1
|
Boudia F, Baille M, Babin L, Aid Z, Robert E, Rivière J, Galant K, Alonso-Pérez V, Anselmi L, Arkoun B, Abermil N, Marzac C, Bertuccio SN, de Prémesnil A, Lopez CK, Eeckhoutte A, Naimo A, Leite B, Catelain C, Metereau C, Gonin P, Gaspar N, Schwaller J, Bernard OA, Raslova H, Gaudry M, Marchais A, Lapillonne H, Petit A, Pflumio F, Arcangeli ML, Brunet E, Mercher T. Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation. Blood 2025; 145:1510-1525. [PMID: 39656971 DOI: 10.1182/blood.2024024505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromatin/metabolism
- Chromatin/genetics
- Animals
- Mice
- Gene Editing
- Child
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Fabien Boudia
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Marie Baille
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Loélia Babin
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Zakia Aid
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Elie Robert
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Julie Rivière
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Klaudia Galant
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Verónica Alonso-Pérez
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Laura Anselmi
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- University of Bologna, Bologna, Italy
| | - Brahim Arkoun
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Laboratoire d'Hématologie Biologique, Hôpital Universitaire Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Marzac
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | | | - Alexia de Prémesnil
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Université Paris Cité, Paris, France
| | - Cécile K Lopez
- Department of Haematology, University of Cambridge, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Alexandre Eeckhoutte
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Audrey Naimo
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Betty Leite
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Cyril Catelain
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Christophe Metereau
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Patrick Gonin
- Gustave Roussy Cancer Center, Université Paris-Saclay, UMS AMMICA, Villejuif, France
| | - Nathalie Gaspar
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Jürg Schwaller
- University Children's Hospital Beider Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier A Bernard
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Hana Raslova
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Muriel Gaudry
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Marchais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Françoise Pflumio
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
- OPALE Carnot Institute, Paris, France
| | - Marie-Laure Arcangeli
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Erika Brunet
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Thomas Mercher
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
2
|
Wang Y, Zhang TJ, Zhang LC, Xu ZJ, Chu MQ, Zhao YJ, Lin J, Qian J, Zhou JD. Overexpression and oncogenic role of RIPK3 in acute myeloid leukemia associated with specific subtypes and treatment outcome. BMC Cancer 2025; 25:253. [PMID: 39948488 PMCID: PMC11827379 DOI: 10.1186/s12885-025-13613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3) has been implicated in the pathogenesis of diverse human cancers. However, the role of RIPK3 in acute myeloid leukemia (AML) is not fully understood, which needs further research and clarification. METHODS We first identified the expression and clinical prognostic value of RIPK3 in AML through a public database and further validated in our research cohort. In addition, the biological function of RIPK3 in leukemic development was further verified through in vitro experiments. RESULTS Based on the GEPIA database, we screened that RIPK3 overexpression among RIPK family was associated with poor prognosis in AML. Afterwards, another independent cohort from our research center further confirmed the expression pattern of RIPK3 in AML patients. Clinically, increased RIPK3 expression was closely related to specific subtypes of AML, such as FAB-M4/M5, normal karyotype and NPM1 mutation. The significant association of RIPK3 overexpression with FAB-M4/M5 was further validated in AML cell lines. Notably, AML patients with RIPK3 overexpression received transplantation presented a markedly longer survival than those just receiving chemotherapy, whereas those with RIPK3 underexpression showed similar survival between transplantation and chemotherapy group. Bioinformatics analysis showed the significant association of RIPK3 expression with diverse oncogenes/tumor suppressor genes and tumor-related biological processes in AML. Subsequently, we further performed functional experiments in vitro confirmed the potential oncogenic role of RIPK3 in AML. CONCLUSIONS Overexpression of RIPK3 was associated with specific subtypes of AML, such as FAB-M4/M5, normal karyotype and NPM1 mutation, and may facilitate the leukemic development. Moreover, RIPK3 overexpression was associated poor prognosis, and may guide treatment choice in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Male
- Prognosis
- Female
- Middle Aged
- Nucleophosmin
- Treatment Outcome
- Cell Line, Tumor
- Adult
- Mutation
- Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Ting-Juan Zhang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Liu-Chao Zhang
- Medical Laboratory, The Affiliated Qidong Hospital of Nantong University Qidong People's Hospital Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Zi-Jun Xu
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Ming-Qiang Chu
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Yang-Jing Zhao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiang Lin
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China
| | - Jing-Dong Zhou
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, 212002, China.
