1
|
Gan X, Chi B, Zhang X, Ren M, Bie H, Jia Q, Fu Y, Li C, Zhou H, He S, Wang Y, Chen Y, Zhang S, Zhang Q, Zhao Z, Sun W, Yangzong Q, Zhongga C, Pan R, Chen X, Jia E. CircBTBD7-420aa Encoded by hsa_circ_0000563 Regulates the Progression of Atherosclerosis and Construction of circBTBD7-420aa Engineered Exosomes. JACC Basic Transl Sci 2025; 10:131-147. [PMID: 40131148 PMCID: PMC11897471 DOI: 10.1016/j.jacbts.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 03/26/2025]
Abstract
Circular RNAs are associated with cardiovascular disease, including coronary artery disease, but the mechanisms have not been completely elucidated. We found a new protein, circBTBD7-420aa, encoded by hsa_circ_0000563. Our results suggest that circBTBD7-420aa may inhibit the abnormal proliferation and migration of human coronary artery smooth muscle cells by promoting SLC3A2 degradation through the ubiquitin-proteasome pathway. In addition, we constructed engineered exosomes loaded with circBTBD7-420aa that can target vascular smooth muscle cells by modifying peptide fragments targeting osteopontin. This study suggests that circBTBD7-420aa may inhibit the progression of atherosclerosis and serve as a new target for the diagnosis and treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Boyu Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mengmeng Ren
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hengjie Bie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenyu Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weixin Sun
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Qiangba Yangzong
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Ciren Zhongga
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Renyou Pan
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Jiang R, Jia Q, Li C, Gan X, Zhou Y, Pan Y, Fu Y, Chen X, Liang L, Jia E. Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease. Cell Biol Int 2024; 48:1664-1679. [PMID: 39004874 DOI: 10.1002/cbin.12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.
Collapse
Affiliation(s)
- Rongli Jiang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyu Liang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Zhong Q, Jin S, Zhang Z, Qian H, Xie Y, Yan P, He W, Zhang L. Identification and verification of circRNA biomarkers for coronary artery disease based on WGCNA and the LASSO algorithm. BMC Cardiovasc Disord 2024; 24:305. [PMID: 38880872 PMCID: PMC11181640 DOI: 10.1186/s12872-024-03972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The role of circular RNAs (circRNAs) as biomarkers of coronary artery disease (CAD) remains poorly explored. This study aimed to identify and validate potential circulating circRNAs as biomarkers for the diagnosis of CAD. METHODS The expression profile of circRNAs associated with CAD was obtained from Gene Expression Omnibus (GEO) database. Differential expression analysis, weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operation (LASSO) were employed to identify CAD-related hub circRNAs. The expression levels of these hub circRNAs were validated using qRT-PCR in blood samples from 100 CAD patients and 100 controls. The diagnostic performance of these circRNAs was evaluated through logistic regression analysis, receiver operator characteristic (ROC) analysis, integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Functional enrichment analyses were performed to predict the possible mechanisms of circRNAs in CAD. RESULTS A total of ten CAD-related hub circRNAs were identified through WGCNA and LASSO analysis. Among them, hsa_circ_0069972 and hsa_circ_0021509 were highly expressed in blood samples of CAD patients, and they were identified as independent predictors after adjustment for relevant confounders. The area under the ROC curve for hsa_circ_0069972 and hsa_circ_0021509 was 0.760 and 0.717, respectively. The classification of patients was improved with the incorporation of circRNAs into the clinical model composed of conventional cardiovascular risk factors, showing an IDI of 0.131 and NRI of 0.170 for hsa_circ_0069972, and an IDI of 0.111 and NRI of 0.150 for hsa_circ_0021509. Functional enrichment analyses revealed that the hsa_circ_0069972-miRNA-mRNA network was enriched in TGF-β、FoxO and Hippo signaling pathways, while the hsa_circ_0021509-miRNA-mRNA network was enriched in PI3K/Akt and MAPK signaling pathways. CONCLUSION Hsa_circ_0069972 and hsa_circ_0021509 were identified by integrated analysis, and they are highly expressed in CAD patients. They may serve as novel biomarkers for CAD.
