1
|
Sun L, Wang N, Ruan J, Gao G, Pan Y, Piao C, Li H, Liu S, Zhang Z, Cui Y, Sun S, Liu J. Study on MicroRNAs as Potential Biomarkers of Radon-induced Radiation Damage. HEALTH PHYSICS 2025:00004032-990000000-00240. [PMID: 40106377 DOI: 10.1097/hp.0000000000001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
ABSTRACT High concentrations of radon may cause radiation damage to the human body. Finding the biomarkers of radon-induced radiation damage is particularly important for the research and treatment of radon-induced lung cancer. In this study, the expression of γH2AX protein in peripheral blood lymphocytes of miners exposed to high concentrations of radon was detected by flow cytometry. To investigate the possible damage in peripheral blood lymphocytes of miners under a high radon environment, a microRNA (miRNA) microarray technique was used to screen the differentially expressed miRNAs in the peripheral plasma of miners exposed to different concentrations of radon. Prediction of the target genes and the possible biological functions of differentially expressed miRNAs in the peripheral plasma of miners was performed. The results indicated that the relative expression level of γH2AX protein in peripheral blood lymphocytes of miners was significantly higher than that of the control group (P < 0.05). Bioinformatics methods were used to predict the differential expression miRNA chip to screen the target genes of differentially expressed miRNAs and the signaling pathways that may be involved in screening differentially expressed miRNA target genes and to investigate the relationship between some different miRNA target genes and cellular pathways. The analysis of the cellular pathways predicted by differentially expressed miRNAs, including the process of cell cycle, provides new information for the study of miRNAs as potential biomarkers of radon-induced radiation damage in peripheral blood.
Collapse
Affiliation(s)
- Lu Sun
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Na Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Jianlei Ruan
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Pan
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunnan Piao
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Li
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Sitong Liu
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Zhuo Zhang
- Shenyang Medical College, Shenyang, China
| | - Yong Cui
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Sumei Sun
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Jianxiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Sekar M, Meenakshi DU, Singh SK, MacLoughlin R, Dua K. Unwinding circular RNA's role in inflammatory pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2567-2588. [PMID: 37917370 DOI: 10.1007/s00210-023-02809-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
3
|
Zhao S, Xiao M, Li L, Zhang H, Shan M, Cui S, Zhang L, Zhang G, Wu S, Jin C, Yang J, Lu X. A unique circ_0067716/EIF4A3 double-negative feedback loop impacts malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171349. [PMID: 38438030 DOI: 10.1016/j.scitotenv.2024.171349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Liuli Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingming Shan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang 110005, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
4
|
Tian XL, Zhang TT, Cai TJ, Tian M, Liu QJ. Screening radiation-differentially expressed circular RNAs and establishing dose classification models in the human lymphoblastoid cell line AHH-1. Int J Radiat Biol 2024; 100:550-564. [PMID: 38252315 DOI: 10.1080/09553002.2024.2304850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE In the event of a large-scale radiological accident, rapid and high-throughput biodosimetry is the most vital basis in medical resource allocation for the prompt treatment of victims. However, the current biodosimeter is yet to be rapid and high-throughput. Studies have shown that ionizing radiation modulates expressions of circular RNAs (circRNAs) in healthy human cell lines and tumor tissue. circRNA expressions can be quantified rapidly and high-throughput. However, whether circRNAs are suitable for early radiation dose classification remains unclear. METHODS We employed transcriptome sequencing and bioinformatics analysis to screen for radiation-differentially expressed circRNAs in the human lymphoblastoid cell line AHH-1 at 4 h following exposure to 0, 2, and 5 Gy 60Co γ-rays. The dose-response relationships between differentially expressed circRNA expressions and absorbed doses were investigated using real-time polymerase chain reaction and linear regression analysis at 4 h, 24 h, and 48 h post-exposure to 0, 2, 4, 6, and 8 Gy. Six distinct dose classification models of circRNA panels were established and validated by receiver operating characteristic (ROC) curve analysis. RESULTS A total of 11 radiation-differentially expressed circRNAs were identified and validated. Based on dose-response effects, those circRNAs changed in a dose-responsive or dose-dependent manner were combined into panels A through F at 4 h, 24 h, and 48 h post-irradiation. ROC curve analysis showed that panels A through C had the potential to effectively classify exposed and non-exposed conditions, which area under the curve (AUC) of these three panels were all 1.000, and the associate p values were .009. Panels D through F excellently distinguished between different dose groups (AUC = 0.963-1.000, p < .05). The validation assay showed that panels A through F demonstrated consistent excellence in sensitivity and specificity in dose classification. CONCLUSIONS Ionizing radiation can indeed modulate the circRNA expression profile in the human lymphoblastoid cell line AHH-1. The differentially expressed circRNAs exhibit the potential for rapid and high-throughput dose classification.
