1
|
Izukashi K, Okumo T, Tatsuo T, Kachi I, Iida Y, Nishio T, Ikemoto H, Adachi N, Kanzaki K, Sunagawa M. Early Intervention With Boiogito to Suppress Knee Osteoarthritis Progression: An Experimental Approach Using a Medial Meniscus Instability Rat Model. Cureus 2025; 17:e77311. [PMID: 39935926 PMCID: PMC11812281 DOI: 10.7759/cureus.77311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
Background Knee osteoarthritis (KOA) is a prevalent and chronic condition characterized by swelling, pain, and limited range of motion of the knee due to degenerative changes in joint structures, leading to impairment in performing daily activities. Although conservative treatments, such as exercise therapy and nonsteroidal anti-inflammatory drugs are employed, there are few effective therapeutic options for preventing disease progression. During early KOA, there is osteoclast proliferation in the subchondral bone, disruption in cartilage homeostasis, elevation of matrix metalloproteinase-13 (MMP-13) levels, and reduction in tissue inhibitors of matrix metalloproteinase-1 (TIMP-1) levels. Boiogito (BOT), which is a traditional Japanese medicinal formula, attenuates KOA progression, however, its effects when administered after KOA progression remain unclear. This study aimed to assess the therapeutic efficacy of BOT in preventing KOA progression in a rat model by focusing on its effects on motor function, subchondral bone turnover, and cartilage degradation in relation to the timing of administration. Methods A rat KOA model was created by destabilizing the medial meniscus (DMM). Rats were divided into Sham, DMM, DMM + BOT (0w, BOT administered immediately post-surgery), and DMM + BOT (3w, BOT administered 3 weeks post-surgery) groups. BOT was included in the diet at 1% (w/w). Motor function was evaluated biweekly by a treadmill running test, while structural changes in the knee were assessed by measuring the medial meniscus extrusion ratio (MMER) using computed tomography (CT). Histological and immunohistochemical analyses were conducted to evaluate joint degeneration via the Osteoarthritis Research Society International (OARSI) score, osteoclast numbers in subchondral bone through tartrate-resistant acid phosphatase (TRAP) staining, and MMP-13/TIMP-1 ratios in articular cartilage. Results Treadmill testing revealed that the DMM + BOT (0w) had significantly higher running speeds compared with the DMM and DMM + BOT (3w) groups. In all groups that underwent DMM surgery, the MMER was not significantly different. Histological assessments showed that the DMM + BOT (0w) group had lower OARSI scores and reduced osteoclast numbers in the subchondral bone compared with the DMM group. Immunohistochemical analysis showed a significant reduction in MMP-13 expression and MMP-13/TIMP-1 ratios in the DMM + BOT (0w) group, whereas the DMM + BOT (3w) group showed limited efficacy compared with the early intervention. Conclusion Early administration of BOT attenuates KOA progression by preserving motor function, reducing subchondral bone turnover, and mitigating cartilage degradation. These findings highlight the importance of early intervention with BOT to achieve optimal therapeutic outcomes in KOA.
Collapse
Affiliation(s)
- Kanako Izukashi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Tokito Tatsuo
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Itaru Kachi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Yuta Iida
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Takumi Nishio
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Koji Kanzaki
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| |
Collapse
|
2
|
Majumder P, Hsu TI, Hu CJ, Huang JK, Lee YC, Hsieh YC, Ahsan A, Huang CC. Potential role of solid lipid curcumin particle (SLCP) as estrogen replacement therapy in mitigating TDP-43-related neuropathy in the mouse model of ALS disease. Exp Neurol 2024; 383:114999. [PMID: 39419433 DOI: 10.1016/j.expneurol.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) was first identified in 1869, but it wasn't until the 2014 Ice Bucket Challenge that widespread attention was drawn to the disease. Since then, substantial research has been dedicated to developing treatments for ALS. Despite this, only three drugs - riluzole, edaravone and AMX0035, have been approved for clinical use, and they can only temporarily alleviate mild symptoms without significant disease modification or cure. Therefore, there remains a critical unmet need to identify disease modifying or curative therapies for ALS. The higher incidence and more severe progression of ALS and FTLD (frontotemporal lobar degeneration) observed in men and postmenopausal woman compared to young women suggests that sex hormones may significantly influence disease onset and progression. In both animal models and human clinical studies, 17β estradiol (E2) has been shown to delay and improve the outcomes of many neurodegenerative diseases. Here, we examined the role of TDP-43 in the regulation of estrogen-related enzymes, CYP19A1 and CYP3A4. In addition, we examined the impact of curcumin on the regulation of estrogen E2 levels and TDP-43-associated neuropathy as a potential therapeutic strategy for the treatment of FTLD and ALS. METHODS Prp-TDP-43A315T mice was used as a model of ALS/FTLD to examine the expression patterns of E2 and its biosynthesis and degradation enzymes, CYP19A1 and CYP3A4. Moreover, the molecular mechanisms and the potency of solid lipid curcumin particles (SLCP) as an E2 replacement therapy for TDP-43 associated neuropathy was analyzed. We further examined the survival rates and the pathological TDP43 patterns in female and male Prp-TDP-43A315T mice administrated with or without SLCP. In addition, the changed expression levels of enzymes corresponding to E2 biosynthesis and degradation in the spinal cord of female and male Prp-TDP-43A315T mice with or without SLCP were determined. RESULTS We found that in addition to E2, the expression patterns of CYP19A1 and CYP3A4 proteins differed between Prp-TDP-43A315T mice compared to wild-type control, suggesting that toxic phosphorylated TDP43 oligomers may disrupt the balance between CYP19A1 and CYP3A4 expression, leading to reduced estrogen biosynthesis and accelerated degradation. In addition, we found that oral administration of SLCP prolonged the survival rates in female Prp-TDP-43A315T mice and significantly reduced the pathological insoluble phosphorylated TDP-43 species. Furthermore, SLCP attenuated disease progression associated with TDP-43-related neuropathies through modulating estrogen biosynthesis and the activity of CYP450 enzymes. CONCLUSIONS Our results showed that Prp-TDP-43A315T mice exhibit altered estradiol levels. Moreover, we demonstrated the efficacy of SLCP as an estrogen replacement therapy in mitigating TDP-43-associated disease progression and pathogenesis. These findings suggest that SLCP could be a promising strategy to induce E2 expression for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Pritha Majumder
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Joug Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chen Hsieh
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Asmar Ahsan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Zhang Y, Zhou Y. Advances in targeted therapies for age-related osteoarthritis: A comprehensive review of current research. Biomed Pharmacother 2024; 179:117314. [PMID: 39167845 DOI: 10.1016/j.biopha.2024.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that disproportionately impacts the elderly population on a global scale. As aging is a significant risk factor for OA, there is a growing urgency to develop specific therapies that target the underlying mechanisms of aging associated with this condition. This summary seeks to offer a thorough introduction of ongoing research efforts aimed at developing therapies to combat senescence in the context of OA. Cellular senescence plays a pivotal role in both the deterioration of cartilage integrity and the perpetuation of chronic inflammation and tissue remodeling. Consequently, targeting SnCs has emerged as a promising therapeutic approach to alleviate symptoms and hinder the progression of OA. This review examines a range of approaches, including senolytic drugs targeting SnCs, senomorphics that modulate the senescence-associated secretory phenotype (SASP), and interventions that enhance immune system clearance of SnCs. Novel methodologies, such as utilizing novel materials for exosome delivery and administering anti-aging medications with precision, offer promising avenues for the precise treatment of OA. Accumulating evidence underscores the potential of targeting senescence in OA management, potentially facilitating the development of more effective and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China.