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, 212002, China.
| |
Collapse
|
3
|
Xie F, Zhang TJ, Zhang XL, Xu ZJ, Qiao L, Wang Y, Zhao YJ, Qian J, Zhou JD. Identification of HOXA9 methylation as an epigenetic biomarker predicting prognosis and guiding treatment choice in acute myeloid leukemia. BMC Cancer 2025; 25:215. [PMID: 39920624 PMCID: PMC11806540 DOI: 10.1186/s12885-025-13633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The homeobox (HOX) genes especially for HOXA cluster play crucial roles in leukemogenesis. HOXA overexpression caused by genetic alterations, such as KMT2A rearrangements, NUP98- fusions and FLT3-ITD mutations, is frequently identified in AML. However, very few studies determined the DNA methylation-mediated epigenetic regulation of the HOXA cluster genes in AML. METHODS We systematically first screened the prognostic value of HOXA cluster genes methylation in AML from The Cancer Genome Atlas (TCGA) datasets. Afterwards, the candidate prognosis-related gene HOXA9 were selected for clinical relevance analysis and were further validated in another independent cohort from our research center. RESULTS The methylation of HOXA9, among HOXA cluster genes, negatively correlated with adverse prognosis and expression were screened and identified in AML among TCGA datasets. Clinically, HOXA9 hypomethylation was positively correlated with specific subtypes of AML, such as French-American-British (FAB)-M5/M7, normal karyotype and FLT3, NPM1 and DNMT3A mutation, whereas negatively associated with FAB-M3, t(15;17), t(8;21) and t(16;16). Importantly, AML patients with HOXA9 hypomethylation may profit from transplantation, whereas AML patients with HOXA9 hypermethylation could not, suggesting that HOXA9 methylation may be used to guide therapeutic selection between transplantation and chemotherapy. Bioinformatics analysis demonstrated the association of HOXA9 expression with diverse leukemia-related genes (HOXAs, SOSTDC1, MEG3, miR-10a, miR-381 and miR-193b) and signaling pathways (PI3K-Akt signaling) in AML. Subsequently, we further validate the hypomethylation pattern of HOXA9 in AML patients and the epigenetic regulation of HOXA9 methylation in AML cell-lines. CONCLUSIONS HOXA9 methylation linked to HOXA9 expression correlates with diverse genetic abnormalities of AML, such as normal karyotype, t(15;17), t(8;21), t(16;16) and FLT3, NPM1 and DNMT3A mutations. Moreover, HOXA9 hypomethylation may be associated with adverse prognosis, and may guide treatment choice in AML.
Collapse
Affiliation(s)
- Fei Xie
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Ting-Juan Zhang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Xin-Long Zhang
- Department of Hematology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu, China
| | - Zi-Jun Xu
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Liang Qiao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Yun Wang
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Yang-Jing Zhao
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China
| | - Jing-Dong Zhou
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, China.