Collapse
Affiliation(s)
- Xue-Lei Tian
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Ting-Ting Zhang
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Tian-Jing Cai
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Mei Tian
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Qing-Jie Liu
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| |
Collapse
|
5
|
Harman RM, Das SP, Kanke M, Sethupathy P, Van de Walle GR. miRNA-214-3p stimulates carcinogen-induced mammary epithelial cell apoptosis in mammary cancer-resistant species. Commun Biol 2023; 6:1006. [PMID: 37789172 PMCID: PMC10547694 DOI: 10.1038/s42003-023-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Mammary cancer incidence varies greatly across species and underlying mechanisms remain elusive. We previously showed that mammosphere-derived epithelial cells from species with low mammary cancer incidence, such as horses, respond to carcinogen 7, 12-Dimethylbenz(a)anthracene-induced DNA damage by undergoing apoptosis, a postulated anti-cancer mechanism. Additionally, we found that miR-214-3p expression in mammosphere-derived epithelial cells is lower in mammary cancer-resistant as compared to mammary cancer-susceptible species. Here we show that increasing miR-214 expression and decreasing expression of its target gene nuclear factor kappa B subunit 1 in mammosphere-derived epithelial cells from horses abolishes 7,12-Dimethylbenz(a)anthracene-induced apoptosis. A direct interaction of miR-214-3p with another target gene, unc-5 netrin receptor A, is also demonstrated. We propose that relatively low levels of miR-214 in mammosphere-derived epithelial cells from mammals with low mammary cancer incidence, allow for constitutive gene nuclear factor kappa B subunit 1 expression and apoptosis in response to 7, 12-Dimethylbenz(a)anthracene. Better understanding of the mechanisms regulating cellular responses to carcinogens improves our overall understanding of mammary cancer resistance mechanisms.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
The role of circular RNAs in the pathophysiology of oral squamous cell carcinoma. Noncoding RNA Res 2022; 8:109-114. [DOI: 10.1016/j.ncrna.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
7
|
CircRNA Expression Profiles in Canine Mammary Tumours. Vet Sci 2022; 9:vetsci9050205. [PMID: 35622733 PMCID: PMC9145538 DOI: 10.3390/vetsci9050205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that the occurrence and development of tumours are associated with the expression of circular RNAs (circRNAs). However, the expression profile and clinical significance of circRNAs in canine mammary tumours remain unclear. In this paper, we collected tissue samples from three dogs with canine mammary tumours and analysed the expression profiles of circRNAs in these samples using high-throughput sequencing technology. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses revealed 14 biological processes associated with these genes, and 11 of these genes were selected for qRT-PCR to verify their authenticity. CircRNAs have sponge adsorption to miRNAs, so we constructed a circRNA-miRNA network map using Cytoscape software. As a result, we identified a total of 14,851 circRNAs in canine mammary tumours and its adjacent normal tissues. Of these, 106 were differentially expressed (fold change ≥ 2, p ≤ 0.05), and 64 were upregulated and 42 were downregulated. The GO analysis revealed that the biological processes involved were mainly in the regulation of the secretory pathway, the regulation of neurotransmitter secretion and the positive regulation of phagocytosis. Most of these biological pathways were associated with the cGMP-PKG (cyclic guanosine monophosphate) signalling pathway, the cAMP (cyclic adenosine monophosphate) signalling pathway and the oxytocin signalling pathway. After screening, source genes closely associated with canine mammary tumours were found to include RYR2, PDE4D, ROCK2, CREB3L2 and UBA3, and associated circRNAs included chr27:26618544-26687235-, chr26:8194880-8201833+ and chr17:7960861-7967766-. In conclusion, we reveals the expression profile of circRNAs in canine mammary tumours. In addition, some circRNAs might be used as potential biomarkers for molecular diagnosis.