| |
Collapse
|
4
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
5
|
Lin Z, Li J, Huang Q. Characterizations on a GRAS Electrospun Lipid-Polymer Composite Loaded with Tetrahydrocurcumin. Foods 2024; 13:1672. [PMID: 38890901 PMCID: PMC11172270 DOI: 10.3390/foods13111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Electrospun/sprayed fiber films and nanoparticles were broadly studied as encapsulation techniques for bioactive compounds. Nevertheless, many of them involved using non-volatile toxic solvents or non-biodegradable polymers that were not suitable for oral consumption, thus rather limiting their application. In this research, a novel electrospun lipid-polymer composite (ELPC) was fabricated with whole generally recognized as safe (GRAS) materials including gelatin, medium chain triglyceride (MCT) and lecithin. A water-insoluble bioactive compound, tetrahydrocurcumin (TC), was encapsulated in the ELPC to enhance its delivery. Confocal laser scanning microscopy (CLSM) was utilized to examine the morphology of this ELPC and found that it was in a status between electrospun fibers and electrosprayed particles. It was able to form self-assembled emulsions (droplets visualized by CLSM) to deliver active compounds. In addition, this gelatin-based ELPC self-assembled emulsion was able to form a special emulsion gel. CLSM observation of this gel displayed that the lipophilic contents of the ELPC were encapsulated within the cluster of the hydrophilic gelatin gel network. The FTIR spectrum of the TC-loaded ELPC did not show the fingerprint pattern of crystalline TC, while it displayed the aliphatic hydrocarbon stretches from MCT and lecithin. The dissolution experiment demonstrated a relatively linear release profile of TC from the ELPC. The lipid digestion assay displayed a rapid digestion of triglycerides in the first 3-6 min, with a high extent of lipolysis. A Caco-2 intestinal monolayer transport study was performed. The ELPC delivered more TC in the upward direction than downwards. MTT study results did not report cytotoxicity for both pure TC and the ELPC-encapsulated TC under 15 μg/mL. Caco-2 cellular uptake was visualized by CLSM and semi-quantified to estimate the accumulation rate of TC in the cells over time.
Collapse
Affiliation(s)
- Zhenyu Lin
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Jun Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Deng W, He Q, Zhang W. Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3313-3329. [PMID: 37938371 PMCID: PMC11074044 DOI: 10.1007/s00210-023-02785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Curcumin, a polyphenolic compound derived from the turmeric plant (Curcuma longa), has been extensively studied for its anti-inflammatory and anti-proliferative properties. The safety and efficacy of curcumin have been thoroughly validated. Nevertheless, the underlying mechanism for treating osteoarthritis remains ambiguous. This study aims to reveal the potential mechanism of curcumin in treating osteoarthritis by using metabolomics and transcriptomics. Firstly, we validated the effect of curcumin on inflammatory factors in human articular chondrocytes. Secondly, we explored the cellular metabolism mechanism of curcumin against osteoarthritis using cell metabolomics. Thirdly, we assessed the differences in gene expression of human articular chondrocytes through transcriptomics. Lastly, to evaluate the essential targets and elucidate the potential mechanism underlying the therapeutic effects of curcumin in osteoarthritis, we conducted a screening of the proteins within the shared pathway of metabolomics and transcriptomics. Our results demonstrated that curcumin significantly decreased the levels of inflammatory markers, such as IL-β, IL-6, and TNF-α, in human articular chondrocytes. Cell metabolomics identified 106 differential metabolites, including beta-aminopropionitrile, 3-amino-2-piperidone, pyrrole-2-carboxaldehyde, and various other components. The transcriptomic analysis yielded 1050 differential mRNAs. Enrichment analysis showed that the differential metabolites and mRNAs were significantly enriched in seven pathways, including glycine, serine, and threonine metabolism; pentose and glucuronate interconversions; glycerolipid metabolism; histidine metabolism; mucin-type o-glycan biosynthesis; inositol phosphate metabolism; and cysteine and methionine metabolism. A total of 23 key targets were identified to be involved in these pathways. We speculate that curcumin may alleviate osteoarthritis by targeting key proteins involved in glycine, serine, and threonine metabolism; inhibiting pyruvate production; and modulating glycolysis.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| |
Collapse
|
7
|
Kasetsuwan N, Reinprayoon U, Uthaithammarat L, Sereemaspun A, Sae-Liang N, Chaichompoo W, Suksamrarn A. Anti-inflammatory effect of curcuminoids and their analogs in hyperosmotic human corneal limbus epithelial cells. BMC Complement Med Ther 2024; 24:172. [PMID: 38654265 DOI: 10.1186/s12906-024-04448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.
Collapse
Affiliation(s)
- Ngamjit Kasetsuwan
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Usanee Reinprayoon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Lita Uthaithammarat
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutchanart Sae-Liang
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
8
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
9
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:1126. [PMID: 37237992 PMCID: PMC10215600 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia;
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA;
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia;
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| |
Collapse
|
10
|
Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. Examining the role of cannabinoids on osteoporosis: a review. Arch Osteoporos 2022; 17:146. [PMID: 36401719 DOI: 10.1007/s11657-022-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone. METHODS A comprehensive literature search of online databases including PUBMED was utilized. RESULTS A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed. CONCLUSION While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.
