1
|
Lim H, El-Serag HB, Luster M, Grove ML, Byun J, Jung Y, Han Y, Boerwinkle E, Amos CI, Thrift AP. DNA Methylation Profile in Buffy Coat Identifies Methylation Differences Between Cirrhosis with and Without Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:266. [PMID: 39858049 PMCID: PMC11763440 DOI: 10.3390/cancers17020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cirrhosis is the precursor to most cases of hepatocellular carcinoma (HCC). Understanding the mechanisms leading to the transition from cirrhosis to HCC and identifying key biomarkers is crucial to developing effective screening strategies and reducing HCC-related mortality. DNA methylation is associated with gene inactivation and plays an important role in physiological and pathological processes; however, its role in cirrhosis progression to HCC is unknown. METHODS We performed genome-wide DNA methylation profiling using Illumina Infinium MethylationEPI BeadChip in pre-diagnostic samples from 22 cirrhosis patients who subsequently developed HCC and 22 cirrhosis patients who remained HCC-free during an average 4-year follow-up. In a secondary analysis, we examined a subset of patients without hepatitis C virus (HCV) infection. RESULTS We identified three differentially methylated positions (DMPs) located in ADAM12 (cg13674437) and PSD3 (cg06758847 and cg24595678) that show a strong association with HCC risk (lower median vs. higher median hazards ratio (HR): HR cg13674437 = 0.34, 95% CI = 0.14-0.83; HR cg06758847 = 4.89, 95% CI = 1.79-13.33; HR cg24595678 = 11.19, 95% CI = 3.27-38.35). After excluding all HCV-active patients from our analysis, the HR for the DMPs remained significant. CONCLUSIONS In conclusion, the findings in this study support the theory that buffy coat-derived DNA methylation markers could be used to identify biomarkers among cirrhosis patients at high risk for HCC before clinical symptoms appear. A further study with a large prospective cohort is required to validate these findings.
Collapse
Affiliation(s)
- Hyeyeun Lim
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Hashem B. El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (H.B.E.-S.); (M.L.)
| | - Michelle Luster
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (H.B.E.-S.); (M.L.)
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.L.G.); (E.B.)
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
| | - Yuri Jung
- Ridgewood High School, Ridgewood, NJ 07450, USA;
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.L.G.); (E.B.)
| | - Christopher I. Amos
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | - Aaron P. Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| |
Collapse
|
2
|
Raj A, Petreaca RC, Mirzaei G. Multi-Omics Integration for Liver Cancer Using Regression Analysis. Curr Issues Mol Biol 2024; 46:3551-3562. [PMID: 38666952 PMCID: PMC11049490 DOI: 10.3390/cimb46040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Genetic biomarkers have played a pivotal role in the classification, prognostication, and guidance of clinical cancer therapies. Large-scale and multi-dimensional analyses of entire cancer genomes, as exemplified by projects like The Cancer Genome Atlas (TCGA), have yielded an extensive repository of data that holds the potential to unveil the underlying biology of these malignancies. Mutations stand out as the principal catalysts of cellular transformation. Nonetheless, other global genomic processes, such as alterations in gene expression and chromosomal re-arrangements, also play crucial roles in conferring cellular immortality. The incorporation of multi-omics data specific to cancer has demonstrated the capacity to enhance our comprehension of the molecular mechanisms underpinning carcinogenesis. This report elucidates how the integration of comprehensive data on methylation, gene expression, and copy number variations can effectively facilitate the unsupervised clustering of cancer samples. We have identified regressors that can effectively classify tumor and normal samples with an optimal integration of RNA sequencing, DNA methylation, and copy number variation while also achieving significant p-values. Further, these regressors were trained using linear and logistic regression with k-means clustering. For comparison, we employed autoencoder- and stacking-based omics integration and computed silhouette scores to evaluate the clusters. The proof of concept is illustrated using liver cancer data. Our analysis serves to underscore the feasibility of unsupervised cancer classification by considering genetic markers beyond mutations, thereby emphasizing the clinical relevance of additional global cellular parameters that contribute to the transformative process in cells. This work is clinically relevant because changes in gene expression and genomic re-arrangements have been shown to be signatures of cellular transformation across cancers, as well as in liver cancers.