Collapse
|
8
|
Xu Y, Lu L, Luo J, Wang L, Zhang Q, Cao J, Jiao Y. Disulfiram Alone Functions as a Radiosensitizer for Pancreatic Cancer Both In Vitro and In Vivo. Front Oncol 2021; 11:683695. [PMID: 34631519 PMCID: PMC8494980 DOI: 10.3389/fonc.2021.683695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of pancreatic cancer remains very poor worldwide, partly due to the lack of specificity of early symptoms and innate resistance to chemo-/radiotherapy. Disulfiram (DSF), an anti-alcoholism drug widely used in the clinic, has been known for decades for its antitumor effects when simultaneously applied with copper ions, including pancreatic cancer. However, controversy still exists in the context of the antitumor effects of DSF alone in pancreatic cancer and related mechanisms, especially in its potential roles as a sensitizer for cancer radiotherapy. In the present study, we focused on whether and how DSF could facilitate ionizing radiation (IR) to eliminate pancreatic cancer. DSF alone significantly suppressed the survival of pancreatic cancer cells after exposure to IR, both in vitro and in vivo. Additionally, DSF treatment alone caused DNA double-strand breaks (DSBs) and further enhanced IR-induced DSBs in pancreatic cancer cells. In addition, DSF alone boosted IR-induced cell cycle G2/M phase arrest and apoptosis in pancreatic cancer exposed to IR. RNA sequencing and bioinformatics analysis results suggested that DSF could trigger cell adhesion molecule (CAM) signaling, which might be involved in its function in regulating the radiosensitivity of pancreatic cancer cells. In conclusion, we suggest that DSF alone may function as a radiosensitizer for pancreatic cancer, probably by regulating IR-induced DNA damage, cell cycle arrest and apoptosis, at least partially through the CAM signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lunjie Lu
- Department of Radiation Physics, Qingdao Central Hospital, Qingdao, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lili Wang
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Li Y, Zou L, Chu L, Ye L, Ni J, Chu X, Guo T, Yang X, Zhu Z. Identification and Integrated Analysis of circRNA and miRNA of Radiation-Induced Lung Injury in a Mouse Model. J Inflamm Res 2021; 14:4421-4431. [PMID: 34511976 PMCID: PMC8422032 DOI: 10.2147/jir.s322736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation-induced lung injury (RILI) is a main threat to patients who received thoracic radiotherapy. Thus, understanding the molecular mechanism of RILI is of great importance. Circular RNAs (circRNAs) have been found to act as a regulator of multiple biological processes, and the circRNA-microRNA (miRNA)-mRNA axis could play an important role in the signaling pathway of many human diseases including radiation injury. Methods First, the circRNA and miRNA of RILI in a mouse model were investigated. The mice received 12 Gy of thoracic irradiation, and the irradiated lung tissues at 48 hours after irradiation were analyzed by RNA sequencing (RNA-seq) compared with normal lung tissues. Then, Gene Ontology analysis of the target mRNAs of the significantly differently expressed circRNAs was performed. Results In the irradiated group, inflammatory changes in lungs were observed; 21 significantly up-regulated and 33 down-regulated significantly miRNAs were identified (p < 0.05). Among 27 differentially expressed circRNAs, 10 were down-regulated and 17 were up-regulated in the irradiated group [log2 (fold change) > 1 or < −1, p<0.05]. These differentially expressed miRNAs took part in a series of cellular processes, such as positive regulation of alpha-beta T-cell proliferation, interstitial matrix, collagen fibril organization, chemokine receptor activity, cellular defense response, and B-cell receptor signaling pathway. The differentially expressed circRNAs were related to Th1 and Th2 differentiation pathways, and the predicted mRNAs were verified. Conclusion This study revealed immune-related molecular pathways play an important role in the early response after radiotherapy. In the future, research on the target mechanism and early intervention of circRNAs with associated miRNAs such as circRNA5229, circRNA544, and circRNA3340, could benefit the treatment of RILI.
Collapse
Affiliation(s)
- Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
10
|
Circular RNAs: Novel Players in the Oxidative Stress-Mediated Pathologies, Biomarkers, and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634601. [PMID: 34257814 PMCID: PMC8245247 DOI: 10.1155/2021/6634601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OxS) is a wildly described cause of damage to macromolecules, resulting in abnormal physiological conditions. In recent years, a few studies have shown that oxidation/antioxidation imbalance plays a significant role in developing diseases involving different systems and organs. However, the research on the circular RNA (circRNA) roles in OxS is still in its very infancy. Therefore, we hope to provide a comprehensive overview of the recent research that explored the function of circRNAs associated with OxS and its role in the pathogenesis of different diseases that affect different body systems like the nervous system, cardiovascular system, kidneys, and lungs. It provides the possibilities of using these circRNAs as superior diagnostic and therapeutic options for OxS associated with these disease conditions.