Collapse
Affiliation(s)
- Grace Clouse
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA. .,Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
Akter R, Chan Ahn J, Nahar J, Awais M, Ramadhania ZM, Oh SW, Oh JH, Kong BM, Rupa EJ, Lee DW, Yang DC, Chan kang S. Pomegranate juice fermented by tannin acyl hydrolase and Lactobacillus vespulae DCY75 enhance estrogen receptor expression and anti-inflammatory effect. Front Pharmacol 2022; 13:1010103. [PMID: 36249796 PMCID: PMC9558905 DOI: 10.3389/fphar.2022.1010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phenolics are phytochemicals in plants, fruits, and vegetables have potential health-promoting efficacies. However, mostly available as a complex form. So, to increase the contents and nutritional value of the phenolic compounds, fermentation is most readily used in the food industry. Especially, the hydrolyzable tannins present in the pomegranate that can be liberated into monomolecular substances, which enhances biological activity. Thus, this study aims to convert hydrolyzable tannins to ellagic acid by fermentation using Tannin acyl hydrolase (TAH) and a novel bacteria strain Lactobacillus vespulae DCY75, respectively to investigate its effect on Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) mRNA expression along with inflammation inhibition. As a result, the fermentation enhanced the ellagic acid content up to 70% by the synergetic effect of TAH and DCY75. Furthermore, fermented pomegranate (PG-F) increased cellular proliferation as well as upregulated the gene expression of estrogen regulators such as ERα, ERβ, and pS2 in breast cancer cell line (MCF-7), which commonly used to evaluate estrogenic activity. Moreover, to study the inflammation associated with low estrogen in menopause, we have analyzed the inhibition of nitric oxide (NO)/inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The PG-F juice did not exert any cytotoxicity in RAW 264.7 cells and inhibited NO production along with the downregulation of a major pro-inflammatory cytokine iNOS which indicates the anti-inflammatory potential of it. To sum it up, the fermented commercial pomegranate juice using a novel bacteria strain increased the amount of ellagic acid that the value added bioactive of pomegranate and it has significantly increased the estrogenic activity via upregulating estrogen related biomarkers expression and reduced the risk of related inflammation via NO/iNOS inhibition. This study could be a preliminary study to use fermented pomegranate as a potential health functional food after further evaluation.
Collapse
Affiliation(s)
- Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Se-Woung Oh
- SMART FRUIT CO., LTD., Guri, Gyeonggi-do, South Korea
| | - Ji-Hyung Oh
- Fruitycompany Co., Ltd., Guri, Gyeonggi-do, South Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | - Esrat Jahan Rupa
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
| | | | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
- *Correspondence: Deok Chun Yang, ; Se Chan kang,
| | - Se Chan kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seoul, Gyeonggi-do, South Korea
- *Correspondence: Deok Chun Yang, ; Se Chan kang,
| |
Collapse
|
12
|
Zhu H, Zhang L, Jia H, Xu L, Cao Y, Zhai M, Li K, Xia L, Jiang L, Li X, Zhou Y, Liu J, Yu S, Duan W. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154283. [PMID: 35779282 DOI: 10.1016/j.phymed.2022.154283] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy. METHODS After the oral administration of THC (120 mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10 mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was performed, and inflammatory markers were detected. RESULTS Myocardial systolic function was severely compromised in parallel with the accumulation of reactive oxygen species and enhanced cardiomyocyte apoptosis in mice with sepsis. These adverse changes were markedly reversed in response to THC treatment in septic mice as well as in LPS-treated H9c2 cells. Mechanistically, THC inhibited the release of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, by upregulating mitogen-activated protein kinase phosphatase 1, to block the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK). Additionally, THC enhanced the levels of antioxidant proteins, including nuclear factor-erythroid 2-related factor 2, superoxide dismutase 2, and NAD(P)H quinone oxidoreductase 1, while decreasing gp91phox expression. Furthermore, upon THC treatment, Bcl-2 expression was significantly increased, along with a decline in Bax and cleaved caspase-3 expression, which reduced cardiomyocyte loss. CONCLUSION Our findings indicate that THC exhibited protective potential against septic cardiomyopathy by reducing oxidative stress and inflammation through the regulation of JNK/ERK signaling. The findings of this study provide a basis for the further evaluation of THC as a therapeutic agent against septic cardiomyopathy.
Collapse
Affiliation(s)
- Hanzhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Jia
- Department of Chemistry, Sacred Heart University, Fairfield, CT 06825, United States
| | - Lu Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Kaifeng Li
- Basic Medical Teaching Experiment Center, Basic Medical College, The Air Force Medical University Xi'an, Shaanxi 710032, China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yenong Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
13
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
14
|
Orhan C, Tuzcu M, Durmus AS, Sahin N, Ozercan IH, Deeh PBD, Morde A, Bhanuse P, Acharya M, Padigaru M, Sahin K. Protective effect of a novel polyherbal formulation on experimentally induced osteoarthritis in a rat model. Biomed Pharmacother 2022; 151:113052. [PMID: 35588576 DOI: 10.1016/j.biopha.2022.113052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022] Open
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder mainly found in elderly individuals. Modern treatment of OA, like nonsteroidal anti-inflammatory drugs, corticosteroids, hyaluronic acid injections, etc., is linked to long-term side effects. We evaluated the anti-osteoarthritic properties of a novel joint health formula (JHF) containing Bisdemethoxycurcumin enriched curcumin, 3-O-Acetyl-11-keto-beta-Boswellic acid-enriched Boswellia, and Ashwagandha in monosodium iodoacetate (MIA)-induced knee OA in rats. Twenty-eight female rats were distributed into four groups: Control, OA, OA + JHF (100 mg/kg), and OA + JHF (200 mg/kg). JHF decreased the right joint diameters but increased the paw area and stride length compared to the OA group with no treatment. JHF significantly reduced the arthritic conditions after four weeks of supplementation (p < 0.05). JHF significantly decreased TNF-α, IL-1β, IL-10, COMP, and CRP in the serum of osteoarthritic rats (p < 0.0001). We observed reduced lipid peroxidation but increased SOD, GSH-Px, and CAT activities in response to JHF treatment in OA animals. JHF down-regulated MMP-3, COX-2, and LOX-5 and improved the histological structure of the knee joint of osteoarthritic rats. JHF demonstrated a protective effect against osteoarthritis, possibly due to anti-inflammatory and antioxidant activity in experimentally induced osteoarthritis in rats, and could be an effective option in the management of OA.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Ali Said Durmus
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | | | | | - Abhijeet Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India
| | - Prakash Bhanuse
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India
| | - Manutosh Acharya
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| |
Collapse
|
15
|
Protection against Osteoarthritis Symptoms by Aerobic Exercise with a High-Protein Diet by Reducing Inflammation in a Testosterone-Deficient Animal Model. Life (Basel) 2022; 12:life12020177. [PMID: 35207465 PMCID: PMC8875430 DOI: 10.3390/life12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
