It has also been related to physical activity, although the results remain inconclusive. The aim of this study is to investigate the relationship between this polymorphism, depression and physical activity in a thoroughly characterised sample of community-based individuals from the PISMA-ep study. A total of 3123 participants from the PISMA-ep study were genotyped for the BDNF Val66Met polymorphism, of which 209 had depression. Our results are in line with previous studies reporting a protective effect of physical activity on depression, specifically in light intensity. Interestingly, we report a gene-environment interaction effect in which Met allele carriers of the BDNF Val66Met polymorphism who reported more hours of physical activity showed a decreased prevalence of depression. This effect was observed in the total sample (OR = 0.95, 95%CI = 0.90–0.99, p = 0.027) and was strengthened in women (OR = 0.93, 95%CI = 0.87–0.98, p = 0.019). These results highlight the potential role of physical activity as a promising therapeutic strategy for preventing and adjuvant treatment of depression and suggest molecular and genetic particularities of depression between sexes.
Collapse
Affiliation(s)
- Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Esther Molina
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Ana M. Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Blanca Gutiérrez
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jorge A. Cervilla
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Mental Health Service, University Hospital San Cecilio, 18016 Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| |
Collapse
|
18
|
Liu T, Hettish L, Lo WJ, Gray M, Li C. FEASibility testing a randomized controlled trial of an exercise program to improve cognition for T2DM patients (the FEAST trial): A study protocol. Res Nurs Health 2021; 44:746-757. [PMID: 34402090 PMCID: PMC8440487 DOI: 10.1002/nur.22174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
While cognitive dysfunction is an important concern in persons with type 2 diabetes mellitus (T2DM), it has received little attention in the T2DM literature. Although it often remains unrecognized, cognitive dysfunction associated with T2DM can lead to severe consequences. Prior research studies have consistently shown that aerobic exercise enhances cognitive function among healthy subjects. However, very few studies have examined the effects of aerobic exercise on cognitive function in persons with T2DM. In addition, one important single-nucleotide polymorphism that influences cognition in humans is the brain-derived neurotrophic factor (BDNF) Val66Met variant. Despite strong evidence suggesting aerobic exercise has a beneficial effect on cognitive function, there is significant variability in individual response to exercise programs on cognitive outcomes among Val/Val versus Met carriers. However, the evidence on how the BDNF Val66Met variant influences cognitive outcomes following an aerobic exercise intervention among individuals with T2DM is currently lacking. Therefore, the purpose of this randomized controlled trial is to pilot-test a 3-month supervised exercise program to improve plasma BDNF levels and cognition, overall and according to genotypes of the BDNF Val66Met variant. A total of 81 patients with T2DM will be randomly assigned to either aerobic exercise group (n = 54) or attention control group (n = 27) for 3 months. Outcomes of interest include postintervention changes in plasma BDNF levels, fasting blood glucose, hemoglobin A1c, body mass index, executive function, memory, and processing speed. This study will provide further evidence on use of exercise as a non-pharmaceutical, low-cost intervention to improve cognition in this population.
Collapse
Affiliation(s)
- Tingting Liu
- Eleanor Mann School of Nursing, University of Arkansas, College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Lindsey Hettish
- Eleanor Mann School of Nursing, University of Arkansas, College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Wen-Juo Lo
- Department of Rehabilitation, Human Resources, and Communication Disorders, University of Arkansas College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Michelle Gray
- Department of Health, Human Performance and Recreation, Exercise Science Research Center, Fayetteville, Arkansas, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
19
|
Marques-Aleixo I, Beleza J, Sampaio A, Stevanović J, Coxito P, Gonçalves I, Ascensão A, Magalhães J. Preventive and Therapeutic Potential of Physical Exercise in Neurodegenerative Diseases. Antioxid Redox Signal 2021; 34:674-693. [PMID: 32159378 DOI: 10.1089/ars.2020.8075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The prevalence and incidence of age-related neurodegenerative diseases (NDDs) tend to increase along with the enhanced average of the world life expectancy. NDDs are a major cause of morbidity and disability, affecting the health care, social and economic systems with a significant impact. Critical Issues and Recent Advances: Despite the worldwide burden of NDDs and the ongoing research efforts to increase the underlying molecular mechanisms involved in NDD pathophysiologies, pharmacological therapies have been presenting merely narrow benefits. On the contrary, absent of detrimental side effects but growing merits, regular physical exercise (PE) has been considered a prone pleiotropic nonpharmacological alternative able to modulate brain structure and function, thereby stimulating a healthier and "fitness" neurological phenotype. Future Directions: This review summarizes the state of the art of some peripheral and central-related mechanisms that underlie the impact of PE on brain plasticity as well as its relevance for the prevention and/or treatment of NDDs. Nevertheless, further studies are needed to better clarify the molecular signaling pathways associated with muscle contractions-related myokines release and its plausible positive effects in the brain. In addition, particular focus of research should address the role of PE in the modulation of mitochondrial metabolism and oxidative stress in the context of NDDs.
