1
|
Zhuang J, Zhang N, Chen Y, Jiang Y, Chen X, Chen W, Chen C. Prenatal diagnosis and molecular cytogenetic characterization of fetuses with central nervous system anomalies using chromosomal microarray analysis: a seven-year single-center retrospective study. Sci Rep 2024; 14:2271. [PMID: 38280885 PMCID: PMC10821898 DOI: 10.1038/s41598-024-52831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
Few existing reports have investigated the copy number variants (CNVs) in fetuses with central nervous system (CNS) anomalies. To gain further insights into the genotype-phenotype relationship, we conducted chromosomal microarray analysis (CMA) to reveal the pathogenic CNVs (pCNVs) that were associated with fetal CNS anomalies. We enrolled 5,460 pregnant women with different high-risk factors who had undergone CMA. Among them, 57 subjects with fetal CNS anomalies were recruited. Of the subjects with fetal CNS anomalies, 23 were given amniocentesis, which involved karyotype analysis and CMA to detect chromosomal abnormalities. The other 34 cases only underwent CMA detection using fetal abortive tissue. In this study, we identified five cases of chromosome aneuploid and nine cases of pCNVs in the fetuses, with a chromosomal aberration detection rate of 24.56% (14/57). In the 23 cases that were given both karyotype and CMA analysis, one case with trisomy 18 was detected by karyotyping. Moreover, CMA revealed a further three cases of pCNVs, including the 1p36.33p36.31, 7q11.23, and 1q21.1q21.2 microdeletions, with a 13.04% (3/23) increase in CMA yield over the karyotype analysis. Additionally, three cases of trisomy 13, one case of trisomy 21, and six cases of pCNVs were detected in the other 34 fetuses where only CMA was performed. Furthermore, a higher chromosomal aberration detection rate was observed in the extra CNS anomaly group than in the isolated CNS anomaly group (40.91% vs 14.29%). In conclude, several pathogenic CNVs were identified in the fetuses with CNS anomalies using CMA. Among the detected CNVs, ZIC2, GNB1, and NSUN5 may be the candidate genes that responsible for fetal CNS anomalies. Our findings provides an additional reference for genetic counseling regarding fetal CNS anomalies and offers further insight into the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China.
| | - Na Zhang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China.
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Wenli Chen
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
2
|
Zhi Y, Liu L, Cui S, Li Y, Chen X, Che J, Han X, Zhao L. Pathogenic/likely pathogenic copy number variations and regions of homozygosity in fetal central nervous system malformations. Arch Gynecol Obstet 2023; 308:1723-1735. [PMID: 36464758 DOI: 10.1007/s00404-022-06866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore pathogenic/likely pathogenic copy number variations (P/LP CNVs) and regions of homozygosity (ROHs) in fetal central nervous system (CNS) malformations. METHODS A cohort of 539 fetuses with CNS malformations diagnosed by ultrasound/MRI was retrospectively analyzed between January 2016 and December 2019. All fetuses were analyzed by chromosomal microarray analysis (CMA). Three cases with ROHs detected by CMA were subjected to whole-exome sequencing (WES). The fetuses were divided into two groups according to whether they had other structural abnormalities. The CNS phenotypes of the two groups were further classified as simple (one type) or complicated (≥ 2 types). RESULTS (1) A total of 35 cases with P/LP CNVs were found. The incidence of P/LP CNVs was higher in the extra-CNS group [18.00% (9/50)] than in the isolated group [5.32% (26/489)] (P < 0.01), while there was no significant difference between the simpletype and complicated-type groups. (2) In the simple-type group, the three most common P/LP CNV phenotypes were holoprosencephaly, Dandy-Walker syndrome, and exencephaly. There were no P/LP CNVs associated with anencephaly, microcephaly, arachnoid cysts, ependymal cysts, or intracranial hemorrhage. (3) Only four cases with ROHs were found, and there were no cases of uniparental disomy or autosomal diseases. CONCLUSION The P/LP CNV detection rates varied significantly among the different phenotypes of CNS malformations, although simple CNS abnormalities may also be associated with genetic abnormalities.