A testosterone deficiency potentially increases osteoarthritis (OA) symptoms, and dietary protein and exercise affect them. However, their efficacy and their interactions are still unclear. We hypothesized that a high-protein diet (HPD) and regular exercise modulated OA symptoms in testosterone-deficient rats, and it was examined in bilateral orchidectomized (ORX) and monoiodoacetate (MIA)-injected rats. The ORX rats were given a 30 energy percent (En%) protein (HPD) or 17.5 En% protein (CD). Both groups had 39 En% fat in the diet. Non-ORX-CD rats (sham-operation of ORX) were given the CD and no exercise (normal control). After an eight-week intervention, all rats had an injection of MIA into the left knee, and the treatments were continued for an additional four weeks. The non-ORX-CD rats showed a significant increase in body weight compared to the ORX rats, but the ORX rats had elevated fat mass. ORX exacerbated the glucose tolerance by lowering the serum insulin concentrations and increasing insulin resistance. ORX exacerbated the OA symptoms more than the non-ORX-CD. The HPD and exercise improved bone mineral density and glucose metabolism without changing serum testosterone concentrations, while only exercise increased the lean body mass and decreased fat mass, lipid peroxide, and inflammation. Exercise, but not HPD, reduced the OA symptoms, the weight distribution in the left leg, and running velocity and provided better relief than the non-ORX-CD rats. Exercise with HPD improved the histology of the knee joint in the left leg. Exercise reduced lipid peroxide contents and TNF-α and IL-1β mRNA expression in the articular cartilage, while exercise with HPD decreased MMP-3 and MMP-13 mRNA expression as much as in the non-ORX-CD group. In conclusion, moderate aerobic exercise with HPD alleviated OA symptoms and articular cartilage degradation in a similar way in the non-ORX rats with OA by alleviating inflammation and oxidative stress.
Collapse
|
16
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
17
|
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4503-4525. [PMID: 34754179 PMCID: PMC8572027 DOI: 10.2147/dddt.s327378] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Curcumin is a natural compound with great potential for disease treatment. A large number of studies have proved that curcumin has a variety of biological activities, among which anti-inflammatory effect is a significant feature of it. Inflammation is a complex and pervasive physiological and pathological process. The physiological and pathological mechanisms of inflammatory bowel disease, psoriasis, atherosclerosis, COVID-19 and other research focus diseases are not clear yet, and they are considered to be related to inflammation. The anti-inflammatory effect of curcumin can effectively improve the symptoms of these diseases and is expected to be a candidate drug for the treatment of related diseases. This paper mainly reviews the anti-inflammatory effect of curcumin, the inflammatory pathological mechanism of related diseases, the regulatory effect of curcumin on these, and the latest research results on the improvement of curcumin pharmacokinetics. It is beneficial to the further study of curcumin and provides new ideas and insights for the development of curcumin anti-inflammatory preparations.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyue Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Baohua Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yunxiu Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Neo-Green Pharmaceutical Co., Ltd., Chengdu, People's Republic of China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
18
|
Behl T, Upadhyay T, Singh S, Chigurupati S, Alsubayiel AM, Mani V, Vargas-De-La-Cruz C, Uivarosan D, Bustea C, Sava C, Stoicescu M, Radu AF, Bungau SG. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021; 26:6570. [PMID: 34770980 PMCID: PMC8588006 DOI: 10.3390/molecules26216570] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder, predominantly symmetric, which causes joint inflammation, cartilage degeneration and bone erosion, resulting in deformity and the loss of physical function. Although the management of RA has steadily improved, the pathophysiological mechanism is incompletely elucidated, and therapeutic options are still limited. Due to shortcomings in the efficacy or safety profiles of conventional RA therapies, therapeutic alternatives have been considered. Therefore, natural extracts containing polyphenolic compounds can become promising adjuvant agents for RA global management, due to their antioxidant, anti-inflammatory and apoptotic properties. Polyphenols can regulate intracellular signaling pathways in RA and can generate different immune responses through some key factors (i.e., MAPK, interleukins (ILs 1 and 6), tumor necrosis factor (TNF), nuclear factor light k chain promoter of activated receptor (NF-κB), and c-Jun N-terminal kinases (JNK)). The critical function of the Toll like-receptor (TLR)-dependent mitogen-activating protein kinase (MAPK) signaling pathway in mediating the pathogenic characteristics of RA has been briefly discussed. Oxidative stress can trigger a change in transcription factors, which leads to the different expression of some genes involved in the inflammatory process. This review aims to provide a comprehensive perspective on the efficacy of polyphenols in mitigating RA by inhibiting signaling pathways, suggesting future research perspectives in order to validate their use.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Gwalior, Gwalior 474005, Madhya Pradesh, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Andrei-Flavius Radu
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
19
|
Brochard S, Pontin J, Bernay B, Boumediene K, Conrozier T, Baugé C. The benefit of combining curcumin, bromelain and harpagophytum to reduce inflammation in osteoarthritic synovial cells. BMC Complement Med Ther 2021; 21:261. [PMID: 34649531 PMCID: PMC8515758 DOI: 10.1186/s12906-021-03435-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people worldwide and characterised by joint pain and inflammation. It is a complex disease involving inflammatory factors and affecting the whole joint, including the synovial membrane. Since drug combination is widely used to treat chronic inflammatory diseases, a similar strategy of designing plant-derived natural products to reduce inflammation in OA joints may be of interest. In this study, we characterised the response of OA synovial cells to lipopolysaccharide (LPS) and investigated the biological action of the combination of curcumin, bromelain and harpagophytum in this original in vitro model of osteoarthritis. METHODS Firstly, human synovial cells from OA patients were stimulated with LPS and proteomic analysis was performed. Bioinformatics analyses were performed using Cytoscape App and SkeletalVis databases. Additionally, cells were treated with curcumin, bromelain and harpagophytum alone or with the three vegetal compounds together. The gene expression involved in inflammation, pain or catabolism was determined by RT-PCR. The release of the encoded proteins by these genes and of prostaglandin E2 (PGE2) were also assayed by ELISA. RESULTS Proteomic analysis demonstrated that LPS induces the expression of numerous proteins involved in the OA process in human OA synovial cells. In particular, it stimulates inflammation through the production of pro-inflammatory cytokines (Interleukin-6, IL-6), catabolism through an increase of metalloproteases (MMP-1, MMP-3, MMP-13), and the production of pain-mediating neurotrophins (Nerve Growth Factor, NGF). These increases were observed in terms of mRNA levels and protein release. LPS also increases the amount of PGE2, another inflammation and pain mediator. At the doses tested, vegetal extracts had little effect: only curcumin slightly counteracted the effects of LPS on NGF and MMP-13 mRNA, and PGE2, IL-6 and MMP-13 release. In contrast, the combination of curcumin with bromelain and harpagophytum reversed lots of effects of LPS in human OA synovial cells. It significantly reduced the gene expression and/or the release of proteins involved in catabolism (MMP-3 and -13), inflammation (IL-6) and pain (PGE2 and NGF). CONCLUSION We have shown that the stimulation of human OA synovial cells with LPS can induce protein changes similar to inflamed OA synovial tissues. In addition, using this model, we demonstrated that the combination of three vegetal compounds, namely curcumin, bromelain and harpagophytum, have anti-inflammatory and anti-catabolic effects in synovial cells and may thus reduce OA progression and related pain.