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
4
|
Zhou L, Yin X. Clinical applications of abnormal DNA methylation in chronic myeloid leukemia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:122-127. [PMID: 38615173 PMCID: PMC11017016 DOI: 10.11817/j.issn.1672-7347.2024.230336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 04/15/2024]
Abstract
DNA methylation, a crucial biochemical process within the human body, fundamentally alters gene expression without modifying the DNA sequence, resulting in stable changes. The changes in DNA methylation are closely related to numerous biological processes including cellular proliferation and differentiation, embryonic development, and the occurrence of immune diseases and tumor. Specifically, abnormal DNA methylation plays a crucial role in the formation, progression, and prognosis of chronic myeloid leukemia (CML). Moreover, DNA methylation offers substantial potential for diagnosing and treating CML. Accordingly, understanding the precise mechanism of DNA methylation, particularly abnormal changes in the methylation of specific genes in CML, can potentially promote the development of novel targeted therapeutic strategies. Such strategies could transform into clinical practice, effectively aiding diagnosis and treatment of CML patients.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pediatrics, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang Hunan 421600, China.
| | - Xiaocheng Yin
- Department of Pediatrics, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang Hunan 421600, China.
| |
Collapse
|
5
|
Zhang L, Xu M, Zhang W, Zhu C, Cui Z, Fu H, Ma Y, Huang S, Cui J, Liang S, Huang L, Wang H. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type. Cell Mol Biol Lett 2023; 28:1. [PMID: 36609218 PMCID: PMC9825046 DOI: 10.1186/s11658-022-00409-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spatial chromatin structure is intricately linked with somatic aberrations, and somatic mutations of various cancer-related genes, termed co-mutations (CoMuts), occur in certain patterns during cancer initiation and progression. The functional mechanisms underlying these genetic events remain largely unclear in thyroid cancer (TC). With discrepant differentiation, papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) differ greatly in characteristics and prognosis. We aimed to reveal the spatial gene alterations and regulations between the two TC subtypes. METHODS We systematically investigated and compared the spatial co-mutations between ATC (8305C), PTC (BCPAP and TPC-1), and normal thyroid cells (Nthy-ori-3-1). We constructed a framework integrating whole-genome sequencing (WGS), high-throughput chromosome conformation capture (Hi-C), and transcriptome sequencing, to systematically detect the associations between the somatic co-mutations of cancer-related genes, structural variations (SVs), copy number variations (CNVs), and high-order chromatin conformation. RESULTS Spatial co-mutation hotspots were enriched around topologically associating domains (TADs) in TC. A common set of 227 boundaries were identified in both ATC and PTC, with significant overlaps between them. The spatial proximities of the co-mutated gene pairs in the two TC types were significantly greater than in the gene-level and overall backgrounds, and ATC cells had higher TAD contact frequency with CoMuts > 10 compared with PTC cells. Compared with normal thyroid cells, in ATC the number of the created novel three-dimensional chromatin structural domains increased by 10%, and the number of shifted TADs decreased by 7%. We found five TAD blocks with CoMut genes/events specific to ATC with certain mutations in genes including MAST-NSUN4, AM129B/TRUB2, COL5A1/PPP1R26, PPP1R26/GPSM1/CCDC183, and PRAC2/DLX4. For the majority of ATC and PTC cells, the HOXA10 and HIF2α signals close to the transcription start sites of CoMut genes within TADs were significantly stronger than those at the background. CNV breakpoints significantly overlapped with TAD boundaries in both TC subtypes. ATCs had more CNV losses overlapping with TAD boundaries, and noncoding SVs involved in intrachromosomal SVs, amplified inversions, and tandem duplication differed between ATC and PTC. TADs with short range were more abundant in ATC than PTC. More switches of A/B compartment types existed in ATC cells compared with PTC. Gene expression was significantly synchronized, and orchestrated by complex epigenetics and regulatory elements. CONCLUSION Chromatin interactions and gene alterations and regulations are largely heterogeneous in TC. CNVs and complex SVs may function in the TC genome by interplaying with TADs, and are largely different between ATC and PTC. Complexity of TC genomes, which are highly organized by 3D genome-wide interactions mediating mutational and structural variations and gene activation, may have been largely underappreciated. Our comprehensive analysis may provide key evidence and targets for more customized diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Linlin Zhang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Miaomiao Xu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Wanchun Zhang