Collapse
Affiliation(s)
- Yunxiao Zhi
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ling Liu
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shihong Cui
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ying Li
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiaolin Chen
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jia Che
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiao Han
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lanlan Zhao
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
3
|
Kido J, Egami K, Misumi Y, Sugawara K, Tsuchida N, Matsumoto N, Ueda M, Nakamura K. X-linked intellectual disability related to a novel variant of KLHL15. Hum Genome Var 2023; 10:21. [PMID: 37452054 PMCID: PMC10349042 DOI: 10.1038/s41439-023-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 07/18/2023] Open
Abstract
Kelch-like (KLHL) 15, localized on chromosome Xp22.11, was recently identified as an X-linked intellectual disability gene. Herein, we report a case of a male patient with a novel nonsense variant, c.736 C > T p.(Arg246*), in KLHL15, who presented with impaired intelligence, short stature, frequent hypoglycemia, and periodic fever. Patients with nonsense variants in KLHL15 may develop intellectual disabilities, minor skeletal anomalies, and facial dysmorphisms.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan.
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | | - Yohei Misumi
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Muzyka L, Winterhalter E, LoPresti MA, Scoville J, Bohnsack BL, Lam SK. Axenfeld-Rieger syndrome: A systematic review examining genetic, neurological, and neurovascular associations to inform screening. Heliyon 2023; 9:e18225. [PMID: 37539177 PMCID: PMC10395477 DOI: 10.1016/j.heliyon.2023.e18225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Axenfeld-Rieger Syndrome (ARS) is comprised of a group of autosomal dominant disorders that are each characterized by anterior segment abnormalities of the eye. Mutations in the transcription factors FOXC1 or PITX2 are the most well-studied genetic manifestations of this syndrome. Due to the rarity this syndrome, ARS-associated neurological manifestations have not been well characterized. The purpose of this systematic review is to characterize and describe ARS neurologic manifestations that affect the cerebral vasculature and their early and late sequelae. PRISMA guidelines were followed; studies meeting inclusion criteria were analyzed for study design, evidence level, number of patients, patient age, whether the patients were related, genotype, ocular findings, and nervous system findings, specifically neurostructural and neurovascular manifestations. 63 studies met inclusion criteria, 60 (95%) were case studies or case series. The FOXC1 gene was most commonly found, followed by COL4A1, then PITX2. The most commonly described structural neurological findings were white matter abnormalities in 26 (41.3%) of studies, followed by Dandy-Walker Complex 12 (19%), and agenesis of the corpus callosum 11 (17%). Neurovascular findings were examined in 6 (9%) of studies, identifying stroke, cerebral small vessel disease (CSVD), tortuosity/dolichoectasia of arteries, among others, with no mention of moyamoya. This is the first systematic review investigating the genetic, neurological, and neurovascular associations with ARS. Structural neurological manifestations were common, yet often benign, perhaps limiting the utility of MRI screening. Neurovascular abnormalities, specifically stroke and CSVD, were identified in this population. Stroke risk was present in the presence and absence of cardiac comorbidities. These findings suggest a relationship between ARS and neurovascular findings; however, larger scale studies are necessary inform therapeutic decisions.
Collapse
Affiliation(s)
- Logan Muzyka
- Dell Medical School at the University of Texas at Austin, Department of Neurosurgery, Austin, TX, United States
| | - Emily Winterhalter
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
| | - Melissa A. LoPresti
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| | - Jonathan Scoville
- University of Utah School of Medicine, Department of Neurosurgery, Salt Lake City, UT, United States
| | - Brenda L. Bohnsack
- Northwestern University Feinberg School of Medicine, Department of Ophthalmology, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Ophthalmology, Chicago, IL, United States
- University of Rochester School of Medicine and Dentistry, Department of Neurosurgery, Rochester, NY, United States
| | - Sandi K. Lam
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| |
Collapse
|
5
|
Fu AB, Xiang SF, He QJ, Ying MD. Kelch-like proteins in the gastrointestinal tumors. Acta Pharmacol Sin 2023; 44:931-939. [PMID: 36266566 PMCID: PMC10104798 DOI: 10.1038/s41401-022-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
Collapse
Affiliation(s)
- An-Bo Fu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310002, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Sen-Feng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Rraku E, Kerstjens-Frederikse WS, Swertz MA, Dijkhuizen T, van Ravenswaaij-Arts CMA, Engwerda A. The phenotypic spectrum of terminal and subterminal 6p deletions based on a social media-derived cohort and literature review. Orphanet J Rare Dis 2023; 18:68. [PMID: 36964621 PMCID: PMC10039519 DOI: 10.1186/s13023-023-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.