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- Faculty of Psychology, Education and Sports, Lusofona University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Arnaldina Sampaio
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jelena Stevanović
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | | | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| |
Collapse
|
20
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
21
|
de Las Heras B, Rodrigues L, Cristini J, Weiss M, Prats-Puig A, Roig M. Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition? Neuroscientist 2020; 28:69-86. [PMID: 33300425 DOI: 10.1177/1073858420975712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Val66Met is a polymorphism of the brain-derived neurotrophic factor (BDNF) gene that encodes a substitution of a valine (Val) to methionine (Met) amino acid. Carrying this polymorphism reduces the activity-dependent secretion of the BDNF protein, which can potentially affect brain plasticity and cognition. We reviewed the biology of Val66Met and surveyed 26 studies (11,417 participants) that examined the role of this polymorphism in moderating the cognitive response to physical activity (PA) and exercise. Nine observational studies confirmed a moderating effect of Val66Met on the cognitive response to PA but differences between Val and Met carriers were inconsistent and only significant in some cognitive domains. Only five interventional studies found a moderating effect of Val66Met on the cognitive response to exercise, which was also inconsistent in its direction. Two studies showed a superior cognitive response in Val carriers and three studies showed a better response in Met carriers. These results do not support a general and consistent effect of Val66Met in moderating the cognitive response to PA or exercise. Both Val and Met carriers can improve specific aspects of cognition by increasing PA and engaging in exercise. Causes for discrepancies among studies, effect moderators, and future directions are discussed.
Collapse
Affiliation(s)
- Bernat de Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lynden Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maxana Weiss
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Catalunya, Spain
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Delli Pizzi S, Granzotto A, Bomba M, Frazzini V, Onofrj M, Sensi SL. Acting Before; A Combined Strategy to Counteract the Onset and Progression of Dementia. Curr Alzheimer Res 2020; 17:790-804. [PMID: 33272186 DOI: 10.2174/1567205017666201203085524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Brain aging and aging-related neurodegenerative disorders are posing a significant challenge for health systems worldwide. To date, most of the therapeutic efforts aimed at counteracting dementiarelated behavioral and cognitive impairment have been focused on addressing putative determinants of the disease, such as β-amyloid or tau. In contrast, relatively little attention has been paid to pharmacological interventions aimed at restoring or promoting the synaptic plasticity of the aging brain. The review will explore and discuss the most recent molecular, structural/functional, and behavioral evidence that supports the use of non-pharmacological approaches as well as cognitive-enhancing drugs to counteract brain aging and early-stage dementia.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Alberto Granzotto
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Manuela Bomba
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Valerio Frazzini
- AP-HP, Epilepsy Unit, Pitie-Salpetriere Hospital and Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, Sorbonne Universite), Pitie-Salpetriere Hospital, Paris, France
| | - Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| |
Collapse
|
23
|
Liu T, Canon MD, Shen L, Marples BA, Colton JP, Lo WJ, Gray M, Li C. The Influence of the BDNF Val66Met Polymorphism on the Association of Regular Physical Activity With Cognition Among Individuals With Diabetes. Biol Res Nurs 2020; 23:318-330. [PMID: 33063528 DOI: 10.1177/1099800420966648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Diabetes is associated with cognitive dysfunction that comes with substantial lifetime consequences, such as interference with diabetes self-management and reduced quality of life. Although regular physical activity has been consistently shown to enhance cognitive function among healthy subjects, significant interpersonal differences in exercise-induced cognitive outcomes have been reported among brain-derived neurotrophic factor (BDNF) Val/Val vs. Met carriers. However, the evidence on how the BDNF Val66Met variant influences the relationship between regular physical activity and cognition among individuals with diabetes is currently lacking. METHODS A total of 3,040 individuals with diabetes were included in this analysis using data from the Health and Retirement Study. Associations among moderate and vigorous physical activities (MVPA) and measures of cognitive function were evaluated using multivariable linear regression models within each stratum of the Val66Met genotypes. RESULTS MVPA was more strongly associated with total cognitive score, mental status, and words recall among Met/Met carriers, compared to Val/Val and Val/Met carriers. CONCLUSIONS This study provided preliminary findings on how BDNF variants may modulate the exercise-induced cognitive benefits among mid-aged and older adults with diabetes. Given the limitations of the current study, it is necessary for randomized controlled trials to stratify by BDNF genotypes to more conclusively determine whether Met carriers benefit more from increased physical activity. In addition, future research is needed to examine how the interplay of BDNF Val66Met variants, DNA methylation, and physical activity may have an impact on cognitive function among adults with diabetes.