Collapse
Affiliation(s)
- Sybille Brochard
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France
| | - Julien Pontin
- Proteogen platform, Normandie Univ, UNICAEN, Caen, France
| | - Benoit Bernay
- Proteogen platform, Normandie Univ, UNICAEN, Caen, France
| | - Karim Boumediene
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France
| | - Thierry Conrozier
- Rheumatology Department, Nord Franche-Comté Hospital, Trevenans, France
| | - Catherine Baugé
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France.
| |
Collapse
|
20
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
21
|
Buhrmann C, Brockmueller A, Mueller AL, Shayan P, Shakibaei M. Curcumin Attenuates Environment-Derived Osteoarthritis by Sox9/NF-kB Signaling Axis. Int J Mol Sci 2021; 22:ijms22147645. [PMID: 34299264 PMCID: PMC8306025 DOI: 10.3390/ijms22147645] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammation has a fundamental impact on the pathophysiology of osteoarthritis (OA), a common form of degenerative arthritis. It has previously been established that curcumin, a component of turmeric (Curcuma longa), has anti-inflammatory properties. This research evaluates the potentials of curcumin on the pathophysiology of OA in vitro. To explore the anti-inflammatory efficacy of curcumin in an inflamed joint, an osteoarthritic environment (OA-EN) model consisting of fibroblasts, T-lymphocytes, 3D-chondrocytes is constructed and co-incubated with TNF-α, antisense oligonucleotides targeting NF-kB (ASO-NF-kB), or an IkB-kinase (IKK) inhibitor (BMS-345541). Our results show that OA-EN, similar to TNF-α, suppresses chondrocyte viability, which is accompanied by a significant decrease in cartilage-specific proteins (collagen II, CSPG, Sox9) and an increase in NF-kB-driven gene proteins participating in inflammation, apoptosis, and breakdown (NF-kB, MMP-9, Cox-2, Caspase-3). Conversely, similar to knockdown of NF-kB at the mRNA level or at the IKK level, curcumin suppresses NF-kB activation, NF-kB-promotes gene proteins derived from the OA-EN, and stimulates collagen II, CSPG, and Sox9 expression. Furthermore, co-immunoprecipitation assay shows that curcumin reduces OA-EN-mediated inflammation and chondrocyte apoptosis, with concomitant chondroprotective effects, due to modulation of Sox-9/NF-kB signaling axis. Finally, curcumin selectively hinders the interaction of p-NF-kB-p65 directly with DNA—this association is disrupted through DTT. These results suggest that curcumin suppresses inflammation in OA-EN via modulating NF-kB-Sox9 coupling and is essential for maintaining homeostasis in OA by balancing chondrocyte survival and inflammatory responses. This may contribute to the alternative treatment of OA with respect to the efficacy of curcumin.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.B.); (A.B.); (A.-L.M.)
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Universitaetsstr. 2, D-86159 Augsburg, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.B.); (A.B.); (A.-L.M.)
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.B.); (A.B.); (A.-L.M.)
| | - Parviz Shayan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.B.); (A.B.); (A.-L.M.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
22
|
Intermittent fasting with a high-protein diet mitigated osteoarthritis symptoms by increasing lean body mass and reducing inflammation in osteoarthritic rats with Alzheimer's disease-like dementia. Br J Nutr 2021; 127:55-67. [PMID: 33750486 DOI: 10.1017/s0007114521000829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Menopausal women are susceptible to osteoarthritis(OA) and memory impairment. We hypothesised that Alzheimer's-like disease(AD) exacerbates OA and that intermittent fasting(IMF) with a high-protein(H-P) diet would enhance memory function and relieve OA symptoms in oestrogen-deficient animals induced AD and OA. The action mechanism was also explored. Ovariectomised Sprague-Dawley rats were fed high-fat(H-F) or H-P diets for 2 weeks, and then they had a hippocampal infusion of β-amyloid(25-35) for 4 weeks to induce AD and an injection of monoidoacetate(MIA) into the articular cartilage to induce OA. Non-AD groups had non-AD symptoms by hippocampal amyloid-β(35-25) infusion. IMF suppressed memory impairment in AD rats, especially those fed H-P diets. Compared with non-AD, AD exacerbated OA symptoms, including swelling, limping, slowed treadmill running speed, and uneven weight distribution in the left leg. The exacerbations were linked to increased inflammation and pain, but IMF and H-P lessened the exacerbation. Lean body mass(LBM) decreased with AD, but H-P protected against LBM loss. Histological examination of the knee joint revealed the degree of the cellular invasion into the middle zone, and the changes in the tidemark plateau were greatest in the AD-AL with H-F, while non-AD-IMF improved the cellular invasion to as much as non-AD-AL. H-P reduced the infiltration into the middle zone of the knee and promoted collagen production. In conclusion, AD exacerbated the articular cartilage deterioration and memory impairment, and IMF with H-P alleviated the memory impairment and osteoarthritic symptoms by decreasing hippocampal amyloid-β deposition and proinflammatory cytokine expressions and by increasing LBM.