Collapse
Affiliation(s)
- Eleana Rraku
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Engwerda A, Kerstjens-Frederikse WS, Corsten-Janssen N, Dijkhuizen T, van Ravenswaaij-Arts CMA. The phenotypic spectrum of terminal 6q deletions based on a large cohort derived from social media and literature: a prominent role for DLL1. Orphanet J Rare Dis 2023; 18:59. [PMID: 36935482 PMCID: PMC10024851 DOI: 10.1186/s13023-023-02658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.
Collapse
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Nicole Corsten-Janssen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| |
Collapse
|
8
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Akram M, Handelsman DJ, Qayyum M, Kennerson M, Rauf S, Ahmed S, Ishtiaq O, Ismail M, Mansoor Q, Naseem AA, Rizvi SSR. Genetic analysis of failed male puberty using whole exome sequencing. J Pediatr Endocrinol Metab 2022; 35:1410-1421. [PMID: 36103668 DOI: 10.1515/jpem-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Although at least 598 genes are involved in the development of the hypothalamo-pituitary-testicular (HPT) axis, mutations in only 75 genes have so far been shown to cause delayed puberty. METHODS Six male patients with failed puberty, manifested as absence of pubertal changes by 18 years of age, underwent whole exome sequencing of genomic DNA with subsequent bioinformatics analysis and confirmation of selected variants by Sanger sequencing. Genes having plausibly pathogenic non-synonymous variants were characterized as group A (previously reported to cause delayed puberty), group B (expressed in the HPT-axis but no mutations therein were reported to cause delayed puberty) or group C (not reported previously to be connected with HPT-axis). RESULTS We identified variants in genes involved in GnRH neuron differentiation (2 in group A, 1 in group C), GnRH neuron migration (2 each in groups A and C), development of GnRH neural connections with supra-hypothalamic and hypothalamic neurons (2 each in groups A and C), neuron homeostasis (1 in group C), molecules regulating GnRH neuron activity (2 each in groups B and C), receptors/proteins expressed on GnRH neurons (1 in group B), signaling molecules (3 in group C), GnRH synthesis (1 in group B), gonadotropins production and release (1 each in groups A, B, and C) and action of the steroid hormone (1 in group A). CONCLUSIONS Non-synonymous variants were identified in 16 genes of the HPT-axis, which comprised 4 in group A that contains genes previously reported to cause delayed puberty, 4 in group B that are expressed along HPT-axis but no mutations therein were reported previously to cause delayed puberty and 8 in group C that contains novel candidate genes, suggesting wider genetic causes of failed male puberty.
Collapse
Affiliation(s)
- Maleeha Akram
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - David J Handelsman
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Mazhar Qayyum
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Marina Kennerson
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Sania Rauf
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.,Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| | - Shahid Ahmed
- Department of Endocrinology, Military Hospital, Rawalpindi, Pakistan
| | - Osama Ishtiaq
- The Endocrinology and Diabetes Department, Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Afzaal Ahmed Naseem
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
10
|
Selli A, Ventura RV, Fonseca PAS, Buzanskas ME, Andrietta LT, Balieiro JCC, Brito LF. Detection and Visualization of Heterozygosity-Rich Regions and Runs of Homozygosity in Worldwide Sheep Populations. Animals (Basel) 2021; 11:2696. [PMID: 34573664 PMCID: PMC8472390 DOI: 10.3390/ani11092696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.
