1
|
Arjmand T, Legallais M, Nguyen TTT, Serre P, Vallejo-Perez M, Morisot F, Salem B, Ternon C. Functional Devices from Bottom-Up Silicon Nanowires: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1043. [PMID: 35407161 PMCID: PMC9000537 DOI: 10.3390/nano12071043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
This paper summarizes some of the essential aspects for the fabrication of functional devices from bottom-up silicon nanowires. In a first part, the different ways of exploiting nanowires in functional devices, from single nanowires to large assemblies of nanowires such as nanonets (two-dimensional arrays of randomly oriented nanowires), are briefly reviewed. Subsequently, the main properties of nanowires are discussed followed by those of nanonets that benefit from the large numbers of nanowires involved. After describing the main techniques used for the growth of nanowires, in the context of functional device fabrication, the different techniques used for nanowire manipulation are largely presented as they constitute one of the first fundamental steps that allows the nanowire positioning necessary to start the integration process. The advantages and disadvantages of each of these manipulation techniques are discussed. Then, the main families of nanowire-based transistors are presented; their most common integration routes and the electrical performance of the resulting devices are also presented and compared in order to highlight the relevance of these different geometries. Because they can be bottlenecks, the key technological elements necessary for the integration of silicon nanowires are detailed: the sintering technique, the importance of surface and interface engineering, and the key role of silicidation for good device performance. Finally the main application areas for these silicon nanowire devices are reviewed.
Collapse
Affiliation(s)
- Tabassom Arjmand
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Maxime Legallais
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France
| | - Thi Thu Thuy Nguyen
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Pauline Serre
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Monica Vallejo-Perez
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Fanny Morisot
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| | - Bassem Salem
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LTM, F-38000 Grenoble, France;
| | - Céline Ternon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France; (T.A.); (M.L.); (T.T.T.N.); (P.S.); (M.V.-P.); (F.M.)
| |
Collapse
|
2
|
Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. NANOMATERIALS 2020; 10:nano10030404. [PMID: 32106503 PMCID: PMC7152846 DOI: 10.3390/nano10030404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022]
Abstract
In this work, vertically aligned silicon nanowires (SiNWs) with relatively high crystallinity have been fabricated through a facile, reliable, and cost-effective metal assisted chemical etching method. After introducing an itemized elucidation of the fabrication process, the effect of varying etching time on morphological, structural, optical, and electrical properties of SiNWs was analysed. The NWs length increased with increasing etching time, whereas the wires filling ratio decreased. The broadband photoluminescence (PL) emission was originated from self-generated silicon nanocrystallites (SiNCs) and their size were derived through an analytical model. FTIR spectroscopy confirms that the PL deterioration for extended time is owing to the restriction of excitation volume and therefore reduction of effective light-emitting crystallites. These SiNWs are very effective in reducing the reflectance to 9-15% in comparison with Si wafer. I-V characteristics revealed that the rectifying behaviour and the diode parameters calculated from conventional thermionic emission and Cheung's model depend on the geometry of SiNWs. We deduce that judicious control of etching time or otherwise SiNWs' length is the key to ensure better optical and electrical properties of SiNWs. Our findings demonstrate that shorter SiNWs are much more optically and electrically active which is auspicious for the use in optoelectronic devices and solar cells applications.
Collapse
|
3
|
Ouhibi A, Saadaoui M, Lorrain N, Guendouz M, Raouafi N, Moadhen A. Application of Doehlert Matrix for an Optimized Preparation of a Surface-Enhanced Raman Spectroscopy (SERS) Substrate Based on Silicon Nanowires for Ultrasensitive Detection of Rhodamine 6G. APPLIED SPECTROSCOPY 2020; 74:168-177. [PMID: 31617371 DOI: 10.1177/0003702819881222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we combined a hierarchical nano-array effect of silicon nanowires (SiNWs) with a metallic surface of silver nanoparticles (AgNPs) to design a surface-enhanced Raman spectroscopy (SERS) scattering substrate for sensitive detection of Rhodamine 6G (R6G) which is a typical dye for fluorescence probes. The SiNWs were prepared by Metal-Assisted Chemical Etching (MACE) of n-Si (100) wafers. The Doehlert design methodology was used for planning the experiment and analyzing the experimental results. Thanks to this methodology, the R6G SERS response has been optimized by studying the effects of the silver nitrate concentration, silver nitrate and R6G immersion times and their interactions. The immersion time in R6G solution stands out as the most of influential factor on the SERS response.