Collapse
|
23
|
Park S, Moon BR, Kim JE, Kim HJ, Zhang T. Aqueous Extracts of Morus alba Root Bark and Cornus officinalis Fruit Protect against Osteoarthritis Symptoms in Testosterone-Deficient and Osteoarthritis-Induced Rats. Pharmaceutics 2020; 12:pharmaceutics12121245. [PMID: 33371279 PMCID: PMC7767081 DOI: 10.3390/pharmaceutics12121245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Water extracts of both Morus alba L. root bark (MBW) and Cornus officinalis Siebold and Zucc fruit (CFW) have traditionally been used to promote men's health in the elderly in Asia. We determined that the 12-week consumption of MBW and CFW could alleviate testosterone-deficiency syndrome and osteoarthritis (OA) symptoms in testosterone-deficient rats, and the action mechanisms were explored. Rats with bilateral orchiectomy (ORX) were fed a 45% fat diet containing either 0.5% MBW (ORX-MBW), 0.5% CFW(ORX-CFW), or 0.5% dextrin (ORX-CON). Sham-operated rats also received 0.5% dextrin (Non-ORX-CON). After 8 weeks of treatment, all rats had an injection of monoiodoacetate (MIA) into the left knee, and they continued the same diet for the additional 4 weeks. ORX-CFW and ORX-MBW partially prevented the reduction of serum testosterone concentrations and decreased insulin resistance, compared to the ORX-CON. ORX-CFW and ORX-MBW protected against the reduction of bone mineral density (BMD) and lean body mass (LBM) compared to the ORX-CON. The limping and edema scores were lower in the order of the ORX-CON, ORX-CRF = ORX-MBW, and Non-ORX-CON (p < 0.05). The scores for pain behaviors, measured by weight-distribution on the OA leg and maximum running velocity on a treadmill, significantly decreased in the same order as limping scores. ORX-MBW protected against the increased expression of matrix metalloproteinase (MMP)-3 and MMP-13 and reduced the production of inflammatory markers such as TNF-α and IL-1β, by MIA in the articular cartilage, compared to the ORX-CON (p < 0.05). The cartilage damage near the tidemark of the knee and proteoglycan loss was significantly less in ORX-MBW than ORX-CON. In conclusion, MBW, possibly CFW, could be effective alternative therapeutic agents for preventing osteoarthritis in testosterone-deficient elderly men.
Collapse
Affiliation(s)
- Sunmin Park
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| | - Bo Reum Moon
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ji Eun Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Hyun Joo Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ting Zhang
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| |
Collapse
|
24
|
Herbal Composition LI73014F2 Alleviates Articular Cartilage Damage and Inflammatory Response in Monosodium Iodoacetate-Induced Osteoarthritis in Rats. Molecules 2020; 25:molecules25225467. [PMID: 33238379 PMCID: PMC7700416 DOI: 10.3390/molecules25225467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1β level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.
Collapse
|
25
|
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 2020; 129:110452. [PMID: 32768946 PMCID: PMC8404686 DOI: 10.1016/j.biopha.2020.110452] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease leading to irreversible structural and functional changes in the joint and is a major cause of disability and reduced life expectancy in ageing population. Despite the high prevalence of OA, there is no disease modifying drug available for the management of OA. Oxidative stress, a result of an imbalance between the production of reactive oxygen species (ROS) and their clearance by antioxidant defense system, is high in OA cartilage and is a major cause of chronic inflammation. Inflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are highly upregulated in OA joints and induce ROS production and expression of matrix degrading proteases leading to cartilage extracellular matrix degradation and joint dysfunction. ROS and inflammation are interdependent, each being the target of other and represent ideal target/s for the treatment of OA. Plant polyphenols possess potent antioxidant and anti-inflammatory properties and can inhibit ROS production and inflammation in chondrocytes, cartilage explants and in animal models of OA. The aim of this review is to discuss the chondroprotective effects of polyphenols and modulation of different molecular pathways associated with OA pathogenesis and limitations and future prospects of polyphenols in OA treatment.
Collapse
Affiliation(s)
- Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| | - Nashrah Ahmad
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| |
Collapse
|
26
|
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020; 12:E2499. [PMID: 32824993 PMCID: PMC7551052 DOI: 10.3390/nu12092499] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Curcumin, a lipophilic polyphenol contained in the rhizome of Curcuma longa (turmeric), has been used for centuries in traditional Asian medicine, and nowadays it is widely used in food as dietary spice worldwide. It has received considerable attention for its pharmacological activities, which appear to act primarily through anti-inflammatory and antioxidant mechanisms. For this reason, it has been proposed as a tool for the management of many diseases, among which are gastrointestinal and neurological diseases, diabetes, and several types of cancer. However, the pharmacology of curcumin remains to be elucidated; indeed, a discrepancy exists between the well-documented in vitro and in vivo activities of curcumin and its poor bioavailability and chemical instability that should limit any therapeutic effect. Recently, it has been hypothesized that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of this polyphenol have been detected after oral administration. Consequently, it might be hypothesized that curcumin directly exerts its regulatory effects on the gut microbiota, thus explaining the paradox between its low systemic bioavailability and its wide pharmacological activities. It is well known that the microbiota has several important roles in human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors. Accordingly, any perturbations in gut microbiome profile or dysbiosis can have a key role in human disease progression. Interestingly, curcumin and its metabolites have been shown to influence the microbiota. It is worth noting that from the interaction between curcumin and microbiota two different phenomena arise: the regulation of intestinal microflora by curcumin and the biotransformation of curcumin by gut microbiota, both of them potentially crucial for curcumin activity. This review summarizes the most recent studies on this topic, highlighting the strong connection between curcumin and gut microbiota, with the final aim of adding new insight into the potential mechanisms by which curcumin exerts its effects.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo D’Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
27
|
Wu YF, Chen YQ, Li Q, Ye XY, Zuo X, Shi YL, Guo XY, Xu L, Sun L, Li CW, Yang Y. Supplementation with Tetrahydrocurcumin Enhances the Therapeutic Effects of Dexamethasone in a Murine Model of Allergic Asthma. Int Arch Allergy Immunol 2020; 181:822-830. [PMID: 32784298 DOI: 10.1159/000509367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetrahydrocurcumin (THC) is the major active metabolite of curcumin, which is a dietary factor derived from Curcuma species. Our previous study demonstrated a significant beneficial effect of THC in mice with allergic asthma. Glucocorticosteroids (GCs) are commonly used drugs in asthma. Whether THC supplementation could promote the beneficial effects of GC therapy on asthma has not yet been reported. The current study aimed to investigate the combined efficacy of GC and THC treatment in a mouse model of allergic asthma. METHODS BALB/c mice were randomly divided into 5 groups: the control group, ovalbumin (OVA)-induced group, and OVA-induced mice treated with dietary THC only, intraperitoneal injection of dexamethasone (DEX) only, or THC combined with DEX. The nasal symptoms, histopathological alterations of lung tissues, lung cytokine production, and Th cell subsets were assessed. RESULTS THC or DEX had beneficial effects on nasal symptoms and pathological lung changes, and the therapeutic effects between THC and DEX treatment were comparable. Importantly, compared to the monotherapy groups (THC or DEX only), the combination of THC and DEX showed a significantly reduced nasal rubbing frequency, lower mucus hyperproduction, lower Th2 and Th17 cell numbers as well as lower related cytokine levels (IL-4, IL-5, and IL-17A). CONCLUSIONS Supplementation with THC can enhance the therapeutic effects of DEX to alleviate airway symptoms, lung inflammation, and the Th2 response. Our findings suggest that dietary administration of THC could act as an add-on therapy for asthma treated with GCs.