Collapse
Affiliation(s)
- Alana Selli
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Ricardo V. Ventura
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marcos E. Buzanskas
- Department of Animal Science, Federal University of Paraíba, João Pessoa 58051-900, Paraiba, Brazil;
| | - Lucas T. Andrietta
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Júlio C. C. Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
11
|
Cai M, Huang H, Xu L, Lin N. Clinical Utility and the Yield of Single Nucleotide Polymorphism Array in Prenatal Diagnosis of Fetal Central Nervous System Abnormalities. Front Mol Biosci 2021; 8:666115. [PMID: 34084776 PMCID: PMC8167038 DOI: 10.3389/fmolb.2021.666115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Applying single nucleotide polymorphism (SNP) array to identify the etiology of fetal central nervous system (CNS) abnormality, and exploring its association with chromosomal abnormalities, copy number variations, and obstetrical outcome. 535 fetuses with CNS abnormalities were analyzed using karyotype analysis and SNP array. Among the 535 fetuses with CNS abnormalities, chromosomal abnormalities were detected in 36 (6.7%) of the fetuses, which were consistent with karyotype analysis. Further, additional 41 fetuses with abnormal copy number variations (CNVs) were detected using SNP array (the detection rate of additional abnormal CNVs was 7.7%). The rate of chromosomal abnormalities, but not that of pathogenic CNVs in CNS abnormalities with other ultrasound abnormalities was significantly higher than that in isolated CNS abnormalities. The rates of chromosomal abnormalities and pathogenic CNVs in fetuses with spine malformation (50%), encephalocele (50%), subependymal cyst (20%), and microcephaly (16.7%) were higher than those with other isolated CNS abnormalities. The pregnancies for 36 cases with chromosomal abnormalities, 18 cases with pathogenic CNVs, and three cases with VUS CNVs were terminated. SNP array should be used in the prenatal diagnosis of fetuses with CNS abnormalities, which can enable better prenatal assessment and genetic counseling, and affect obstetrical outcomes.
Collapse
Affiliation(s)
| | | | - Liangpu Xu
- Department of the Prenatal Diagnosis Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Department of the Prenatal Diagnosis Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
12
|
Song J, Merrill RA, Usachev AY, Strack S. The X-linked intellectual disability gene product and E3 ubiquitin ligase KLHL15 degrades doublecortin proteins to constrain neuronal dendritogenesis. J Biol Chem 2020; 296:100082. [PMID: 33199366 PMCID: PMC7948412 DOI: 10.1074/jbc.ra120.016210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.
Collapse
Affiliation(s)
- Jianing Song
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew Y Usachev
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
13
|
Hilger AC, Dworschak GC, Reutter HM. Lessons Learned from CNV Analysis of Major Birth Defects. Int J Mol Sci 2020; 21:ijms21218247. [PMID: 33153233 PMCID: PMC7663563 DOI: 10.3390/ijms21218247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
The treatment of major birth defects are key concerns for child health. Hitherto, for the majority of birth defects, the underlying cause remains unknown, likely to be heterogeneous. The implicated mortality and/or reduced fecundity in major birth defects suggest a significant fraction of mutational de novo events among the affected individuals. With the advent of systematic array-based molecular karyotyping, larger cohorts of affected individuals have been screened over the past decade. This review discusses the identification of disease-causing copy-number variations (CNVs) among individuals with different congenital malformations. It highlights the differences in findings depending on the respective congenital malformation. It looks at the differences in findings of CNV analysis in non-isolated complex congenital malformations, associated with central nervous system malformations or intellectual disabilities, compared to isolated single organ-system malformations. We propose that the more complex an organ system is, and the more genes involved during embryonic development, the more likely it is that mutational de novo events, comprising CNVs, will confer to the expression of birth defects of this organ system.
