1
|
Davidian D, Levin M. Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harb Perspect Biol 2022; 14:a040782. [PMID: 34400551 PMCID: PMC9121900 DOI: 10.1101/cshperspect.a040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Limb loss due to traumatic injury or amputation is a major biomedical burden. Many vertebrates exhibit the ability to form and pattern normal limbs during embryogenesis from amorphous clusters of precursor cells, hinting that this process could perhaps be activated later in life to rebuild missing or damaged limbs. Indeed, some animals, such as salamanders, are proficient regenerators of limbs throughout their life span. Thus, research over the last century has sought to stimulate regeneration in species that do not normally regenerate their appendages. Importantly, these efforts are not only a vital aspect of regenerative medicine, but also have fundamental implications for understanding evolution and the cellular control of growth and form throughout the body. Here we review major recent advances in augmenting limb regeneration, summarizing the degree of success that has been achieved to date in frog and mammalian models using genetic, biochemical, and bioelectrical interventions. While the degree of whole limb repair in rodent models has been modest to date, a number of new technologies and approaches comprise an exciting near-term road map for basic and clinical progress in regeneration.
Collapse
Affiliation(s)
- Devon Davidian
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Yang X, Fan W, Huang R, Liu G. β-acetoxyisovaleryl alkannin (AAN-II) from Alkanna tinctoria promotes the healing of pressure-induced venous ulcers in a rabbit model through the activation of TGF-β/Smad3 signaling. Cell Mol Biol Lett 2021; 26:35. [PMID: 34332546 PMCID: PMC8325215 DOI: 10.1186/s11658-021-00278-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Alkannin-based pharmaceutical formulations for improving wound healing have been on the market for several years. However, detailed molecular mechanisms of their action have yet to be elucidated. Here, we investigated the potential roles of AAN-II in improving the healing of pressure-induced venous ulcers using a rabbit model generated by combining deep vein thrombosis with a local skin defect/local skin defect. The extent of healing was evaluated using hematoxylin and eosin (HE) or vimentin staining. Rabbit skin fibroblasts were cultured for AAN-II treatment or TGFB1-sgRNA lentivirus transfection. ELISA was used to evaluate the levels of various cytokines, including IL-1β, IL-4, IL-6, TNF-α, VEGF, bFGF, TGF-β and PDGF. The protein levels of TGF-β sensors, including TGF-β, Smad7 and phosphor-Smad3, and total Smad3, were assayed via western blotting after TGF-β knockout or AAN-II treatment. The results show that, for this model, AAN-II facilitates ulcer healing by suppressing the development of inflammation and promoting fibroblast proliferation and secretion of proangiogenic factors. AAN-II enhances the activation of the TGF-β1-Smad3 signaling pathway during skin ulcer healing. In addition, the results demonstrate that AAN-II and TGF-β have synergistic effects on ulcer healing. Our findings indicate that AAN-II can promote healing of pressure-induced venous skin ulcers via activation of TGF-β-Smad3 signaling in fibroblast cells and provide evidence that could be used in the development of more effective treatments.
Collapse
Affiliation(s)
- Xiao Yang
- Peripheral Vascular Disease Unit of the TCM Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Weijing Fan
- Peripheral Vascular Disease Unit of the TCM Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Renyan Huang
- Peripheral Vascular Disease Unit of the TCM Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Guobin Liu
- Peripheral Vascular Disease Unit of the TCM Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China. .,Disease Unit of the TCM Department, Shuguang Hospital, , Shanghai University of Traditional Chinese Medicine, Zhangheng Road No. 528, Pudong New Area, 201203, Shanghai, China.