Collapse
Affiliation(s)
- Tingting Liu
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - McKenzie D Canon
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Luqi Shen
- Department of Epidemiology and Biostatistics, 1355University of Georgia, Athens, GA, USA
| | - Benjamin A Marples
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Joseph P Colton
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Wen-Juo Lo
- Department of Rehabilitation, Human Resources, and Communication Disorders, 3341University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Michelle Gray
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, 3341University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Changwei Li
- Department of Epidemiology, 5783Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
24
|
Nicolini C, Toepp S, Harasym D, Michalski B, Fahnestock M, Gibala MJ, Nelson AJ. No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiol Rep 2020; 7:e14140. [PMID: 31175708 PMCID: PMC6555846 DOI: 10.14814/phy2.14140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
A single bout of aerobic exercise modulates corticospinal excitability, intracortical circuits, and serum biochemical markers such as brain‐derived neurotrophic factor (BDNF) and insulin‐like growth factor 1 (IGF‐1). These effects have important implications for the use of exercise in neurorehabilitation. Here, we aimed to determine whether increases in cardiorespiratory fitness (CRF) induced by 18 sessions of high‐intensity interval training (HIIT) over 6 weeks were accompanied by changes in corticospinal excitability, intracortical excitatory and inhibitory circuits, serum biochemical markers and working memory (WM) capacity in sedentary, healthy, young males. We assessed motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) both at rest and during tonic contraction, intracortical facilitation (ICF), and short‐interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS). We also examined serum levels of BDNF, IGF‐1, total and precursor (pro) cathepsin B (CTSB), as well as WM capacity. Compared to pretraining, CRF was increased and ICF reduced after the HIIT intervention, but there were no changes in corticospinal excitability, SICI, BDNF, IGF‐1, total and pro‐CTSB, and WM capacity. Further, greater CRF gains were associated with larger decreases in total and pro‐CTSB and, only in Val/Val carriers, with larger increases in SICI. Our findings confirm that HIIT is efficacious in promoting CRF and show that corticospinal excitability, biochemical markers, and WM are unchanged after 18 HIIT bouts in sedentary males. Understanding how aerobic exercise modulates M1 excitability is important in order to be able to use exercise protocols as an intervention, especially in rehabilitation following brain injuries.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Toepp
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
26
|
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 2019; 10:2338. [PMID: 31736815 PMCID: PMC6839278 DOI: 10.3389/fpsyg.2019.02338] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose-response relationship in exercise-cognition research. This improved understanding of dose-response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Gronwald
- Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
27
|
Asadı E, Shahabı Kaseb MR, Zeıdabadı R, Hamedınıa MR. Effect of 4 weeks of frankincense consumption on explicit motor memory and serum BDNF in elderly men. Turk J Med Sci 2019; 49:1033-1040. [PMID: 31317694 PMCID: PMC7018390 DOI: 10.3906/sag-1810-204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background/aim Memory is a mechanism for coding, storing, and recalling information. Weak memory and learning disability are common psychological problems in the elderly. The aim of this study was to investigate the effect of 4 weeks of frankincense consumption on explicit motor memory and serum BDNF in the elderly. Materials and methods Twenty elderly men (mean age of 60.2 ± 1.7 years) were randomly divided into two groups: experimental (n = 12) and placebo (n = 8). The first blood samples were collected 24 h before the pretest. Then both groups participated in a 4-week exercise program based on the protocol of exercising motor memory. During this period, the experimental group received 500-mg frankincense pills two times a day. The second blood sample collection and acquisition test were conducted following the last session of the exercise program. A retention test and a third blood sampling were performed 2 weeks after the last training session. Mixed analysis of variance (2 × 3) for repeated measures was used to analyze the data. Results Intergroup comparisons showed that frankincense had a significant effect on the acquisition and retention of explicit motor memory. No difference was observed in serum BDNF between the experimental and placebo groups. Conclusion This study revealed that 4 weeks of frankincense consumption facilitates the acquisition and retention of motor memory in older men with moderate mental status.