Collapse
|
11
|
Jiang W, Zhang C, Zhang X, Sun L, Li J, Zuo J. CircRNA HIPK3 promotes the progression of oral squamous cell carcinoma through upregulation of the NUPR1/PI3K/AKT pathway by sponging miR-637. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:860. [PMID: 34164494 PMCID: PMC8184441 DOI: 10.21037/atm-21-1908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background To investigate the expression, function, and related mechanisms of circHIPK3 in oral squamous cell carcinoma (OSCC). Methods CircHIPK3 expression was determined by quantitative reverse transcription polymerized chain reaction (QRT-PCR) in OSCC and adjacent tissues, and the correlation between the circHIPK3 level and clinicopathological indexes of OSCC was analyzed. CircHIPK3 expressions in different OSCC cell lines were detected, cell counting kit-8 (CCK-8) and 5-bromodeoxyuridine (BrdU) assays were utilized to monitor cell proliferation and activity. Flow cytometry was adopted to detect apoptosis and transwell assay was used to detect cell invasion. The expressions of nuclear protein 1 (NUPR1), phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) (PI3K/AKT) pathway proteins, and E-cadherin, Vimentin, and N-cadherin markers of epithelial-mesenchymal transformation (EMT) were detected by Western blot or Quantitative Real-time PCR (QRT-PCR). Results Upregulated circHIPK3 was noted in OSCC tissues (compared with adjacent tissues), and its overexpression was related to OSCC size and histopathological grade. Functionally, overexpressed circHIPK3 can significantly promote EMT, proliferation, and invasion of OSCC cells and can inhibit cell apoptosis in vivo and in vitro. In addition, CircHIPK3 upregulated the activation of NUPR1 and PI3K/AKT. Bioinformatics analyses showed that miR-637 was the common target of circHIPK3 and NUPR1, while a dual luciferase reporting assay and RIP assay further demonstrated that circHIPK3 targeted miR-637 and bound to 3' UTR of NUPR1. Conclusions CircHIPK3 demonstrates potential as a prognostic marker of OSCC and mediates OSCC progression via the miR-637-mediated NUPR1/PI3K/AKT axis.
Collapse
Affiliation(s)
- Weipeng Jiang
- Department of Outpatient Oral and Maxillofacial Surgery, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Health Science Center, School of Dentistry, Shenzhen University, Shenzhen, China
| | - Chunxiao Zhang
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital, Weihai, China.,Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, China
| | - Xiaoming Zhang
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Legang Sun
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Jikui Li
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Jinhua Zuo
- School of Dentistry, Binzhou Medical University, Binzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Binzhou Medical College, Binzhou, China
| |
Collapse
|
12
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
13
|
Maier A, Wiedemann J, Rapp F, Papenfuß F, Rödel F, Hehlgans S, Gaipl US, Kraft G, Fournier C, Frey B. Radon Exposure-Therapeutic Effect and Cancer Risk. Int J Mol Sci 2020; 22:ijms22010316. [PMID: 33396815 PMCID: PMC7796069 DOI: 10.3390/ijms22010316] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023] Open
Abstract
Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Julia Wiedemann
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Felicitas Rapp
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franziska Papenfuß
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Udo S. Gaipl
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Gerhard Kraft
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Benjamin Frey
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence:
| |
Collapse
|
14
|
Zhang J, Chou X, Zhuang M, Zhu C, Hu Y, Cheng D, Liu Z. circKMT2D contributes to H 2O 2-attenuated osteosarcoma progression via the miR-210/autophagy pathway. Exp Ther Med 2020; 20:65. [PMID: 32963595 PMCID: PMC7490787 DOI: 10.3892/etm.2020.9193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) have been demonstrated to be involved in osteosarcoma (OS) development; however, the underlying mechanism of circKMT2D in OS progression remains unclear. The present study aimed to elucidate how circKMT2D could affect hydrogen peroxide (H2O2)-induced OS progression. H2O2 (100 µmol/l) was used to treat MG63 and U2OS cells. The cell viability, invasive ability, apoptosis and circKMT2D expression were detected using Cell Counting Kit-8 assay, Transwell assay, flow cytometry and reverse transcription-quantitative PCR, respectively. Furthermore, MG63 and U2OS cells transfected with circKMT2D short hairpin RNA and negative control were treated with H2O2, and circKMT2D expression and cell phenotype were determined. Dual-luciferase reporter assay was conducted to determine the association between circKMT2D and miR-210 expression level. Rescue experiments were conducted to examine the mechanisms through which circKMT2D and miR-210 could affect H2O2-treated MG63 cells. In addition, the effects of miR-210 on the expression of the autophagy-related proteins Beclin1 and p62 in H2O2-treated MG63 cells were detected by western blotting. An autophagy inhibitor was used to treat the MG63 cells, and whether miR-210 could affect the H2O2-treated MG63 cell phenotype through autophagy was investigated. The results demonstrated that H2O2 treatment promoted cell apoptosis and decreased cell viability, invasive ability and circKMT2D expression in MG63 and U2OS cells. Furthermore, circKMT2D knockdown decreased the cell viability and invasive ability and enhanced the apoptosis of H2O2-treated MG63 and U2OS cells. circKMT2D possessed binding sites for miR-210 and inhibited miR-210 expression. In H2O2-treated MG63 cells, miR-210 silencing partially reversed the circKMT2D knockdown-induced cell viability inhibition and apoptosis promotion. In addition, miR-210 elevated Beclin1 expression and decreased p62 expression in H2O2-treated MG63 cells. The use of the autophagy inhibitor partially reversed the miR-210 overexpression-induced promotion of apoptosis and inhibition of the viability and invasive ability of H2O2-treated MG63 cells. Taken together, these findings indicated that circKMT2D knockdown may contribute to the inhibition of H2O2-attenuated OS progression via miR-210/autophagy pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Xubin Chou