Collapse
Affiliation(s)
- Aditya Raj
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA;
- Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University, Marion, OH 43302, USA
| |
Collapse
|
3
|
Lu Z, Fei L, Hou G. A pan-cancer analysis of the oncogenic role of ERCC6L. BMC Cancer 2022; 22:1347. [PMID: 36550435 PMCID: PMC9773625 DOI: 10.1186/s12885-022-10452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Excision repair cross-complementation group 6 like (ERCC6L), a polo-like kinase 1 (PLK1)-interacting checkpoint helicase, confers a high risk of cancer and enhances the progression of a variety of cancers. The present investigation aimed to elucidate the pan-cancer expression patterns of ERCC6L and to examine the possibility of using this gene for patient diagnosis and prognosis. METHODS The expression patterns of ERCC6L in normal and cancer patients at various clinical stages were explored based on TCGA datasets. Subsequently, Bioinformatics techniques were then used to analyze patient's survival probabilities, Cox multivariate clinical parameters, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms related to ERCC6L, the correlation between mRNA expression levels and patient survival, genetic alterations or somatic mutations of ERCC6L, and immune infiltration. RESULTS Most cancer types had higher ERCC6L mRNA levels than normal tissue. Higher ERCC6L expression levels were correlated with poor prognosis for cancer patients. Thus, ERCC6L may serve as an effective diagnostic and prognostic marker for multiple cancers. Moreover, ERCC6L expression levels were higher in patients with higher clinical tumor grades and were associated with poor prognoses at these stages. GO and KEGG analyses revealed a correlation between ERCC6L expression levels and chromatin and cell cycle events. We also found that the mRNA expression level of the ERCC6L promoter and a favorable prognosis was negatively correlated with the promoter's methylation but not with copy number variation. A quantitative analysis of immune infiltration suggested a positive correlation between ERCC6L levels and the infiltration of Th2 immune cells in main cancer types. Finally, we examined the ERCC6L somatic mutations, especially single-nucleotide variants, and ERCC6L expression-related drug sensitivity. CONCLUSIONS Herein, we reported a comprehensive investigation of the tumor-promoting role of ERCC6L in various cancer types. ERCC6L is a candidate biomarker for diagnosing and unfavorable prognosis of specific cancers.
Collapse
Affiliation(s)
- Zhimin Lu
- grid.459505.80000 0004 4669 7165Department of Outpatient, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| | - Lihong Fei
- grid.459505.80000 0004 4669 7165Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| | - Guoxin Hou
- grid.459505.80000 0004 4669 7165Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| |
Collapse
|
4
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Tsai WL, Cheng JS, Liu PF, Chang TH, Sun WC, Chen WC, Shu CW. Sofosbuvir induces gene expression for promoting cell proliferation and migration of hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:5710-5726. [PMID: 35833210 PMCID: PMC9365546 DOI: 10.18632/aging.204170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Direct-acting antivirals (DAAs) have achieved a sustained virological response (SVR) rate of 95–99% in treating HCV. Several studies suggested that treatment with sofosbuvir (SOF), one type of DAAs, may be associated with increased risk of developing HCC. The aim of this study is to investigate the potential mechanisms of SOF on the development of HCC. OR-6 (harboring full-length genotype 1b HCV) and Huh 7.5.1 cells were used to examine the effects of SOF on cell proliferation and migration of HCC cells. SOF-upregulated genes in OR-6 cells were inspected using next generation sequencing (NGS)and the clinical significance of these candidate genes was analyzed using The Cancer Genome Atlas (TCGA) database. We found that SOF increased cell proliferation and cell migration in OR-6 and Huh 7.5.1 cells. Several SOF-upregulated genes screened from NGS were confirmed by real-time PCR in OR-6 cells. Among these genes, PHOSPHO2, KLHL23, TRIM39, TSNAX-DISC1 and RPP21 expression were significantly elevated in the tumor tissues compared with the non-tumor tissues of HCC according to TCGA database. High expression of PHOSPHO2 and RPP21 was associated with poor overall survival of HCC patients. Moreover, knockdown of PHOSPHO2-KLHL23, TSNAX-DISC1, TRIM39 and RPP21 diminished cell proliferation and migration increased by SOF in OR-6 and Huh 7.5.1 cells. In conclusion, SOF-upregulated genes promoted HCC cell proliferation and migration, which might be associated with the development of HCC.
Collapse
Affiliation(s)
- Wei-Lun Tsai
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Jin-Shiung Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Chi Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
INK4 cyclin-dependent kinase inhibitors as potential prognostic biomarkers and therapeutic targets in hepatocellular carcinoma. Biosci Rep 2022; 42:231524. [PMID: 35771229 PMCID: PMC9284345 DOI: 10.1042/bsr20221082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.