| |
Collapse
|
3
|
Tejedor G, Luz-Crawford P, Barthelaix A, Toupet K, Roudières S, Autelitano F, Jorgensen C, Djouad F. MANF Produced by MRL Mouse-Derived Mesenchymal Stem Cells Is Pro-regenerative and Protects From Osteoarthritis. Front Cell Dev Biol 2021; 9:579951. [PMID: 33738280 PMCID: PMC7960785 DOI: 10.3389/fcell.2021.579951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
The super healer Murphy Roths Large (MRL) mouse represents the “holy grail” of mammalian regenerative model to decipher the key mechanisms that underlies regeneration in mammals. At a time when mesenchymal stem cell (MSC)-based therapy represents the most promising approach to treat degenerative diseases such as osteoarthritis (OA), identification of key factors responsible for the regenerative potential of MSC derived from MRL mouse would be a major step forward for regenerative medicine. In the present study, we assessed and compared MSC derived from MRL (MRL MSC) and C57BL/6 (BL6 MSC) mice. First, we compare the phenotype and the differentiation potential of MRL and BL6 MSC and did not observe any difference. Then, we evaluated the proliferation and migration potential of the cells and found that while MRL MSC proliferate at a slower rate than BL6 MSC, they migrate at a significantly higher rate. This higher migration potential is mediated, in part, by MRL MSC-secreted products since MRL MSC conditioned medium that contains a complex of released factors significantly increased the migration potential of BL6 MSC. A comparative analysis of the secretome by quantitative shotgun proteomics and Western blotting revealed that MRL MSC produce and release higher levels of mesencephalic astrocyte-derived neurotrophic factor (MANF) as compared to MSC derived from BL6, BALB/c, and DBA1 mice. MANF knockdown in MRL MSC using a specific small interfering RNA (siRNA) reduced both MRL MSC migration potential in scratch wound assay and their regenerative potential in the ear punch model in BL6 mice. Finally, injection of MRL MSC silenced for MANF did not protect mice from OA development. In conclusion, our results evidence that the enhanced regenerative potential and protection from OA of MRL mice might be, in part, attributed to their MSC, an effective reservoir of MANF.
Collapse
Affiliation(s)
- Gautier Tejedor
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Karine Toupet
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, INSERM, University of Montpellier, Montpellier, France.,Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Farida Djouad
- IRMB, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Human fetal skin-derived stem cell secretome enhances radiation-induced skin injury therapeutic effects by promoting angiogenesis. Stem Cell Res Ther 2019; 10:383. [PMID: 31843019 PMCID: PMC6916022 DOI: 10.1186/s13287-019-1456-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation dermatitis is a refractory skin injury caused by radiotherapy. Human fetal skin-derived stem cell (hFSSC) is a preferable source for cell therapy and skin tissue regeneration. In the present study, we investigated the repair effect of using hFSSC secretome on a radiation skin injury model in rats. Methods We prepared the hFSSC secretome and studied its effects on the proliferation and tube formation of human umbilical vein endothelial cell (HUVEC) in vitro. Furthermore, we used a Sr-90 radiation-induced skin injury model of rats and evaluated the effects of hFSSC secretome on radiation skin injury in vivo. Results The results showed that hFSSC secretome significantly promoted the proliferation and tube formation of HUVEC in vitro; in addition, hFSSC secretome-treated rats exhibited higher healing quality and faster healing rate than the other two control groups; the expression level of collagen type III α 1 (Col3A1), transforming growth factor β3 (TGF-β3), angiotensin 1 (Ang-1), angiotensin 2 (Ang-2), vascular endothelial growth factor (VEGF), and placental growth factor (PLGF) was significantly increased, while collagen type I α 2 (Col1A2) and transforming growth factor β1 (TGF-β1) were decreased in hFSSC secretome group. Conclusions In conclusion, our results provided the first evidence on the effects of hFSSC secretome towards radiation-induced skin injury. We found that hFSSC secretome significantly enhanced radiation dermatitis angiogenesis, and the therapeutic effects could match with the characteristics of fetal skin. It may act as a kind of novel cell-free therapeutic approach for radiation-induced cutaneous wound healing.