Collapse
Affiliation(s)
- Yin Fan Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Yan Qiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan Ye
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zuo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yi Lin Shi
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Xing Yue Guo
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Lin Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Lin Sun
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Wei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
28
|
Nakagawa Y, Mukai S, Yamada S, Murata S, Yabumoto H, Maeda T, Akamatsu S. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A 6-Month Open-Labeled Prospective Study. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2020; 13:1179544120948471. [PMID: 32848491 PMCID: PMC7425263 DOI: 10.1177/1179544120948471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Background We previously developed a surface-controlled water-dispersible form of curcumin that we called Theracurmin®. The area under the blood concentration-time curve (AUC) of Theracurmin in humans was 27-fold higher than that of curcumin powder. Previously, we reported on the anti-inflammatory effects of Theracurmin for knee osteoarthritis. Hypothesis/Purpose We determined the clinical effects of orally administered Theracurmin in patients with knee osteoarthritis over a 6-month period. Study Design Open prospective study. Methods Fifty patients Kellgren-Lawrence grade II, III, or IV knee osteoarthritis who were above 40 years old were enrolled in this clinical study. Theracurmin containing 180 mg/day of curcumin was administered orally every day for 6 months. To monitor for adverse events, blood biochemistry analyses were performed before and after 6 months of each intervention. The patients' knee symptoms were evaluated at 0, 1, 2, 3, 4, 5, and 6 months based on the Japanese Knee Osteoarthritis Measure, the knee pain visual analog scale, and the knee scoring system of the Japanese Orthopedic Association. Results Five cases dropped out during the study, but no cases dropped out because of major problems. No major side effects were observed with Theracurmin treatment, including the blood biochemistry analysis results. The effective group included 34 cases (75.6%), while the not-effective group included 11 cases. Conclusion This study demonstrates the safety and good efficacy of Theracurmin for various types of knee osteoarthritis. Theracurmin shows great potential for the treatment of human knee osteoarthritis.
Collapse
Affiliation(s)
- Yasuaki Nakagawa
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Shogo Mukai
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Shigeru Yamada
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Satoru Murata
- Department of Orthopedic Surgery, Goshohigashi Clinic, Kyoto, Japan
| | - Hiromitsu Yabumoto
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Takahiro Maeda
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Shota Akamatsu
- Department of Orthopedic Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
29
|
Nicoliche T, Maldonado DC, Faber J, da Silva MCP. Evaluation of the articular cartilage in the knees of rats with induced arthritis treated with curcumin. PLoS One 2020; 15:e0230228. [PMID: 32163510 PMCID: PMC7067390 DOI: 10.1371/journal.pone.0230228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
This study was designed to evaluate the anti-inflammatory effects of a curcumin treatment on the knee of rats with induced osteoarthritis. Fifteen adult rats were used and divided in three groups: the osteoarthritis group (OAG), control group (CG-without induction of osteoarthritis), and curcumin-treated osteoarthritis group (COAG). Osteoarthritis was induced in the right knee of rats in the OAG and COAG by administering an intra-articular injection of 1 mg of zymosan. Fourteen days after induction, 50 mg/kg curcumin was administered by gavage daily for 60 days to the COAG. After the treatment period, rats from all groups were euthanized. Medial femoral condyles were collected for light microscopy and immunohistochemical staining. The expression of SOX-5, IHH, MMP-8, MMP-13, and collagen 2 (Col2) was analyzed. The COAG exhibited an increase in the number of chondrocytes in the surface and middle layers compared with that of the OAG and CG, respectively. The COAG also showed a decrease in the thicknesses of the middle and deep layers compared with those of the OAG, and an increase in Col2 expression was observed in all articular layers (surface, middle, and deep) in the COAG compared with that in the OAG. SOX-5 expression was increased in the surface and deep layers of the COAG compared with those in the OAG and CG. Based on the results of this study, the curcumin treatment appeared to exert a protective effect on cartilage, as it did not result in an increase in cartilage thickness or in MMP-8 and MMP-13 expression but led to increased IHH, Col2, and SOX-5 expression and the number of chondrocytes.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Diogo Correa Maldonado
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
30
|
Trivedi MK, Panda P, Sethi KK, Gangwar M, Mondal SC, Jana S. Solid and liquid state characterization of tetrahydrocurcumin using XRPD, FT-IR, DSC, TGA, LC-MS, GC-MS, and NMR and its biological activities. J Pharm Anal 2020; 10:334-345. [PMID: 32923007 PMCID: PMC7474126 DOI: 10.1016/j.jpha.2020.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin (CUR), an ancient bioactive natural polyphenolic compound. This research article describes both the solid and liquid state characterization of THC using advanced spectroscopic and thermo-analytical techniques. Anti-inflammatory, anti-oxidant, and neuroprotective activities of THC were investigated using in vitro cell lines. Liquid chromatography-mass spectrometry analysis revealed that our sample comprised 95.15% THC, 0.51% tetrahydrodemethoxycurcumin (THDC), 3.40% hexahydrocurcumin, and 0.94% octahydrocurcumin. Gas chromatography-mass spectrometry analysis indicated the presence of 96.68% THC and 3.32% THDC. THC in solution existed as keto-enol tautomers in three different forms at different retention time, but the enol form was found to be dominant, which was also supported by nuclear magnetic resonance analysis. THC was thermally stable up to 335.55 °C. THC exhibited more suppression of cytokines (TNF-α, IL-1β, and MIP-1α) than CUR in a concentration-dependent manner in mouse splenocytes, while NK-cell and phagocytosis activity was increased in macrophages. THC showed a significant reduction of free radicals (LPO) along with improved antioxidant enzymes (SOD and catalase) and increased free radical scavenging activity against ABTS+ radicals in HepG2 cells. THC displayed higher protection capability than CUR from oxidative stress and neuronal damage by improving cell viability against H2O2 induced HepG2 cells and MPP+ induced SH-SY5Y cells, respectively, in a concentration-dependent manner. Thus, a variation of the biological activities of THC might rely on its keto-enol form and the presence of other THC analogs as impurities. The present study could be advantageous for further research on THC for better understanding its physicochemical properties and biological variation. Solid and liquid state characterization of THC using advanced analytical techniques. THC existed in 3 different forms viz. one keto form, two enol forms in solution. THC was found to be thermally more stable than curcumin. THC exhibited significant suppression of proinflammatory cytokines, increased NK cells and phagocytosis activities. THC showed higher total anti-oxidant activity and neuroprotective activity than curcumin.