Collapse
Affiliation(s)
- Elham Asadı
- Department of Motor Behavior, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | | | - Rasool Zeıdabadı
- Department of Motor Behavior, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Reza Hamedınıa
- Department of Sport Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
28
|
The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. J Clin Med 2019; 8:jcm8050578. [PMID: 31035583 PMCID: PMC6572639 DOI: 10.3390/jcm8050578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
When aerobic exercise is performed following skilled motor practice, it can enhance motor memory consolidation. Previous studies have suggested that dopamine may play a role in motor memory consolidation, but whether it is involved in the exercise effects on consolidation is unknown. Hence, we aimed to investigate the influence of dopaminergic pathways on the exercise-induced modulation of motor memory consolidation. We compared the effect of acute exercise on motor memory consolidation between the genotypes that are known to affect dopaminergic transmission and learning. By combining cluster analyses and fitting linear models with and without included polymorphisms, we provide preliminary evidence that exercise benefits the carriers of alleles that are associated with low synaptic dopamine content. In line with previous reports, our findings implicate dopamine as a modulator of the exercise-induced effects on motor memory consolidation, and suggest exercise as a potential clinical tool to counteract low endogenous dopamine bioavailability. Further experiments are needed to establish causal relations.
Collapse
|
29
|
Acute exercise-induced enhancement of fear inhibition is moderated by BDNF Val66Met polymorphism. Transl Psychiatry 2019; 9:131. [PMID: 30967530 PMCID: PMC6456490 DOI: 10.1038/s41398-019-0464-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 01/09/2023] Open
Abstract
Rodent research indicates that acute physical exercise facilitates fear learning and inhibition. Expression of brain-derived neurotrophic factor (BDNF) may moderate the memory enhancing effects of acute exercise. We assessed the role of acute exercise in modulating extinction retention in humans, and investigated the extent to which the BDNF polymorphism influenced extinction retention. Seventy non-clinical participants engaged in a differential fear potentiated startle paradigm involving conditioning and extinction followed by random assignment to either intense exercise (n = 35) or no exercise (n = 35). Extinction retention was assessed 24 h later. Saliva samples were collected to index BDNF genotype. Exercised participants displayed significantly lower fear 24 h later relative to non-exercised participants. Moderation analyses indicated that after controlling for gender, the BDNF Val66Met polymorphism moderated the relationship between exercise and fear recovery 24 h later, such that exercise was associated with greater fear recovery in individuals with the Met allele. These findings provide initial evidence that acute exercise can impact fear extinction in humans and this effect is reduced in Met-allele carriers. This finding accords with the role of BDNF in extinction learning, and has implications for augmenting exposure-based therapies for anxiety disorders.
Collapse
|
30
|
Brown BM, Castalanelli N, Rainey-Smith SR, Doecke J, Weinborn M, Sohrabi HR, Laws SM, Martins RN, Peiffer JJ. Influence of BDNF Val66Met on the relationship between cardiorespiratory fitness and memory in cognitively normal older adults. Behav Brain Res 2019; 362:103-108. [DOI: 10.1016/j.bbr.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
|
31
|
Zaki NFW, Saleh E, Elwasify M, Mahmoud E, Zaki J, Spence DW, BaHammam AS, Pandi-Perumal SR. The association of BDNF gene polymorphism with cognitive impairment in insomnia patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:253-264. [PMID: 30076879 DOI: 10.1016/j.pnpbp.2018.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reductions in BDNF activity have shown associations with depressed mood. Other evidence has demonstrated that the BDNF Val66Met polymorphism (rs6265) appears to reduce neural plasticity. A limited number of studies have investigated the influence of these genetic polymorphisms in insomnia. The present study sought to confirm the presence of associations between BDNF Val66Met polymorphism (rs6265) occurrence in normal sleepers and those with insomnia. METHOD The study subjects consisted of a patient group (n = 199) complaining of insomnia and a control group (n = 51). Each subject was clinically interviewed using questions taken from the Brief Insomnia Questionnaire. After the interview, the subjects were asked to complete the Insomnia Severity Index, The Hamilton Depression Rating Scale, and the Montreal Cognitive Assessment Test. An overnight polysomnography test was also administered. Blood samples were collected for genetic study. RESULTS The insomnia patients showed a greater prevalence of heterozygous (A/G) VAL/MET polymorphism than the normal controls (p = ≤ 0.0001). This finding confirmed that this genetic polymorphism, which impairs BDNF activity, is an important correlate of disturbed sleep. Further, the finding of significantly greater (p = ≤ 0.0001) depression scores among the insomnia group suggested that BDNF is an important factor in the development of depressive symptoms. CLINICAL IMPLICATIONS The results of the present study indicate that BDNF gene polymorphism plays a prominent role in the variation of symptoms among insomnia patients and, further, that this polymorphism is strongly related to the severity of depression.