Collapse
Affiliation(s)
- Alina Christine Hilger
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| | - Gabriel Clemens Dworschak
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| |
Collapse
|
14
|
Santirocco M, Plaja A, Rodó C, Valenzuela I, Arévalo S, Castells N, Abuli A, Tizzano E, Maiz N, Carreras E. Chromosomal microarray analysis in fetuses with central nervous system anomalies: An 8-year long observational study from a tertiary care university hospital. Prenat Diagn 2020; 41:123-135. [PMID: 32926442 DOI: 10.1002/pd.5829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To evaluate the prevalence of DNA copy number variants (CNVs) detected with array comparative genomic hybridization (CGH) in fetuses with central nervous system (CNS) anomalies. Secondary objectives were to describe the prevalence of CNV in specific CNS abnormalities, in isolated defects or associated with other malformations or fetal growth restriction (FGR). METHODS Observational cohort study in 238 fetuses with CNS anomalies in which an array-CGH had been performed between January 2009 and December 2017. Pathogenic CNV and variants of unknown significance (VUS) were reported. RESULTS Pathogenic CNVs were found in 16/238 cases (6.7%), VUS in 18/238 (7.6%), and normal result in 204/238 (85.7%) cases. Pathogenic CNVs were more frequent in posterior fossa anomalies (cerebellar hypoplasia 33%, megacisterna magna 20%), moderate ventriculomegaly (11%) and spina bifida (3.7%). Pathogenic CNVs and VUS were found in 7/182 (3.8%) and 14/182 (7.7%) cases of isolated anomalies, in 9/49 (18.4%) and 4/49 (8.2%) presenting another malformation, and in 0/7 and 0/7 cases with associated FGR (P = .001, P = .741, respectively). CONCLUSION These results provide strong evidence toward performing array in fetuses with CNS anomalies, particular in cases of posterior fossa anomalies. The prevalence of pathogenic CNVs is higher in association with other malformations.
Collapse
Affiliation(s)
- Maddalena Santirocco
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alberto Plaja
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Carlota Rodó
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Silvia Arévalo
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Castells
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Anna Abuli
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Eduardo Tizzano
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Nerea Maiz
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elena Carreras
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
15
|
Sekiguchi M, Sobue A, Kushima I, Wang C, Arioka Y, Kato H, Kodama A, Kubo H, Ito N, Sawahata M, Hada K, Ikeda R, Shinno M, Mizukoshi C, Tsujimura K, Yoshimi A, Ishizuka K, Takasaki Y, Kimura H, Xing J, Yu Y, Yamamoto M, Okada T, Shishido E, Inada T, Nakatochi M, Takano T, Kuroda K, Amano M, Aleksic B, Yamomoto T, Sakuma T, Aida T, Tanaka K, Hashimoto R, Arai M, Ikeda M, Iwata N, Shimamura T, Nagai T, Nabeshima T, Kaibuchi K, Yamada K, Mori D, Ozaki N. ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk. Transl Psychiatry 2020; 10:247. [PMID: 32699248 PMCID: PMC7376022 DOI: 10.1038/s41398-020-00917-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia (SCZ) is known to be a heritable disorder; however, its multifactorial nature has significantly hampered attempts to establish its pathogenesis. Therefore, in this study, we performed genome-wide copy-number variation (CNV) analysis of 2940 patients with SCZ and 2402 control subjects and identified a statistically significant association between SCZ and exonic CNVs in the ARHGAP10 gene. ARHGAP10 encodes a member of the RhoGAP superfamily of proteins that is involved in small GTPase signaling. This signaling pathway is one of the SCZ-associated pathways and may contribute to neural development and function. However, the ARHGAP10 gene is often confused with ARHGAP21, thus, the significance of ARHGAP10 in the molecular pathology of SCZ, including the expression profile of the ARHGAP10 protein, remains poorly understood. To address this issue, we focused on one patient identified to have both an exonic deletion and a missense variant (p.S490P) in ARHGAP10. The missense variant was found to be located in the RhoGAP domain and was determined to be relevant to the association between ARHGAP10 and the active form of RhoA. We evaluated ARHGAP10 protein expression in the brains of reporter mice and generated a mouse model to mimic the patient case. The model exhibited abnormal emotional behaviors, along with reduced spine density in the medial prefrontal cortex (mPFC). In addition, primary cultured neurons prepared from the mouse model brain exhibited immature neurites in vitro. Furthermore, we established induced pluripotent stem cells (iPSCs) from this patient, and differentiated them into tyrosine hydroxylase (TH)-positive neurons in order to analyze their morphological phenotypes. TH-positive neurons differentiated from the patient-derived iPSCs exhibited severe defects in both neurite length and branch number; these defects were restored by the addition of the Rho-kinase inhibitor, Y-27632. Collectively, our findings suggest that rare ARHGAP10 variants may be genetically and biologically associated with SCZ and indicate that Rho signaling represents a promising drug discovery target for SCZ treatment.
