1
|
Feng C, Fan Y, Gao H, Zhang B, Lu X. Expression of MCCC2 in glioma cells and preliminary verification of poor prognosis. Biomark Med 2025; 19:205-213. [PMID: 40035348 PMCID: PMC11916423 DOI: 10.1080/17520363.2025.2473131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
AIMS This study mainly explored the regulatory role and mechanism of MCCC2 in GBM. METHODS This study verified the expression in clinical samples and GBM cell lines. CCK-8 and cell cloning experiments, flow cytometry, scratch experiments and Transwell chamber experiments were used to detect the effects of MCCC2 expression on proliferation, apoptosis, migration and invasion of GBM cells. RESULTS A reduction in MCCC2 expression could significantly lower the protein levels of ERK, decrease p-ERK levels, and inhibit ERK phosphorylation. Ulixertinib, an ERK inhibitor, was shown to hinder the proliferation, migration, and invasion of GBM cells and counteract the regulatory impact of MCCC2 overexpression on GBM cells. CONCLUSIONS This investigation revealed that suppressing MCCC2 expression impedes the proliferation, migration, and invasion of GBM cells and promotes GBM cell apoptosis by curtailing ERK expression and phosphorylation. This discovery implies that MCCC2 might serve as a potential biological target for anti-GBM therapy, laying the groundwork for future research in this field.
Collapse
Affiliation(s)
- Cheng'ao Feng
- Wuxi School of Medicine, Neuroscience Center, Jiangnan University, Wuxi, Jiangsu, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, PR China
| | - Yu Fan
- Wuxi School of Medicine, Neuroscience Center, Jiangnan University, Wuxi, Jiangsu, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, PR China
| | - Hongwei Gao
- Wuxi School of Medicine, Neuroscience Center, Jiangnan University, Wuxi, Jiangsu, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, PR China
| | - Bowen Zhang
- Department of Neurology, Qingdao University Affiliated Tai'an Central Hospital, Tai'an, Shandong, PR China
| | - Xiaojie Lu
- Wuxi School of Medicine, Neuroscience Center, Jiangnan University, Wuxi, Jiangsu, PR China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, PR China
| |
Collapse
|
2
|
Assalve G, Lunetti P, Rocca MS, Cosci I, Di Nisio A, Ferlin A, Zara V, Ferramosca A. Exploring the Link Between Telomeres and Mitochondria: Mechanisms and Implications in Different Cell Types. Int J Mol Sci 2025; 26:993. [PMID: 39940762 PMCID: PMC11817679 DOI: 10.3390/ijms26030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Telomeres protect chromosome ends from damage, but they shorten with each cell division due to the limitations of DNA replication and are further affected by oxidative stress. This shortening is a key feature of aging, and telomerase, an enzyme that extends telomeres, helps mitigate this process. Aging is also associated with mitochondrial dysfunction, leading to increased reactive oxygen species (ROS) that exacerbate cellular damage and promote apoptosis. Elevated ROS levels can damage telomeres by oxidizing guanine and disrupting their regulation. Conversely, telomere damage impacts mitochondrial function, and activation of telomerase has been shown to reverse this decline. A critical link between telomere shortening and mitochondrial dysfunction is the DNA damage response, which activates the tumor suppressor protein p53, resulting in reduced mitochondrial biogenesis and metabolic disruptions. This highlights the bidirectional relationship between telomere maintenance and mitochondrial function. This review explores the complex interactions between telomeres and mitochondria across various cell types, from fibroblasts to sperm cells, shedding light on the interconnected mechanisms underlying aging and cellular function.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Paola Lunetti
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
| | - Ilaria Cosci
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Andrea Di Nisio
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, I-80143 Naples, Italy;
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Vincenzo Zara
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Alessandra Ferramosca
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| |
Collapse
|
3
|
Chen P, Wang H, Zhang Y, Qu S, Zhang Y, Yang Y, Zhang C, He K, Dang H, Yang Y, Li S, Yu Y. Construction of a Prognostic Model for Mitochondria and Macrophage Polarization Correlation in Glioma Based on Single-Cell and Transcriptome Sequencing. CNS Neurosci Ther 2024; 30:e70083. [PMID: 39491527 PMCID: PMC11532235 DOI: 10.1111/cns.