Collapse
Affiliation(s)
- Nevin F W Zaki
- Sleep Research Unit, Mansoura University, Egypt; Department of Psychiatry, Mansoura University, Egypt.
| | - Elsayed Saleh
- Department of Psychiatry, Mansoura University, Egypt
| | | | | | - John Zaki
- Department 0f Mechanical Engineering, Statistical Consultation Office, Mansoura University, Egypt
| | | | - Ahmed S BaHammam
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
32
|
Toh YL, Ng T, Tan M, Tan A, Chan A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav 2018; 8:e01009. [PMID: 29858545 PMCID: PMC6043712 DOI: 10.1002/brb3.1009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has an important role in the neurogenesis and neuroplasticity of the brain. This systematic review was designed to examine the association between BDNF Val66Met (rs6265) polymorphism and four cognitive domains-attention and concentration, executive function, verbal fluency, and memory, respectively. METHODOLOGY Primary literature search was performed using search engines such as PubMed and Scopus. Observational studies that evaluated the neurocognitive performances in relation to BDNF polymorphism within human subjects were included in this review, while animal studies, overlapping studies, and meta-analysis were excluded. RESULTS Forty of 82 reviewed studies (48.8%) reported an association between Val66Met polymorphism and neurocognitive domains. The proportion of the studies showing positive findings in cognitive performances between Val/Val homozygotes and Met carriers was comparable, at 30.5% and 18.3%, respectively. The highest percentage of positive association between Val66Met polymorphism and neurocognition was reported under the memory domain, with 26 of 63 studies (41.3%), followed by 18 of 47 studies (38.3%) under the executive function domain and four of 23 studies (17.4%) under the attention and concentration domain. There were no studies showing an association between Val66Met polymorphism and verbal fluency. In particular, Val/Val homozygotes performed better in tasks related to the memory domain, while Met carriers performed better in terms of executive function, in both healthy individuals and clinical populations. CONCLUSION While numerous studies report an association between Val66Met polymorphism and neurocognitive changes in executive function and memory domains, the effect of Met allele has not been clearly established.
Collapse
Affiliation(s)
- Yi Long Toh
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Terence Ng
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Megan Tan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Azrina Tan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Alexandre Chan
- Department of PharmacyFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Department of PharmacyNational Cancer Centre SingaporeSingaporeSingapore
| |
Collapse
|
33
|
Cognitive Strategies and Physical Activity in Older Adults: A Discriminant Analysis. J Aging Res 2018; 2018:8917535. [PMID: 29850247 PMCID: PMC5911344 DOI: 10.1155/2018/8917535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/18/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Background Although a number of studies have examined sociodemographic, psychosocial, and environmental determinants of the level of physical activity (PA) for older people, little attention has been paid to the predictive power of cognitive strategies for independently living older adults. However, cognitive strategies have recently been considered to be critical in the management of day-to-day living. Methods Data were collected from 243 men and women aged 55 years and older living in France using face-to-face interviews between 2011 and 2013. Results A stepwise discriminant analysis selected five predictor variables (age, perceived health status, barriers' self-efficacy, internal memory, and attentional control strategies) of the level of PA. The function showed that the rate of correct prediction was 73% for the level of PA. The calculated discriminant function based on the five predictor variables is useful for detecting individuals at high risk of lapses once engaged in regular PA. Conclusions This study highlighted the need to consider cognitive functions as a determinant of the level of PA and, more specifically, those cognitive functions related to executive functions (internal memory and attentional control), to facilitate the maintenance of regular PA. These results are discussed in relation to successful aging.