Collapse
Affiliation(s)
- Mariko Sekiguchi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akira Sobue
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Itaru Kushima
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.437848.40000 0004 0569 8970Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi Japan
| | - Chenyao Wang
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuko Arioka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi Japan
| | - Hidekazu Kato
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akiko Kodama
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Hisako Kubo
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Norimichi Ito
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Masahito Sawahata
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kazuhiro Hada
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Ryosuke Ikeda
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Mio Shinno
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Chikara Mizukoshi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Keita Tsujimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akira Yoshimi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kanako Ishizuka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuto Takasaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Hiroki Kimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Jingrui Xing
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yanjie Yu
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Maeri Yamamoto
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Takashi Okada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Emiko Shishido
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Toshiya Inada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Masahiro Nakatochi
- grid.27476.300000 0001 0943 978XDivision of Data Science, Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Tetsuya Takano
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Keisuke Kuroda
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Mutsuki Amano
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Branko Aleksic
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Takashi Yamomoto
- grid.257022.00000 0000 8711 3200Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tetsushi Sakuma
- grid.257022.00000 0000 8711 3200Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomomi Aida
- grid.265073.50000 0001 1014 9130Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichi Tanaka
- grid.265073.50000 0001 1014 9130Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Hashimoto
- grid.419280.60000 0004 1763 8916Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Arai
- grid.272456.0Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masashi Ikeda
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teppei Shimamura
- grid.27476.300000 0001 0943 978XDivision of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Taku Nagai
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, Toyoake, Aichi Japan
| | - Kozo Kaibuchi
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Norio Ozaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| |
Collapse
|
16
|
Chang Q, Yang Y, Peng Y, Liu S, Li L, Deng X, Yang M, Lan Y. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with ventriculomegaly. Eur J Paediatr Neurol 2020; 25:106-112. [PMID: 32014392 DOI: 10.1016/j.ejpn.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To systematically investigate chromosomal abnormalities and copy number variants (CNVs) in fetuses with different types of ventriculomegaly (VM) by karyotyping and/or chromosomal microarray analysis (CMA). METHODS This retrospective study included 312 fetuses diagnosed with VM. Amniotic fluid and umbilical blood samples were collected by amniocentesis and cordocentesis, respectively, and subjected to karyotyping and/or CMA. Subgroup analysis by VM type, including mild VM (MVM) and severe VM (SVM), unilateral and bilateral VM, isolated VM (IVM), and non-isolated VM (NIVM), was performed. RESULTS The detection rate of chromosomal abnormalities was 12.1% (34/281) by karyotyping and 20.6% when CMA was additionally performed (P < 0.05). Abnormalities were identified by CMA in 17.4% (38/218) of fetuses and pathogenic CNVs in 5.0% (11/218). Notably, CMA detected CNVs in 10.6% (23/218) of fetuses with normal karyotypes. The incidence of chromosomal abnormalities by karyotyping was higher in bilateral than in unilateral VM (20.5% versus 6.5%), whereas the incidence detected by CMA was higher in NIVM than in IVM (21.4% versus 10.3%; both P < 0.05). In NIVM, CMA provided an additional detection rate of 11.4% (16/140) and a detection rate of 10.0% for pathogenic CNVs and aneuploidies. Central nervous system (CNS) abnormalities were the most common other ultrasonic abnormalities. CONCLUSIONS CMA is highly recommended for prenatal diagnosis of fetal VM together with karyotyping, especially in fetuses with bilateral VM and NIVM with abnormal CNS findings. Further study is necessary to explore the relationships between genotypes and phenotypes to facilitate prenatal diagnosis of fetal VM.