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Ming Zhuang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Chenlei Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Yong Hu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Dong Cheng
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Zhiwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| |
Collapse
|
15
|
Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, Niu Y, Huang CP, Yeh S, Xing N, Chang C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett 2020; 495:100-111. [PMID: 32768524 DOI: 10.1016/j.canlet.2020.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Early studies indicated that the testicular nuclear receptor 4 (TR4) might play key roles in altering prostate cancer (PCa) progression; however, its ability to alter PCa radiosensitivity remains unclear. Here, we found that suppressing TR4 expression promoted radiosensitivity and better suppressed PCa by modulating the protein quaking (QKI)/circZEB1/miR-141-3p/ZEB1 signaling pathway. Mechanism dissection studies revealed that TR4 could transcriptionally increase the RNA-binding protein QKI to increase circZEB1 levels, which then sponges the miR-141-3p to increase the expression of its host gene ZEB1. Preclinical studies with an in vivo mouse model further proved that combining radiation therapy (RT) with metformin promoted radiosensitivity to suppress PCa progression. Together, these results suggest that TR4 may play key roles in altering PCa radiosensitivity and show that targeting this newly identified TR4-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling pathway may help in the development of a novel RT to better suppress the progression of PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuhchyau Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Yaqin Wang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuanjie Niu
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Chi-Ping Huang
- Sex Hormone Research Center, China Medical University, 404, Taichung, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Nianzeng Xing
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| |
Collapse
|
16
|
Zhang B, Liu Z, Cao K, Shan W, Liu J, Wen Q, Wang R. Circ-SPECC1 modulates TGFβ2 and autophagy under oxidative stress by sponging miR-33a to promote hepatocellular carcinoma tumorigenesis. Cancer Med 2020; 9:5999-6008. [PMID: 32627938 PMCID: PMC7433841 DOI: 10.1002/cam4.3219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) play vital roles in the pathogenesis and development of multiple cancers, including hepatocellular carcinoma (HCC). Nevertheless, the regulatory mechanisms of circ-SPECC1 in HCC remain poorly understood. In our study, we found that circ-SPECC1 was apparently downregulated in H2 O2 -treated HCC cells. Additionally, knockdown of circ-SPECC1 inhibited cell proliferation and promoted cell apoptosis of HCC cells under H2 O2 treatment. Moreover, circ-SPECC1 inhibited miR-33a expression by direct interaction, and miR-33a inhibitor partially reversed the effect of circ-SPECC1 knockdown on proliferation and apoptosis of H2 O2 -treated HCC cells. Furthermore, TGFβ2 was demonstrated to be a target gene of miR-33a and TGFβ2 overexpression rescued the phenotypes of HCC cells attenuated by miR-33a mimics. Meanwhile, autophagy inhibition by 3-methyladenine (3-MA) abrogated the effect of miR-33a mimics on proliferation and apoptosis of H2 O2 -treated HCC cells. Finally, knockdown of circ-SPECC1 hindered tumor growth in vivo. In conclusion, our study demonstrated that circ-SPECC1 regulated TGFβ2 and autophagy to promote HCC tumorigenesis under oxidative stress via miR-33a. These findings might provide potential treatment strategies for patients with HCC.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhiyi Liu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Kuan Cao
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Wengang Shan
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Jin Liu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Quan Wen
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Renhao Wang
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
17
|
Lei KX, Bai HT, Yang SY, Li J, Chen QM. [Research progress on circular RNA in oral squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:425-430. [PMID: 32865363 DOI: 10.7518/hxkq.2020.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circular RNA, a non-coding RNA that forms a covalently closed continuous loop, exists widely in eukaryotic cells. The biogenesis and biological function of this type of RNA indicate that it can play a crucial role in diseases such as tumors, neural system diseases, and cardiovascular diseases; moreover, this RNA may have great potential use as a biomarker in these diseases. Oral squamous cell carcinoma (OSCC) is a common malignancy in oral surgery that is difficult to cure, metastasizes easily, and has poor prognosis. In this review, we summarize the loop-forming mechanisms and functions of circular RNA and describe the progress of current research in the development of oral cancer.