Collapse
|
34
|
Taghizadeh M, Maghaminejad F, Aghajani M, Rahmani M, Mahboubi M. The effect of tablet containing Boswellia serrata and Melisa officinalis extract on older adults' memory: A randomized controlled trial. Arch Gerontol Geriatr 2017; 75:146-150. [PMID: 29306113 DOI: 10.1016/j.archger.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Memory deficits and age-related memory loss are currently two significant concerns in older adults. In Iranian herbal medicine, there are some prescriptions for memory improvement. OBJECTIVE This study was designed to investigate the effect of tablet containing Boswellia serrata (BS) extract and Mellisa officinalis (MO) extract on memory of the older adults. METHOD This is a randomized, parallel, double-blind, placebo-controlled clinical trial that performed among 70 older adults who referred to healthcare centers of Kashan University of Medical Sciences, Iran. Subjects were randomly assigned to receive either tablets (n = 35) or placebo (n = 35) for a month (n = 30). Data were collected using a demographic questionnaire and the Wechsler Memory Scale-Revised (WMS-R). Data were analyzed using Chi-square, independent-samples t-tests, paired t-test, repeated measure ANOVA, and ANCOVA using SPSS v13. RESULT Participants' baseline characteristics were similar in the two groups. The study was completed by 53 participants. However, as the analysis was based on an intention-to treat approach, all 70 older adults were included in the final analysis. Comparison of the two groups with showed that the total scores of the WMS-R and the subscales, including auditory immediate, immediate memory, visual immediate and working memory, were increased after consumption of the containing BS and MO tablets (p < 0.0001). CONCLUSION The BS and MO tablet in older adults can be beneficial on improvement of memory. This is still necessary to investigate effects and durability of the tablets on older adults with memory impairments in future studies.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Associate professor, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Maghaminejad
- Nursing Trauma Research Center, Department of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Aghajani
- Lecturer, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, IR Iran; Phd Candidate, Student Research Committee, Kashan University of Medical Sciences, Kashan, IR Iran.
| | - Malihe Rahmani
- Department of clinical psychology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohaddese Mahboubi
- Microbiology Department, Medicinal Plant Research Center of Barij, Kashan, Iran
| |
Collapse
|
35
|
Canivet A, Albinet CT, Rodríguez-Ballesteros M, Chicherio C, Fagot D, André N, Audiffren M. Interaction between BDNF Polymorphism and Physical Activity on Inhibitory Performance in the Elderly without Cognitive Impairment. Front Hum Neurosci 2017; 11:541. [PMID: 29163114 PMCID: PMC5681928 DOI: 10.3389/fnhum.2017.00541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Background: In the elderly, physical activity (PA) enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF), which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNFVal66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults. Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old) were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT) and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive) and BDNFVal66Met genotype (Met carriers vs. Val-homozygous). The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates. Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT. Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain structure and functions.
Collapse
Affiliation(s)
- Anne Canivet
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
| | - Cédric T. Albinet
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
- Laboratoire Sciences de la Cognition, Technologie, Ergonomie (SCoTE), Université de Toulouse, INU Champollion, Albi, France
| | | | - Christian Chicherio
- Neuropsychology Unit, Neurology Clinic, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Delphine Fagot
- Center for Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Nathalie André
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
| | - Michel Audiffren
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
- Maison des Sciences de l’Homme et de la Société, CNRS USR 3565, Université de Poitiers, Poitiers, France
| |
Collapse
|
36
|
Effect of Physical Activity on Cognitive Development: Protocol for a 15-Year Longitudinal Follow-Up Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8568459. [PMID: 29094050 PMCID: PMC5637843 DOI: 10.1155/2017/8568459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
The aim of the study is to investigate the relationship between physical activity as assessed by accelerometers and cognitive development across the human age ranges (from children and adolescents to adults). Additionally, this study seeks to explore whether physical activity contributes to cognitive development via modification of plasma insulin-like growth factor 1 (IGF-1) and brain-derived neurotrophic factor (BDNF). In the study, 500 preschool children (3.5–5.5 years old) are taking part in 6 triennial assessment waves over the span of 15 years. At each wave, participant measures included (a) 7-day physical activity monitoring using ActiGraph's GT3X accelerometers, (b) the evaluation of cognitive development, (c) anthropometric and physical fitness assessments, (d) plasma IGF-1 and BDNF concentrations, and (e) retrospective questionnaires. Linear regression models are used to examine the effect of physical activity on cognitive development; plasma IGF-1 and BDNF concentrations are considered as mediators into data analyses. The results of the study may help to inform future health interventions that utilize physical activity as a means to improve cognitive development in children, adolescents, and adults. Additionally, the study may assist in determining whether the putative effects occur via modification of plasma IGF-1 or BDNF concentrations.