Collapse
Affiliation(s)
- Qilong Zhong
- General Practice Department, The Seventh Hospital of Ningbo, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shaoyue Jin
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zebo Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Haiyan Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yanqing Xie
- Institute of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Peiling Yan
- General Practice Department, The Seventh Hospital of Ningbo, Ningbo, Zhejiang, China
| | - Wenming He
- Institute of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Lina Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Shen XR, Liu YY, Qian RQ, Zhang WY, Huang JA, Zhang XQ, Zeng DX. Circular RNA Expression of Peripheral Blood Mononuclear Cells Associated with Risk of Acute Exacerbation in Smoking Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:789-797. [PMID: 38524397 PMCID: PMC10961080 DOI: 10.2147/copd.s448759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Circular RNAs (circRNAs) are newly identified endogenous non-coding RNAs that function as crucial gene modulators in the development of several diseases. By assessing the expression levels of circRNAs in peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD), this study attempted to find new biomarkers for COPD screening. Patients and Methods We confirmed altered circRNA expression in PBMCs of COPD (n=41) vs controls (n=29). Further analysis focused on the highest and lowest circRNA expression levels. The T-test is used to assess the statistical variances in circRNAs among COPD patients in the smoking and non-smoking cohorts. Additionally, among smokers, the Spearman correlation test assesses the association between circRNAs and clinical indicators. Results Two circRNAs, hsa_circ_0042590 and hsa_circ_0049875, that were highly upregulated and downregulated in PBMCs from COPD patients were identified and verified. Smokers with COPD had lower hsa_circ_0042590 and higher hsa_circ_0049875, in comparison to non-smokers. There was a significant correlation (r=0.52, P<0.01) between the number of acute exacerbations (AEs) that smokers with COPD experienced in the previous year and the following year (r=0.67, P<0.001). Moreover, hsa_circ_0049875 was connected to the quantity of AEs in the year prior (r=0.68, P<0.0001) as well as the year after (r=0.72, P<0.0001). AUC: 0.79, 95% CI: 0.1210-0.3209, P<0.0001) for hsa_circ_0049875 showed a strong diagnostic value for COPD, according to ROC curve analysis. Hsa_circ_0042590 showed a close second with an AUC of 0.83 and 95% CI: -0.1972--0.0739 (P <0.0001). Conclusion This research identified a strong correlation between smoking and hsa_circ_0049875 and hsa_circ_0042590 in COPD PBMCs. The number of AEs in the preceding and succeeding years was substantially linked with the existence of hsa_circ_0042590 and hsa_circ_0049875 in COPD patients who smoke. Additionally, according to our research, hsa_circ_0049875 and hsa_circ_0042590 may be valuable biomarkers for COPD diagnosis.
Collapse
Affiliation(s)
- Xu-Rui Shen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Ying-Ying Liu
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Rui-Qi Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Wei-Yun Zhang
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Xiu-Qin Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Da-Xiong Zeng
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, Liu J, Jia E. Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord 2024; 24:71. [PMID: 38267845 PMCID: PMC10809658 DOI: 10.1186/s12872-024-03711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.
Collapse
Affiliation(s)
- Ning Guo
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Zhengxian Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Jun Liu
- Department of Cardiology, Jurong City People's Hospital, Ersheng Road 66, Jurong, 212400, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
7
|
Lagunas-Rangel FA. Role of circular RNAs in DNA repair. RNA Biol 2024; 21:149-161. [PMID: 39550713 PMCID: PMC11572198 DOI: 10.1080/15476286.2024.2429945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Circular RNAs (circRNAs) exhibit a wide range of activities that allow them to participate in numerous cellular processes and make them relevant in a variety of diseases. In this regard, a key process in which circRNAs are involved, and which is the focus of this article, is DNA damage repair (DDR). This study aims to illustrate how circRNAs influence different DNA repair pathways, with particular emphasis on the underlying mechanisms. In addition, the potential medical applications of this knowledge are discussed, particularly in the diagnosis, prognosis and treatment of diseases. In this sense, circRNAs were found to play a crucial role in DNA repair processes by regulating the expression and activity of proteins involved in various DNA repair pathways. They influence the expression of DNA repair proteins by interacting with their mRNAs, sponging miRNAs that target these mRNAs, regulating transcription factors that bind to their promoters, modulating upstream signalling pathways, and affecting mRNA translation. Furthermore, circRNAs regulate the activity of DNA repair proteins by interacting directly with them, sequestering them in specific cellular compartments and controlling activation signalling or upstream DDR signalling.