Collapse
Affiliation(s)
- Ke-Xin Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - He-Tian Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Song-Yue Yang
- West China Clinical Medicine School, Sichuan University, Chengdu 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhou Z, Xu H, Duan Y, Liu B. MicroRNA-101 suppresses colorectal cancer progression by negative regulation of Rap1b. Oncol Lett 2020; 20:2225-2231. [PMID: 32782539 PMCID: PMC7400857 DOI: 10.3892/ol.2020.11791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most lethal malignancy and is the second most common cause of cancer-associated mortality worldwide. The development of high-throughput sequencing has enabled the identification of potential biomarkers for the diagnosis and treatment of various types of cancer. Although microRNA-101 (miR-101) has been demonstrated to be a potential biomarker of CRC, its detailed mechanisms remain to be fully discovered. In the present study, overall survival analysis was applied to determine the association between miR-101 and CRC prognosis. Reverse transcription-quantitative PCR (RT-qPCR) was used to examine gene expression levels in tissues and cells. Cell proliferative and apoptotic activities were determined by MTT and flow cytometry assays, respectively. Wound healing and Transwell assays were used to examine CRC cell migration and invasion, respectively. In the present study, RT-qPCR analysis indicated that miR-101 was significantly downregulated in CRC tissues and cells. However, clinical data collected from The Cancer Genome Atlas revealed no significant association between the expression levels of miR-101 and the prognosis of CRC. Additionally, miR-101 inhibited the progression of CRC by directly binding to the 3′-untranslated region of Ras-related protein Rap1b (Rap1b). This was associated with downregulation of Rap1b expression. Furthermore, the overexpression of Rap1b promoted miR-101 mimic-attenuated CRC cell progression. The present study demonstrated that miR-101 may be involved in the repression of the CRC progression by forming a negative feedback loop with Rap1b. The findings revealed the interaction between miR-101 and Rap1b during the progression of CRC, which could aid the development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Hang Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
19
|
Bersimbaev R, Pulliero A, Bulgakova O, Asia K, Aripova A, Izzotti A. Radon Biomonitoring and microRNA in Lung Cancer. Int J Mol Sci 2020; 21:E2154. [PMID: 32245099 PMCID: PMC7139524 DOI: 10.3390/ijms21062154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.
Collapse
Affiliation(s)
- Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alessandra Pulliero
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Kussainova Asia
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Akmara Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
- IRCCS Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
20
|
Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10030550. [PMID: 32197515 PMCID: PMC7153614 DOI: 10.3390/nano10030550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 105 NPs/m3) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA–mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
Collapse
|
21
|
Li H, You J, Xue H, Tan X, Chao C. CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA‑320b/HOXA10/TGFβ2 pathway. Int J Mol Med 2020; 45:836-846. [PMID: 31985027 PMCID: PMC7015121 DOI: 10.3892/ijmm.2020.4467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs have been reported to play a vital role in the development and progression of various types of cancer. However, the underlying molecular role of circular RNA CTDP1 (circCTDP1) in the tumorigenesis of nasopharyngeal carcinoma (NPC) remains unknown. In the present study, circCTDP1 expression was found to be markedly upregulated in NPC tissues and cell lines (SUNE1, SUNE2 and 6-10B cell lines). Knockdown of circCTDP1 resulted in inhibition of proliferation, migration and invasion, and promoted apoptosis of NPC cells. Moreover, circCTDP1 directly interacted with microRNA (miR)-320b based on bioinformatics prediction and dual luciferase assay, and transfection with an miR-320b inhibitor reversed the effects of circCTDP1 knockdown on NPC cells. Furthermore, circCTDP1/miR-320b promoted NPC progression by regulating the expression of homeobox A10 (HOXA10). In addition, it was demonstrated that HOXA10 may exert its oncogenic role in NPC by regulating the expression of transforming growth factor β2 (TGFβ2). Taken together, these results revealed a novel regulatory mechanism, which may provide an improved understanding of NPC tumorigenesis and be useful in the development of potential targets for NPC therapy.