Collapse
|
37
|
Ferrand C, Féart C, Martinent G, Albinet C, André N, Audiffren M. Dietary patterns in french home-living older adults: Results from the PRAUSE study. Arch Gerontol Geriatr 2017; 74:88-93. [PMID: 29049938 DOI: 10.1016/j.archger.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to provide descriptive dietary patterns of home-living older adults, and to examine their association with sociodemographic and 'diet-related' variables, and health and psychological factors. Dietary patterns were analyzed using separately cluster analysis for men (N=151,Mage=72.72, SD=8.80, range=56-97) and women (N=251, Mage=76.74, SD=9.95, range=55-97) in 402 older adults aged 55 years and over. Cluster analyses showed four distinct dietary profiles for each gender. In older men, the four distinct dietary clusters were associated with any differences in sociodemographic and 'diet-related' variables, cognitive function, and health and psychological factors. Likewise, in older women, the four distinct dietary clusters were associated with any differences in sociodemographic and 'diet-related' variables'. However in older women, results showed that the cluster 1 "high fish-fruit-vegetable" was associated with a better cognitive function, a better self-rated health and no depressive symptoms, whereas cluster 3 "moderate ready meals" was associated with cognitive decline, slight depression, and poor perceived health. Results emphasize the interest to take into consideration health and psychological factors associated with dietary patterns to better target the vulnerability of individuals and enable an effective prevention.
Collapse
Affiliation(s)
- C Ferrand
- EA 2114, psychology of life ages, University François Rabelais, Tours, France.
| | - C Féart
- ISPED, University Victor Segalen, Bordeaux, France.
| | - G Martinent
- Laboratoire sur les Vulnérabilités et l'Innovation dans le Sport (L-Vis), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - C Albinet
- Département de psychologie, axe TIME, Institut national Universitaire Champollion, Albi, France; CeRCA, CNRS UMR 7295, University Poitiers, France.
| | - N André
- CeRCA, CNRS UMR 7295, University Poitiers, France.
| | - M Audiffren
- CeRCA, CNRS UMR 7295, University Poitiers, France.
| |
Collapse
|
38
|
Samartsev IN, Zhyvolupov SA, Ponomarev VV, Butakova YS, Bodrova TV. [Main directions of differential diagnosis optimization and rational treatment of an acute vertigo attack]. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [PMID: 28638028 DOI: 10.17116/jnevro20171175131-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To develop and assess the validity of the clinical algorithm VERTIGO for the differential diagnosis of central and peripheral vertigo and optimization of treatment of patients with vertigo. MATERIAL AND METHODS Sixty-five patients with an acute attack of vertigo, aged from 18 to 75 years (53±6.7 years), were studied. All patients underwent standard neurological examination. In case of signs of central vertigo, patients underwent neuroimaging. Diagnostic accuracy, sensitivity and specificity of the VERTIGO algorithm as well as its positive and negative prognostic values were calculated. RESULTS The sensitivity of VERTIGO for the diagnosis of central vertigo was 100% (95% CI: 78.2-100%), specificity 94.0% (95% CI: 83.5-98.8%), positive prognostic value 83.3% (95% CI: 58.6-96.4%); negative prognostic value 100% (95% CI: 92.5-100%). Cohen's kappa estimated by the results of final diagnosis was 0.88. CONCLUSION Differential treatment of patients with acute vertigo should be performed according to the current recommendations and include multimodal pharmacological medications, e.g. cavinton forte, to restore the vestibular control by the stimulation of neuroplasticity. The VERTIGO algorithm allows the increase of the efficacy of clinical differential diagnosis of central and peripheral vertigo.