Collapse
|
5
|
Rong X, Chu W, Zhang H, Wang Y, Qi X, Zhang G, Wang Y, Li C. Antler stem cell-conditioned medium stimulates regenerative wound healing in rats. Stem Cell Res Ther 2019; 10:326. [PMID: 31744537 PMCID: PMC6862758 DOI: 10.1186/s13287-019-1457-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND When the deer antler is cast, it leaves a cutaneous wound that can achieve scarless healing due to the presence of antler stem cells (ASCs). This provides an opportunity to study regenerative wound healing. METHODS In this study, we investigated the therapeutic effects and mechanism of antler stem cell-conditioned medium (ASC-CM) on cutaneous wound healing in rats. In vitro, we investigated the effects of the ASC-CM on proliferation of HUVEC and NIH-3T3 cell lines. In vivo, we evaluated the effects of ASC-CM on cutaneous wound healing using full-thickness skin punch-cut wounds in rats. RESULTS The results showed that ASC-CM significantly stimulated proliferation of the HUVEC and NIH-3T3 cells in vitro. In vivo, completion of healing of the rat wounds treated with ASC-CM was on day 16 (± 3 days), 9 days (± 2 days) earlier than the control group (DMEM); the area of the wounds treated with ASC-CM was significantly smaller (p < 0.05) than the two control groups. Further molecular characterization showed that the ratios of Col3A1/Col1A2, TGF-β3/TGF-β1, MMP1/TIMP1, and MMP3/TIMP1 significantly increased (p < 0.01) in the healed tissue in the ASC-CM group. CONCLUSIONS In conclusion, ASC-CM effectively accelerated the wound closure rate and enhanced the quality of healing, which might be through transforming wound dermal fibroblasts into the fetal counterparts. Therefore, the ASC-CM may have potential to be developed as a novel cell-free therapeutic for scarless wound healing.
Collapse
Affiliation(s)
- Xiaoli Rong
- Changchun Sci-Tech University, 1699 DongHua St., Shuangyang District, Changchun, Jilin 130022 China
- The Scientific Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, Jilin 130033 China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, Jilin 130112 China
| | - Wenhui Chu
- School of Life Science, Taizhou University, Taizhou, 318000 China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 828 Xinmin St., Changchun, Jilin 130021 China
| | - Yusu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 XinCheng St., Changchun, Jilin 130118 China
| | - Xiaoyan Qi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, Jilin 130112 China
| | - Guokun Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, Jilin 130112 China
| | - Yimin Wang
- The Scientific Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, Jilin 130033 China
| | - Chunyi Li
- Changchun Sci-Tech University, 1699 DongHua St., Shuangyang District, Changchun, Jilin 130022 China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, Jilin 130112 China
| |
Collapse
|
6
|
Deng C, He Y, Feng J, Dong Z, Yao Y, Lu F. Conditioned medium from 3D culture system of stromal vascular fraction cells accelerates wound healing in diabetic rats. Regen Med 2019; 14:925-937. [PMID: 31599183 DOI: 10.2217/rme-2018-0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We investigated the healing effects of conditioned medium (CM) derived from a physiological 3D culture system engineered to use an extracellular matrix/stromal vascular fraction (SVF) gel enriched for adipose on diabetic wounds in rats. This CM (Gel-CM) was compared with that from a 2D culture system that used SVF cells (SVF-CM). Materials & methods: Keratinocytes, fibroblasts and wounds were treated with Gel-CM and SVF-CM, and cytokine levels in the CM types were quantified. Results: Proliferation and migration of keratinocytes and fibroblasts were significantly higher after treatment with Gel-CM than with SVF-CM. Collagen secretion by fibroblasts and wound closure were highly stimulated by Gel-CM. Proteomic analyses revealed a higher concentration of growth factors in Gel-CM than in SVF-CM. Conclusion: Gel-CM is a promising therapeutic option for treating diabetic wounds.