Collapse
|
8
|
Lyu ZZ, Li M, Yang MY, Han MH, Yang Z. Exosome-mediated transfer of circRNA563 promoting hepatocellular carcinoma by targeting the microRNA148a-3p/metal-regulatory transcription factor-1 pathway. World J Gastroenterol 2023; 29:6060-6075. [PMID: 38130740 PMCID: PMC10731156 DOI: 10.3748/wjg.v29.i46.6060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exert anti-oncogenic effects via exosomes containing non-coding RNA (ncRNA), which play important roles in tumor biology. Our preliminary study identified the interaction of the ncRNA hsa_circ_0000563 (circ563) and the circ563-associated miR-148a-3p in exosomes, as miR-148a-3p and its target metal-regulatory transcription factor-1 (MTF-1) are implicated in hepatocellular carcinoma (HCC) progression. AIM To identify the clinical significance, functional implications, and mechanisms of circ563 in HCC. METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared, and their effects on HCC cells were assessed. Using a dual-luciferase reporter assay, miR-148a-3p was identified as an associated microRNA of circ563, whose role in HCC regulation was assessed in vitro and in vivo. RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis. Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression. The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion. Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1. In HCC tissues, circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels. CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway, while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.
Collapse
Affiliation(s)
- Zhuo-Zhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Ming-Yu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Mei-Hong Han
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
9
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|
10
|
Li MZ, Zhang JN, Ren F, Yin DL, Zhao XH, Liu K. Diagnostic value of circRNA in coronary heart disease: a meta-analysis. Biomark Med 2023; 17:667-677. [PMID: 37934042 DOI: 10.2217/bmm-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Aim: Studies have indicated that circRNAs have diagnostic value for coronary heart disease (CHD), but the efficacy varies greatly; therefore, a meta-analysis was conducted to assess the diagnostic value of circRNAs in CHD. Materials & methods: 16 studies with 3962 subjects (2239 cases and 1723 controls) were included by searching PubMed, Web of Science and MEDLINE. The pooled sensitivity and specificity, summary receiver operating characteristic and area under the curve, positive likelihood ratio and negative likelihood ratio were calculated. Results: The pooled area under the curve of circRNAs for the diagnosis of CHD was 0.80 (sensitivity and specificity were 0.77 and 0.68, respectively), and more indexes were calculated. Conclusion: circRNAs may be good biomarkers for diagnosing CHD.
Collapse
Affiliation(s)
- Ming-Zhu Li
- Department of Cardiology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu PR, China
| | - Jia-Nan Zhang
- Department of Cardiology, Hainan General Hospital, Haikou, 570311, Hainan PR, China
| | - Fei Ren
- Department of Cardiology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu PR, China
| | - De-Lu Yin
- Department of Cardiology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu PR, China
| | - Xin-Hua Zhao
- Department of Cardiology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu PR, China
| | - Kun Liu
- Department of Cardiology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu PR, China
| |
Collapse
|
11
|
Liu Y, Song J, Gu J, Xu S, Wang X, Liu Y. The Role of BTBD7 in Normal Development and Tumor Progression. Technol Cancer Res Treat 2023; 22:15330338231167732. [PMID: 37050886 PMCID: PMC10102955 DOI: 10.1177/15330338231167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
BTB/POZ domain-containing protein 7 (BTBD7) has a relative molecular weight of 126KD and contains two conserved BTB/POZ protein sequences. BTBD7 has been shown to play an essential role in normal human development, precancerous lesions, heat-stress response, and tumor progression. BTBD7 promotes branching morphogenesis during development and participates in the salivary gland, lung, and tooth formation. Furthermore, many studies have shown that aberrant expression of BTBD7 promotes heat stress response and the progression of precancerous lesions. BTBD7 has also been found to play an important role in cancer. High expression of BTBD7 affects tumor progression by regulating multiple pathways. Therefore, a complete understanding of BTBD7 is crucial for exploring human development and tumor progression. This paper reviews the research progress of BTBD7, which lays a foundation for the application of BTBD7 in regenerative medicine and as a biomarker for tumor prediction or potential therapeutic target.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Jiwu Song
- Weifang People's Hospital, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jianchang Gu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yunxia Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|