Collapse
Affiliation(s)
- Awatef Ouhibi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité des Nanomateriaux et Photonique (13ES31), Tunis El Manar, Tunisie
| | - Maroua Saadaoui
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, Tunisie
| | | | | | - Noureddine Raouafi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, Tunisie
| | - Adel Moadhen
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité des Nanomateriaux et Photonique (13ES31), Tunis El Manar, Tunisie
| |
Collapse
|
4
|
Gonchar KA, Kitaeva VY, Zharik GA, Eliseev AA, Osminkina LA. Structural and Optical Properties of Silicon Nanowire Arrays Fabricated by Metal Assisted Chemical Etching With Ammonium Fluoride. Front Chem 2019; 6:653. [PMID: 30662894 PMCID: PMC6328714 DOI: 10.3389/fchem.2018.00653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022] Open
Abstract
Here we report on the metal assisted chemical etching method of silicon nanowires (SiNWs) manufacturing, where the commonly used hydrofluoric acid (HF) has been successfully replaced with ammonium fluoride (NH4F). The mechanism of the etching process and the effect of the pH values of H2O2: NH4F solutions on the structural and optical properties of nanowires were studied in detail. By an impedance and Mott-Schottky measurements it was shown that silver-assisted chemical etching of silicon can be attributed to a facilitated charge carriers transport through Si/SiOx/Ag interface. It was shown that the shape of nanowires changes from pyramidal to vertical with pH decreasing. Also it was established that the length of SiNW arrays non-linearly depends on the pH for the etching time of 10 min. A strong decrease of the total reflectance to 5–10% was shown for all the studied samples at the wavelength <800 nm, in comparison with crystalline silicon substrate (c-Si). At the same time, the intensities of the interband photoluminescence and the Raman scattering of SiNWs are increased strongly in compare to c-Si value, and also they were depended on both the length and the shape of SiNW: the biggest values were for the long pyramidal nanowires. That can be explained by a strong light scattering and partial light localization in SiNWs. Hereby, arrays of SiNWs, obtained by using weakly toxic ammonium fluoride, have great potential for usage in photovoltaics, photonics, and sensorics.
Collapse
Affiliation(s)
- Kirill A Gonchar
- Physics Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - George A Zharik
- Physics Department, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei A Eliseev
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Materials Science, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov A Osminkina
- Physics Department, Lomonosov Moscow State University, Moscow, Russia.,Institute for Biological Instrumentation of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
5
|
Shen Q, Yang H, Peng C, Zhu H, Mei J, Huang S, Chen B, Liu J, Wu W, Cao S. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int J Nanomedicine 2018; 14:205-214. [PMID: 30636873 PMCID: PMC6307685 DOI: 10.2147/ijn.s187892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Efficient and precise circulating tumor cells' (CTCs) capture and release with minimal effect on cell viability for CTCs' analysis are general requirements of CTCs' detection device in clinical application. However, these two essential factors are difficult to be achieved simultaneously. Methods In order to reach the aforementioned goal, we integrated multiple strategies and technologies of staggered herringbone structure, nanowires' substrate, peptides, enzymatic release, specific cell staining, and gene sequencing into microfluidic device and the sandwich structure peptide-silicon nanowires' substrate was termed as Pe-SiNWS. Results The Pe-SiNWS demonstrated excellent capture efficiency (95.6%) and high release efficiency (92.6%). The good purity (28.5%) and cell viability (93.5%) of CTCs could be obtained through specific capture and biological release by using Pe-SiNWS. The good purity of CTCs facilitated precise and quick biological analysis, and five types of KRAS mutation were detected in 16 pancreatic cancer patients but not in healthy donors. Conclusion The results proved that the effective capture, minor damage release, and precise analysis of CTCs could be realized simultaneously by our novel strategy. The successful clinical application indicated that our work was anticipated to open up new opportunities for the design of CTC microfluidic device.
Collapse
Affiliation(s)
- Qinglin Shen
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, .,Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China,
| | - Haitao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhanper, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jia Mei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Shan Huang
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Bin Chen
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| |
Collapse
|