Collapse
Affiliation(s)
- Qingxian Chang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yanping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixian Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siping Liu
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyan Li
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xujie Deng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Lan
- Department of Obstetrics and Gynecology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Weitensteiner V, Zhang R, Bungenberg J, Marks M, Gehlen J, Ralser DJ, Hilger AC, Sharma A, Schumacher J, Gembruch U, Merz WM, Becker A, Altmüller J, Thiele H, Herrmann BG, Odermatt B, Ludwig M, Reutter H. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC9A6, and suggests BAZ1A as a new candidate gene. Birth Defects Res 2018; 110:587-597. [PMID: 29388391 DOI: 10.1002/bdr2.1200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Accepted: 01/06/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Syndromic brain malformations comprise a large group of anomalies with a birth prevalence of about 1 in 1,000 live births. Their etiological factors remain largely unknown. To identify causative mutations, we used whole-exome sequencing (WES) in aborted fetuses and children with syndromic brain malformations in which chromosomal microarray analysis was previously unremarkable. METHODS WES analysis was applied in eight case-parent trios, six aborted fetuses, and two children. RESULTS WES identified a novel de novo mutation (p.Gly268Arg) in ACTB (Baraitser-Winter syndrome-1), a homozygous stop mutation (p.R2442*) in ASPM (primary microcephaly type 5), and a novel hemizygous X-chromosomal mutation (p.I250V) in SLC9A6 (X-linked syndromic mentaly retardation, Christianson type). Furthermore, WES identified a de novo mutation (p.Arg1093Gln) in BAZ1A. This mutation was previously reported in only one allele in 121.362 alleles tested (dbSNP build 147). BAZ1A has been associated with neurodevelopmental impairment and dysregulation of several pathways including vitamin D metabolism. Here, serum vitamin-D (25-(OH)D) levels were insufficient and gene expression comparison between the child and her parents identified 27 differentially expressed genes. Of note, 10 out of these 27 genes are associated to cytoskeleton, integrin and synaptic related pathways, pinpointing to the relevance of BAZ1A in neural development. In situ hybridization in mouse embryos between E10.5 and E13.5 detected Baz1a expression in the central and peripheral nervous system. CONCLUSION In syndromic brain malformations, WES is likely to identify causative mutations when chromosomal microarray analysis is unremarkable. Our findings suggest BAZ1A as a possible new candidate gene.
Collapse
Affiliation(s)
- Valerie Weitensteiner
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany
| | - Rong Zhang
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany.,Department of Genomics-Life & Brain Center, Bonn, Germany
| | | | - Matthias Marks
- Department of Developmental Genetics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Jan Gehlen
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany.,Department of Genomics-Life & Brain Center, Bonn, Germany
| | - Damian J Ralser
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany.,Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany.,Department of Genomics-Life & Brain Center, Bonn, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | - Waltraut M Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital of Bonn, Bonn, Germany.,Department of Genomics-Life & Brain Center, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Hofmeister W, Pettersson M, Kurtoglu D, Armenio M, Eisfeldt J, Papadogiannakis N, Gustavsson P, Lindstrand A. Targeted copy number screening highlights an intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Hum Mutat 2018; 39:495-505. [PMID: 29285825 DOI: 10.1002/humu.23388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023]
Abstract
Congenital malformations affecting the neural tube can present as isolated malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q11.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the first findings supporting a role for WDR63 in encephalocele formation.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Deniz Kurtoglu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Armenio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Aggarwal S. Counseling for Fetal Central Nervous System Defects. JOURNAL OF FETAL MEDICINE 2017. [DOI: 10.1007/s40556-017-0121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|