Collapse
Affiliation(s)
- Haifeng Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jianqiang You
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haixiang Xue
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoye Tan
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Changjiang Chao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
22
|
Cao W, Zhao Y, Wang L, Huang X. Circ0001429 regulates progression of bladder cancer through binding miR-205-5p and promoting VEGFA expression. Cancer Biomark 2019; 25:101-113. [PMID: 30909190 DOI: 10.3233/cbm-182380] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study investigates expressions of circ0001429, miR-205-5p and vascular endothelial growth factor (VEGFA) in bladder cancer tissues and their effects on the proliferation, migration and apoptosis. METHODS Arraystar Human CircRNA chip was applied to analyzing the differential expression of circRNA in four bladder cancer tissues and paired adjacent normal bladder tissues. Real time quantitative PCR was utilized to detect the expression of circ0001429 in tissue specimens. Bioinformatics, RNA immunoprecipitation and luciferase reporter assays were used to verify the relationship among circ0001429, miR-205-5p and VEGFA in bladder cancer. Cell propagation was determined by CCK8 assay and roles of circ0001429 and miR-205-5p in cell migration were verified with transwell migration assay. Flow cytometry and TUNEL staining were conducted to observe the impact on cell apoptosis ability. Xenograft experiment was also performed to validate the influence of circ0001429 on tumor growth in vivo. RESULTS Expressions of circ0001429 and VEGFA were up-regulated, whereas miR-205-5p expression was down-regulated in bladder cancer tissues in comparison with paired adjacent normal bladder tissues. Circ0001429 enhanced the propagation and metastasis abilities of T24 cells and 5637 cells in vitro, but reduced cell apoptosis. In vivo experiments revealed the inhibitor role of sh-circ0001429 in tumor growth and lung metastasis. Circ0001429 sponged miR-205-5p that targeted VEGFA, thereby modulating the protein level of VEGFA. Meanwhile, miR-205-5p restrained the cell viability and mobility and promoted the apoptosis in bladder cancer. Circ0001429 could accelerate cell propagation, migration and invasiveness through increasing VEGFA expression via miR-205-5p. CONCLUSION Circ0001429 and VEGFA were highly expressed in bladder cancer, while miR-205-5p were lowly expressed in bladder cancer. The circ0001429 could target at miR-205-5p to regulate VEGFA and promote the development of bladder cancer.
Collapse
|
23
|
Huang J, Zhao J, Zheng Q, Wang S, Wei X, Li F, Shang J, Lei C, Ma Y. Characterization of Circular RNAs in Chinese Buffalo ( Bubalus bubalis) Adipose Tissue: A Focus on Circular RNAs Involved in Fat Deposition. Animals (Basel) 2019; 9:E403. [PMID: 31266200 PMCID: PMC6680660 DOI: 10.3390/ani9070403] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have been identified as a novel type of regulators involved in multiple biological processes. However, circRNAs with a potential function in fat deposition in buffalo are poorly understood. In this study, six RNA libraries of adipose tissue were constructed for three young and three adult Chinese buffaloes with paired-ends RNA sequencing using the Illumina HiSeq 3000 platform. A total of 5141 circRNAs were computationally identified. Among them, 252 circRNAs were differentially expressed (DE) between the young and adult buffaloes. Of these, 54 were upregulated and 198 were downregulated in the adult group. Eight DE circRNAs were further identified by quantitative real-time-PCR (qRT-PCR) and Sanger sequencing. Co-expression analysis revealed that 34 circRNAs demonstrated a strong correlation with fat deposition-associated genes (|r| > 0.980). Among these, expressional correlation between two circRNAs (19:45387150|45389986 and 21:6969877|69753491) and PR/SET domain 16 was further verified using qRT-PCR, and a strong correlation was revealed (1 > |r| > 0.8). These results strongly suggest that circRNAs 19:45387150|45389986 and 21:6969877|69753491 are potential regulators of buffalo fat deposition. In summary, this study characterized the circRNA profiles of adipose tissues at different stages for the first time and revealed two circRNAs strongly correlated with fat deposition-associated genes, which provided new candidate regulators for fat deposition in buffalo.
Collapse
Affiliation(s)
- Jieping Huang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Jinhui Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Qiuzhi Zheng
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Shuzhe Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Fen Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Jianghua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China.
| |
Collapse
|
24
|
Lei K, Bai H, Wei Z, Xie C, Wang J, Li J, Chen Q. The mechanism and function of circular RNAs in human diseases. Exp Cell Res 2018; 368:147-158. [PMID: 29730164 DOI: 10.1016/j.yexcr.2018.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a recently discovered form of RNA. Initially, circRNAs were believed to result from errors during the process of gene transcription. However, after further investigation, scientists suggested that circRNAs are of great biological significance. CircRNAs show stability, conservation, abundance, and tissue and stage specificity. They can also function as miRNA sponges, regulate gene expression, and interact with proteins to affect cell behavior. Emerging evidence has also demonstrated that circRNAs participate or show abnormal expression in diseases, including central nervous system diseases, cardiovascular diseases and cancers, indicating their marked potential in the prediction and prognosis of diseases and clinical treatment.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zihao Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changqing Xie
- Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YYY, Zhan BT, Zhang Q, Bi YY, Sun CC, Li DJ. Emerging landscape of circular RNAs in lung cancer. Cancer Lett 2018; 427:18-27. [PMID: 29653267 DOI: 10.1016/j.canlet.2018.04.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/31/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
Lung cancer, the leading cause of cancer deaths worldwide, is characterized with malignant cell growth. Advances in next-generation sequencing has helped us further understand RNA and identify novel circular RNAs (circRNAs) that may be useful in the early diagnosis and treatment of lung cancer. Similar to other noncoding RNAs, circRNAs present diverse biological functions in normal and disease states, including various types of cancers. This review focuses mainly on the poorly understood functions of circRNA in lung cancer. This paper also summarizes the recent advances in circRNA biogenesis, analyzes the role of circRNAs in cancers, and discusses the potential mechanisms of circRNAs in lung cancer.