Collapse
|
8
|
The Expression and Role Analysis of Methylation-Regulated Differentially Expressed Gene UBE2C in Pan-Cancer, Especially for HGSOC. Cancers (Basel) 2022; 14:cancers14133121. [PMID: 35804892 PMCID: PMC9264902 DOI: 10.3390/cancers14133121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary DNA methylation has attracted a great deal of scientific interest as an early biomarker and potential therapeutic target. HGSOC result in high mortality due to the absence of reliable biomarkers for early diagnosis and prognosis. In this study, we performed an integrated bioinformatic analysis and found that UBE2C was hypomethylation and overexpression in ovarian cancer, which was associated with advanced cancer stages and poor prognoses. Meantime, this finding was also confirmed in pan-cancer analysis. Furthermore, the experimental validation of the expression and role of UBE2C was performed on HGSOC tissues and cancer cell lines. Importantly, demethylation could upregulate the expression of UBE2C. Taken together, methylation-regulated UBE2C may be a novel biomarker for diagnosis and prognosis, not only for ovarian cancer but a variety of cancers. Abstract High-grade serous ovarian cancer (HGSOC) is the most fatal gynecological malignant tumor. DNA methylation is associated with the occurrence and development of a variety of tumor types, including HGSOC. However, the signatures regarding DNA methylation changes for HGSOC diagnosis and prognosis are less explored. Here, we screened differentially methylated genes and differentially expressed genes in HGSOC through the GEO database. We identified that UBE2C was hypomethylation and overexpression in ovarian cancer, which was associated with more advanced cancer stages and poor prognoses. Additionally, the pan-cancer analysis showed that UBE2C was overexpressed and hypomethylation in almost all cancer types and was related to poor prognoses for various cancers. Next, we established a risk or prognosis model related to UBE2C methylation sites and screened out the three sites (cg03969725, cg02838589, and cg00242976). Furthermore, we experimentally validated the overexpression of UBE2C in HGSOC clinical samples and ovarian cell lines using quantitative real-time PCR, Western blot, and immunohistochemistry. Importantly, we discovered that ovarian cancer cell lines had lower DNA methylation levels of UBE2C than IOSE-80 cells (normal ovarian epithelial cell line) by bisulfite sequencing PCR. Consistently, treatment with 5-Azacytidine (a methylation inhibitor) was able to restore the expression of UBE2C. Taken together, our study may help us to understand the underlying molecular mechanism of UBE2C in pan-cancer tumorigenesis; it may be a useful biomarker for diagnosis, treatment, and monitoring, not only of ovarian cancer but a variety of cancers.
Collapse
|
9
|
Cai Z, Hu W, Wu R, Zheng S, Wu K. Bioinformatic analyses of hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. Environ Health Prev Med 2022; 27:38. [PMID: 36198577 PMCID: PMC9556975 DOI: 10.1265/ehpm.22-00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) and their metabolites have severe impact on human health, but few studies focus on their nephrotoxicity. This study was conceived to explore hub genes that may be involved in two hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. METHODS Gene dataset was obtained from Gene Expression Omnibus (GEO). Principal component analysis and correlation analysis were used to classify the samples. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.1.0). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome enrichment analyses of DEGs were conducted. Protein-protein interaction (PPI) network was established using STRING network, and genes were filtered by Cytoscape (version 3.8.2). Finally, the hub genes were integrated by plug-in CytoHubba and RobustRankAggreg, and were preliminarily verified by the Comparative Toxicogenomics Database (CTD). RESULTS GSE8588 dataset was selected in this study. About 190 upregulated and 224 downregulated DEGs in 2-OH-BDE47 group, and 244 upregulated and 276 downregulated DEGs in 2-OH-BDE85 group. Functional enrichment analyses in the GO, KEGG and Reactome indicated the potential involvement of DEGs in endocrine metabolism, oxidative stress mechanisms, regulation of abnormal cell proliferation, apoptosis, DNA damage and repair. 2-OH-BDE85 is more cytotoxic in a dose-dependent manner than 2-OH-BDE47. A total of 98 hub genes were filtered, and 91 nodes and 359 edges composed the PPI network. Besides, 9 direct-acting genes were filtered for the intersection of hub genes by CTD. CONCLUSIONS OH-PBDEs may induce H295R adrenocortical cancer cells in the disorder of endocrine metabolism, regulation of abnormal cell proliferation, DNA damage and repair. The screened hub genes may play an important role in this dysfunction.