Collapse
Affiliation(s)
- Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, PR China.,Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
7
|
Sun J, Zhang Y, Song X, Zhu J, Zhu Q. The Healing Effects of Conditioned Medium Derived from Mesenchymal Stem Cells on Radiation-Induced Skin Wounds in Rats. Cell Transplant 2018; 28:105-115. [PMID: 30350716 PMCID: PMC6322144 DOI: 10.1177/0963689718807410] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Radioactive dermatitis is caused by the exposure of skin and mucous membranes to radiation fields. The pathogenesis of radioactive dermatitis is complex and difficult to cure. Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) may serve as a promising candidate for the therapy of cutaneous wounds. The aim of this study was to investigate whether a WJ-MSC-derived conditioned medium (MSC-CM) could be used to treat radiation-induced skin wounds in rats using a radiation-induced cutaneous injury model. The present study was designed to examine MSC-CM therapy in the recovery of radiation-induced skin wounds in vitro and in vivo. Firstly, we prepared the MSC-CM and tested the effects of the MSC-CM on human umbilical vein endothelial cell proliferation in vitro. After that, we used a β-ray beam to make skin wounds in rats and tested the effects of MSC-CM on cutaneous wound healing in vivo. Our results indicated that MSC-CM secreted factors that promoted HUVEC proliferation, regeneration of sebaceous glands, and angiogenesis. Importantly, MSC-CM promoted wound healing in excess of the positive control (epidermal growth factor), with no, or smaller, scar formation. In conclusion, MSC-CM significantly accelerated wound closure and enhanced the wound healing quality. MSC-CM has a beneficial therapeutic effect on radiation-induced cutaneous injury skin in rats and in this way MSC-CM may serve as a basis of a novel cell-free therapeutic approach for radiation dermatitis.
Collapse
Affiliation(s)
- JiaYang Sun
- 1 Department of Orthopedics, China-Japan Union of Jilin University, Changchun, Jilin, China
| | - YunFeng Zhang
- 1 Department of Orthopedics, China-Japan Union of Jilin University, Changchun, Jilin, China
| | - XianJi Song
- 1 Department of Orthopedics, China-Japan Union of Jilin University, Changchun, Jilin, China
| | - Jiajing Zhu
- 2 Department of Radiology, China-Japan Union of Jilin University, Changchun, Jilin, China
| | - QingSan Zhu
- 1 Department of Orthopedics, China-Japan Union of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Jalili Angourani K, Mazhari S, Farivar S, Salman Mahini D, Rouintan A, Baghaei K. Fibroblast-myofibroblast crosstalk after exposure to mesenchymal stem cells secretome. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:S73-S79. [PMID: 30774810 PMCID: PMC6347993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM The aim of the present study was to investigate the effect of human bone marrow-derived mesenchymal stem cells conditioned medium on fibroblast to myofibroblast differentiation. BACKGROUND Mesenchymal stem cells have a long-term clinical application and widely have used in autoimmune disease and regenerative medicine. However, some MSCs derived cytokines such as TGF-β could have a dual role in suppression or progression of disease. Fibroblast activation and extracellular matrix production are two key features of wound healing which mostly are controlled with multifunctional cytokine TGF-β1. METHODS Bone marrow MSCs were isolated, cultured and used for conditioned medium preparation. The flow cytometry analysis was done for MSCs cell surface markers. MRC-5 subconfluent cells were starved with the medium containing 0.5 % FBS for 24h, then treated with exogenous TGF-β1 (10ng/ml as positive control) and MSCs-conditioned medium for 48h. Finally, the mRNA expression of three target genes: collagen I, collagen III and α-SMA were evaluated by RT-PCR technique. RESULTS Our findings demonstrated that bone marrow-derived mesenchymal stem cells-conditioned medium (secretome) significantly upregulated type I and III collagen expression but non-significantly α-SMA gene expression. CONCLUSION Totally, Real Time PCR results suggest that MSCs conditioned medium activates differentiation of fibroblast to myofibroblast phenotype as confirmed through the presence of α-SMA, collagen I and collagen III expression compared to control in MRC 5 cells.
Collapse
Affiliation(s)
- Khadijeh Jalili Angourani
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Donya Salman Mahini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Abdolreza Rouintan
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, 15 Khordad Hospital, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|