Collapse
Affiliation(s)
- Wei Hu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan, Hubei, 430079, China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, Hubei, 430015, China
| | - Cong Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Lin-Lin Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Feng Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Qun Zhou
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wei Zhu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yang-Yi-Yan Song
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Bo-Tao Zhan
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China
| | - Qian Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yong-Yi Bi
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
26
|
Xiang L, Cai C, Cheng J, Wang L, Wu C, Shi Y, Luo J, He L, Deng Y, Zhang X, Yuan Y, Cai Y. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 2018; 6:e4500. [PMID: 29576969 PMCID: PMC5858604 DOI: 10.7717/peerj.4500] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of recently discovered non-coding RNAs, play a role in biological and developmental processes. A recent study showed that circRNAs exist in plants and play a role in their environmental stress responses. However, cotton circRNAs and their role in Verticillium wilt response have not been identified up to now. In this study, two CSSLs (chromosome segment substitution lines) of G.barbadense introgressed into G. hirsutum, CSSL-1 and CSSL-4 (a resistant line and a susceptible line to Verticillium wilt, respectively), were inoculated with V. dahliae for RNA-seq library construction and circRNA analysis. A total of 686 novel circRNAs were identified. CSSL-1 and CSSL-4 had similar numbers of circRNAs and shared many circRNAs in common. However, CSSL-4 differentially expressed approximately twice as many circRNAs as CSSL-1, and the differential expression levels of the common circRNAs were generally higher in CSSL-1 than in CSSL-4. Moreover, two C-RRI comparisons, C-RRI-vs-C-RRM and C-RRI-vs-C-RSI, possessed a large proportion (approximately 50%) of the commonly and differentially expressed circRNAs. These results indicate that the differentially expressed circRNAs may play roles in the Verticillium wilt response in cotton. A total of 280 differentially expressed circRNAs were identified. A Gene Ontology analysis showed that most of the ‘stimulus response’ term source genes were NBS family genes, of which most were the source genes from the differentially expressed circRNAs, indicating that NBS genes may play a role in Verticillium wilt resistance and might be regulated by circRNAs in the disease-resistance process in cotton.
Collapse
Affiliation(s)
- Liuxin Xiang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.,School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Lu Wang
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaofeng Wu
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Jingzhi Luo
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lin He
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yushan Deng
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| |
Collapse
|
27
|
Ye Z, Liu X, Yang Y, Zhang X, Yu T, Li S, Feng Y, Luo G. The differential expression of novel circular RNAs in an acute lung injury rat model caused by smoke inhalation. J Physiol Biochem 2017; 74:25-33. [PMID: 29188496 DOI: 10.1007/s13105-017-0598-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
Acute lung injury caused by smoke inhalation is a common severe clinical syndrome. This study aimed to investigate the potential expression of circular RNAs during acute lung injury triggered by smoke inhalation. The acute lung injury rat model was established with smoke inhalation from a self-made smoke generator. The occurrence of acute lung injury was validated by an analysis of the bronchoalveolar lavage fluid and hematoxylin-eosin (HE) staining of lung tissues. Next-generation sequencing and quantitative PCR were performed to identify the differentially expressed circular RNAs associated with acute lung injury that was caused by smoke inhalation. The circular form of the identified RNAs was finally verified by multiple RT-PCR-based assays. The bronchoalveolar lavage fluid (BALF) and lung tissue analysis showed that smoke inhalation successfully induced acute injury in rats, as evidenced by the significantly altered cell numbers, including macrophages, neutrophils, and red blood cells, disrupted cell lining, and increased levels of interleukin-1β, tumor necrosis factor-alpha, and IL-8 in lung tissues. Ten significantly differentially expressed circular RNAs were identified with next-generation sequencing and RT-PCR. The circular form of these RNAs was verified by multiple RT-PCR-based assays. In conclusion, the identified circular RNAs were prevalently and differentially expressed in rat lungs after acute lung injury caused by smoke inhalation.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuhui Liu
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuewu Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianling Zhang
- Department of Hepatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Yu
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shigeng Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, tianhe road, tianhe district, Guangzhou, 510000, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, tianhe road, tianhe district, Guangzhou, 510000, China.
| |
Collapse
|