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Numerous diseases are associated with the interplay of mitochondrial and macrophage polarization. However, the correlation of mitochondria-related genes (MRGs) and macrophage polarization-related genes (MPRGs) with the prognosis of glioma remains unclear. This study aimed to examine this relationship based on bioinformatic analysis. METHODS Glioma-related datasets (TCGA-GBMLGG, mRNA-seq-325, mRNA-seq-693, GSE16011, GSE4290, and GSE138794) were included in this study. The intersection genes were obtained by overlapping differentially expressed genes (DEGs) from differential expression analysis in GSE16011, key module genes from WGCNA, and MRGs. Subsequently, the intersection genes were further screened to obtain prognostic genes. Following this, a risk model was developed and verified. After that, independent prognostic factors were identified, followed by the construction of a nomogram and subsequent evaluation of its predictive ability. Furthermore, immune microenvironment analysis and expression validation were implemented. The GSE138794 dataset was utilized to evaluate the expression of prognostic genes at a cellular level, followed by conducting an analysis on cell-to-cell communication. Finally, the results were validated in different datasets and tissue samples from patients. RESULTS ECI2, MCCC2, OXCT1, SUCLG2, and CPT2 were identified as prognostic genes for glioma. The risk model constructed based on these genes in TCGA-GBMLGG demonstrated certain accuracy in predicting the occurrence of glioma. Additionally, the nomogram constructed based on risk score and grade exhibited strong performance in predicting patient survival. Significant differences were observed in the proportion of 27 immune cell types (e.g., activated B cells and macrophages) and the expression of 32 immune checkpoints (e.g., CD70, CD200, and CD48) between the two risk groups. Single-cell RNA sequencing showed that CPT2, ECI2, and SUCLG2 were highly expressed in oligodendrocytes, neural progenitor cells, and BMDMs, respectively. The results of cell-cell communication analysis revealed that both oligodendrocytes and BMDMs exhibited a substantial number of interactions with high strength. CONCLUSION This study revealed five genes associated with the prognosis of glioma (ECI2, MCCC2, OXCT1, SUCLG2, and CPT2), providing novel insights into individualized treatment and prognosis.
Collapse
Affiliation(s)
- Pengyu Chen
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
| | - Heping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yufei Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Siyao Qu
- Department of Medical GeneticsChina Medical UniversityShenyangLiaoningChina
| | - Yulian Zhang
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
| | - Yanbo Yang
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
| | - Chuanpeng Zhang
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
- Department of NeurosurgeryPeking University China–Japan Friendship School of Clinical MedicineBeijingChina
| | - Kun He
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
- Department of NeurosurgeryPeking University China–Japan Friendship School of Clinical MedicineBeijingChina
| | - Hanhan Dang
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
| | - Yang Yang
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Shaoyi Li
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yanbing Yu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryChina–Japan Friendship HospitalBeijingChina
- Department of NeurosurgeryPeking University China–Japan Friendship School of Clinical MedicineBeijingChina
| |
Collapse
|
4
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
5
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
6
|
He J, Yi J, Ji L, Dai L, Chen Y, Xue W. ECHDC2 inhibits the proliferation of gastric cancer cells by binding with NEDD4 to degrade MCCC2 and reduce aerobic glycolysis. Mol Med 2024; 30:69. [PMID: 38783226 PMCID: PMC11118108 DOI: 10.1186/s10020-024-00832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jiancheng He
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Li Ji
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Lingchen Dai
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| |
Collapse
|
7
|
Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Commun Signal 2024; 22:91. [PMID: 38302953 PMCID: PMC10835948 DOI: 10.1186/s12964-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health concern, and its development is associated with mitochondrial dysfunction. Mitochondria can adapt to the high metabolic demands of cancer cells owing to their plasticity and dynamic nature. The fusion-fission dynamics of mitochondria play a crucial role in signal transduction and metabolic functions of CRC cells. Enhanced mitochondrial fission promotes the metabolic reprogramming of CRC cells, leading to cell proliferation, metastasis, and chemoresistance. Excessive fission can also trigger mitochondria-mediated apoptosis. In contrast, excessive mitochondrial fusion leads to adenosine triphosphate (ATP) overproduction and abnormal tumor proliferation, whereas moderate fusion protects intestinal epithelial cells from oxidative stress-induced mitochondrial damage, thus preventing colitis-associated cancer (CAC). Therefore, an imbalance in mitochondrial dynamics can either promote or inhibit CRC progression. This review provides an overview of the mechanism underlying mitochondrial fusion-fission dynamics and their impact on CRC biology. This revealed the dual role of mitochondrial fusion-fission dynamics in CRC development and identified potential drug targets. Additionally, this study partially explored mitochondrial dynamics in immune and vascular endothelial cells in the tumor microenvironment, suggesting promising prospects for targeting key fusion/fission effector proteins against CRC.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|