Collapse
Affiliation(s)
- I N Samartsev
- Kirov Military-Medical Academy, St. Petersburg, Russia
| | | | - V V Ponomarev
- Beloruse Medical Academy Postgraduate Education, Minsk, Belaruse
| | - Yu S Butakova
- Novodvinsk Central City Hospital, Novodvinsk, Russia
| | - T V Bodrova
- Kirov Military-Medical Academy, St. Petersburg, Russia
| |
Collapse
|
39
|
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 2017; 46:1635-1646. [PMID: 28493624 DOI: 10.1111/ejn.13603] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
It has been hypothesized that one mechanism through which physical activity provides benefits to cognition and mood is via increasing brain-derived neurotrophic factor (BDNF) concentrations. Some studies have reported immediate benefits to mood and various cognitive domains after a single session of exercise. This meta-analysis sought to determine the effect of a single exercise session on concentrations of BDNF in peripheral blood, in order to evaluate the potential role of BDNF in mediating the beneficial effects of exercise on brain health. MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after acute exercise interventions. Risk of bias within studies was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using a funnel plot and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. In 55 studies that met inclusion criteria, concentrations of peripheral blood BDNF were higher after exercise (SMD = 0.59, 95% CI: 0.46-0.72, P < 0.001). In meta-regression analysis, greater duration of exercise was associated with greater increases in BDNF. Subgroup analyses revealed an effect in males but not in females, and a greater BDNF increase in plasma than serum. Acute exercise increased BDNF concentrations in the peripheral blood of healthy adults. This effect was influenced by exercise duration and may be different across genders.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
40
|
Brain-Derived Neurotropic Factor Val66Met Polymorphism and Posttraumatic Stress Disorder among Survivors of the 1998 Dongting Lake Flood in China. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4569698. [PMID: 28589140 PMCID: PMC5446855 DOI: 10.1155/2017/4569698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study mainly aimed to explore the association between brain-derived neurotropic factor (BDNF) Val66Met polymorphism and posttraumatic stress disorder (PTSD) among flood survivors in China. METHODS Individuals who experienced the 1998 Dongting Lake flood in Southeast Huarong, China, were enrolled in this study. Qualified health personnel carried out face-to-face interviews with participants. PTSD was identified using PTSD Checklist-Civilian version (PCL-C). Blood samples were collected from the participants to extract DNA for genotyping. RESULTS A total of 175 participants were enrolled in this study. The prevalence of PTSD among flood survivors at 17-year follow-up was 16.0% (28/175). Individuals with PTSD were more likely to be female, experience at least three flood-related stressors, experience at least three postflood stressors, and carry the Met than those without PTSD. Compared with Val/Val homozygotes, Met carriers had higher scores of PCL-C (mean ± standard error: 23.60 ± 7.23 versus 27.19 ± 9.48, P < 0.05). Multivariable logistic regression analysis indicated that Met carriers (aOR = 4.76, 95% CI = 1.02-22.15, P < 0.05) were more likely to develop PTSD than Val/Val homozygotes. CONCLUSIONS Met carriers for BDNF rs6265 are at higher risk of developing PTSD and also exhibit more severe PTSD symptoms than Val/Val homozygotes among flood survivors in China.
Collapse
|
41
|
Dietary patterns in French home-living older adults: Results from the PRAUSE study. Arch Gerontol Geriatr 2017; 70:180-185. [PMID: 28192753 DOI: 10.1016/j.archger.2017.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to provide descriptive dietary patterns of home-living older adults, and to examine their association with sociodemographic and 'diet-related' variables, and health and psychological factors. Dietary patterns were analyzed using separately cluster analysis for men (N=151,Mage=72.72, SD=8.80, range=56-97) and women (N=251, Mage=76.74, SD=9.95, range=55-97) in 402 older adults aged 55 years and over. Cluster analyses showed four distinct dietary profiles for each gender. In older men, the four distinct dietary clusters were associated with any differences in sociodemographic and diet-related variables, cognitive function, and health and psychological factors. Likewise, in older women, the four distinct dietary clusters were associated with any differences in sociodemographic and 'diet-related' variables'. However in older women, results showed that the cluster 1 "high fish-fruit-vegetable" was associated with a better cognitive function, a better self-rated health and no depressive symptoms, whereas cluster 3 "moderate ready meals" was associated with cognitive decline, slight depression, and poor perceived health. Results emphasize the interest to take into consideration health and psychological factors associated with dietary patterns to better target the vulnerability of individuals and enable an effective prevention.
Collapse
|
42
|
Barha CK, Galea LA, Nagamatsu LS, Erickson KI, Liu-Ambrose T. Personalising exercise recommendations for brain health: considerations and future directions. Br J Sports Med 2016; 51:636-639. [DOI: 10.1136/bjsports-2016-096710] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/27/2022]
|
43
|
Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctôt KL. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS One 2016; 11:e0163037. [PMID: 27658238 PMCID: PMC5033477 DOI: 10.1371/journal.pone.0163037] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF) mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood. METHODS MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. RESULTS In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17-0.60, p < 0.001). Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33-0.99, p < 0.001) but not resistance training (SMD = 0.07, 95% CI: -0.15-0.30, p = 0.52) interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma. CONCLUSION Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Celina S. Liu
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chelsea Sherman
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Chan
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|