Collapse
Affiliation(s)
- Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Hu
- Chronic Disease Control Center of Shenzhen, Shenzhen 518020, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
10
|
CDKN2A is a prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Biosci Rep 2021; 41:229594. [PMID: 34405225 PMCID: PMC8495430 DOI: 10.1042/bsr20211103] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclin dependent kinase inhibitor 2A (CDKN2A) is an essential regulator of immune cell functionality, but the mechanisms whereby it drives immune infiltration in hepatocellular carcinoma (HCC) remain unclear. In the present study, we studied the association with CDKN2A expression and immune invasion with the risk of developing HCC. A totally of 2207 different genes were found between HCC and adjacent liver tissues from TCGA and GEO databases. CDKN2A was highly expressed in HCC and associated with poorer overall survival and disease-free survival. Notably, CDKN2A expression was positively correlated with infiltrating levels into purity, B cell, CD+8 T cell, CD+4 T cell, macrophage, neutrophil, and dendritic cells in HCC. CDKN2A expression showed strong correlations between diverse immune marker sets in HCC. These findings suggest that CDKN2A expression potentially contributes to regulation of tumor-associated macrophages and can be used as a prognostic biomarker for determining prognosis and immune infiltration in HCC.
Collapse
|
11
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|
12
|
Sheng J, Li C, Dong M, Jiang K. Identification by Comprehensive Bioinformatics Analysis of KIF15 as a Candidate Risk Gene for Triple-Negative Breast Cancer. Cancer Manag Res 2020; 12:12337-12348. [PMID: 33293861 PMCID: PMC7718892 DOI: 10.2147/cmar.s262017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have shown that kinesin family proteins (KIFs) play an indispensable roles in several types of cancer. However, the expression and clinical significance of KIFs in triple-negative breast cancer remain unclear. Methods In this study, the role of KIF15, including gene expression analysis, methylation characteristic, CNV characteristic, and miRNA target regulation, was evaluated using multiple bioinformatic tools based on TCGA database. Quantitative real-time PCR and Western blot were used to determine the expression level of KIF15 in triple-negative breast cancer cell lines. Then, functional experiments were employed to explore the effects of KIF15 on tumor growth and metastasis in triple-negative breast cancer. Results Our data showed that KIF15 was significantly upregulated in triple-negative breast cancer (TNBC). Functionally, downregulation of KIF15 significantly facilitated apoptosis and G2/M phase arrest, and inhibited the migration and invasion of TNBC cells. The mechanism of action of KIF15 was closely related to DNA replication checkpoint and cell cycle regulation in TNBC based on GSEA. In addition, bioinformatics analysis demonstrated that high expression of KIF15 in TNBC was correlated with copy number aberration and DNA methylation levels. Conclusion Our findings suggest that KIF15 is a novel oncogene in TNBC and provide us a strong evidence that it might be served as a potential clinical target and biomarker in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jiayu Sheng
- Department of Breast Diseases, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chunyang Li
- Department of Breast Diseases, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mengting Dong
- Department of Breast Diseases, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ke Jiang
- Department of Breast Diseases, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Nohara K, Suzuki T, Okamura K. Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. Toxicol Appl Pharmacol 2020; 409:115319. [PMID: 33160984 DOI: 10.1016/j.taap.2020.115319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
A growing body of evidence has shown that gestational exposure to environmental factors such as imbalanced diet, environmental chemicals, and stress can lead to late-onset health effects in offspring and that some of these effects are heritable by the next generation and subsequent generations. Furthermore, altered epigenetic modifications in DNA methylation, histone modifications and small RNAs in a single sperm genome have been shown to transmit disease phenotypes acquired from the environment to later generations. Recently, our group found that gestational exposure of F0 pregnant dams to an inorganic arsenic, sodium arsenite, increases the incidence of hepatic tumors in male F2 mice, and the effects are paternally transmitted to the F2. Here, we first overview the epigenetic changes involved in paternal intergenerational and transgenerational inheritance caused by exposure to environmental factors. Then, we discuss our recent studies regarding paternal inheritance of the tumor-augmenting effects in F2 mice by gestational arsenite exposure, in which we investigated alterations of DNA methylation status in F2 tumors and causative F1 sperm. We also discuss the possible targets of the F2 effects. Finally, we discuss future perspectives on the studies that are needed to fully understand the health effects of arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|