- grid.470966.aDepartment of Nuclear Medicine, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences), Taiyuan, 03003 China
| | - Chuanying Zhu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092 China
| | - Zhilei Cui
- grid.412987.10000 0004 0630 1330Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Hongliang Fu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yufei Ma
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Shuo Huang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Jian Cui
- BioGenius Bioinformatics Institute, Shanghai, 200050 People’s Republic of China
| | - Sheng Liang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Lei Huang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hui Wang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| |
Collapse
|
6
|
Qian S, Lin S, Xu X, Bai H, Yeerken A, Ying X, Li Z, Fei X, Yang J, Tang M, Wang J, Jin M, Chen K. Hypermethylation of tumor suppressor lncRNA MEF2C-AS1 frequently happened in patients at all stages of colorectal carcinogenesis. Clin Epigenetics 2022; 14:111. [PMID: 36064442 PMCID: PMC9446566 DOI: 10.1186/s13148-022-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The novel long noncoding RNA MEF2C-AS1 has been identified to play suppressor roles during tumorigenesis. DNA methylation has a regulatory effect on gene expression in cancer initiation and progression. However, the methylation status of MEF2C-AS1 and its role in colorectal cancer (CRC) development remain unclear. METHODS The expression and methylation levels of MEF2C-AS1 were systematically analyzed among 31 cancers with available qualified data in GEPIA and UCSC Xena databases. Then, the MEF2C-AS1 methylation status was firstly examined among 12 CRCs by Illumina Infinium MethylationEPIC BeadChip in in-house step 1 and further quantified among 48 CRCs by the MassARRAY method in in-house step 2. Subsequently, its methylation and expression levels were quantified among 81 non-advanced adenomas (NAAs), 81 advanced adenomas (AAs), and 286 CRCs using the MassARRAY method, and among 34 NAAs, 45 AAs, and 75 CRCs by qRT-PCR, in in-house step 3, respectively. The effect of MEF2C-AS1 methylation on CRC survival was analyzed by the Kaplan-Meier method. Additionally, in vitro cell proliferation, migration and invasion assays, and bioinformatics analysis were performed to explore the role of MEF2C-AS1 in colorectal carcinogenesis. RESULTS Lower expression and higher methylation of MEF2C-AS1 were found in CRC by online databases. In the comparisons of lesion tissues with adjacent normal tissues, MEF2C-AS1 hypermethylation of each individual site and mean level was found among CRC patients in in-house step 1 and step 2, more meaningfully, among NAA patients, AA patients, and CRC patients at all stages during colorectal carcinogenesis in in-house step 3 (all p < 0.05). Further comparisons demonstrated significant differences between CRC and NAA (p = 0.025), AA and NAA (p = 0.020). Moreover, MEF2C-AS1 hypermethylation was associated with poorer disease-specific survival of CRC patients (p = 0.044). In addition, hypermethylation and lower expression of MEF2C-AS1 were verified in RKO cells, and the MEF2C-AS1 overexpression significantly suppressed RKO cell proliferation, migration, and invasion. CONCLUSIONS The findings reveal that MEF2C-AS1 hypermethylation might be an early driven event during colorectal carcinogenesis. It might serve as a promising prognostic biomarker for CRC survival. Our study also indicates the potential tumor-suppressing role of MEF2C-AS1 in CRC.
Collapse
Affiliation(s)
- Sangni Qian
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shujuan Lin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin Xu
- Department of Public Health, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hao Bai
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Aibuta Yeerken
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaojiang Ying
- Department of Anorectal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Zhenjun Li
- Department of Anorectal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Xinglin Fei
- Jiashan Institute of Cancer Prevention and Treatment, Jiaxing, 314100, China
| | - Jinhua Yang
- Jiashan Institute of Cancer Prevention and Treatment, Jiaxing, 314100, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|