Collapse
Affiliation(s)
| | - Parthasarathi Panda
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, (W)-400604, Maharashtra, India
| | - Kalyan Kumar Sethi
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, (W)-400604, Maharashtra, India
| | - Mayank Gangwar
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, (W)-400604, Maharashtra, India
| | - Sambhu Charan Mondal
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, (W)-400604, Maharashtra, India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, (W)-400604, Maharashtra, India
- Corresponding author.
| |
Collapse
|
31
|
Tetrahydrocurcumin-loaded vaginal nanomicrobicide for prophylaxis of HIV/AIDS: in silico study, formulation development, and in vitro evaluation. Drug Deliv Transl Res 2020; 9:828-847. [PMID: 30900133 DOI: 10.1007/s13346-019-00633-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A vaginal microbicide is a front-line women-dependent approach and an alternative to a condom for prevention of unprotected sexual intercourse-associated HIV. The microbicide research is still in its infancy with several products in the clinical studies being reported to have good efficacy, safe, but with poor adherence. One such molecule reported with an excellent efficacy when tested preclinically is curcumin, a natural polyphenol derived from Curcuma longa. Despite its potential HIV-1 inhibitory activity, it has intense yellow color staining properties, which would result in poor consumer compliance and adherence for vaginal application. To address this issue, tetrahydrocurcumin (THC), a colorless derivative of curcumin, was subjected to in silico screening (molecular docking and dynamics simulation studies) using homology model of gp120-CD4 binding. It was found that THC exhibited equivalent gp120-CD4 binding inhibitory activity as compared with curcumin due to its stable hydrophobic interactions with residues Asp368 and Trp427 deeper in the Phe43 cavity of CD4 receptor. Hence, it can be effectively used as a potential microbicide candidate. THC, a BCS Class II molecule exhibits poor solubility, spreadability, and intracellular uptake when used in the conventional form. Thus, it was decided to develop a lipid-based nanomicrobicide gel for delivery of THC. The developed THC-loaded o/w microemulsion gel was characterized for physicochemical properties (globule size, drug content, drug release, and permeation) and further used for in vitro cell line studies (cell viability, cellular uptake, and anti-HIV activity). The developed formulation was found to be stable with coitus-independent release profile and exhibited a rapid time-independent intracellular uptake. In addition, it exhibited a fourfold increase in efficacy as compared with conventional THC. Thus, the novel THC-loaded o/w microemulsion gel exhibited the potential for prevention of HIV-1 infection associated with unprotected sexual intercourse.
Collapse
|
32
|
Xi J, Luo X, Wang Y, Li J, Guo L, Wu G, Li Q. Tetrahydrocurcumin protects against spinal cord injury and inhibits the oxidative stress response by regulating FOXO4 in model rats. Exp Ther Med 2019; 18:3681-3687. [PMID: 31602247 DOI: 10.3892/etm.2019.7974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that tetrahydrocurcumin has hypoglycemic, hypolipidemic, anti-metastasis, anticancer and anti-depressant pharmacological effects, and its antioxidative, hypoglycemic and hypolipidemic properties are better than those of curcumin. The present study assessed whether tetrahydrocurcumin exerts a neuroprotective effect against spinal cord injury (SCI) and investigated the underlying mechanisms. In a rat model of SCI, tetrahydrocurcumin enhanced the average Basso-Beattie-Bresnahan scores, inhibited water accumulation in the spinal cord and decreased inflammatory factors. Furthermore, oxidative stress and apoptosis (caspase-3 activity and B-cell lymphoma 2-associated X protein levels) were also suppressed in SCI rats treated with tetrahydrocurcumin. Tetrahydrocurcumin effectively decreased the gene expression of matrix metalloproteinase-3 and -13, as well as cyclooxygenase-2, promoted the phosphorylation of Akt and enhanced the protein expression of forkhead box (FOX)O4 in SCI rats. The present study delineates that tetrahydrocurcumin protects against SCI and inhibits the oxidative stress response by regulating the FOXO4 in SCI model rats.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Yipeng Wang
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinglong Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangseng Wu
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qingui Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
33
|
Gut microbial transformation, a potential improving factor in the therapeutic activities of four groups of natural compounds isolated from herbal medicines. Fitoterapia 2019; 138:104293. [PMID: 31398447 DOI: 10.1016/j.fitote.2019.104293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Herbal medicines (HMs) have attracted widespread attention because of their significant contributions to the prevention and treatment of many human diseases. Recently, gut microbiota has become an important frontier to understand the therapeutic mechanisms of medicines. Gut microbiota-mediated transformation is a microbial metabolic form after oral administrations of HMs compounds. A great number of studies showed that gut microbiota could transform some HMs compounds by the variation of chemical structures into several active metabolites, which exerted better bioavailabilities and therapeutic activities than their parent compounds. Among these HMs compounds, alkaloids, flavonoids, polyphenols and terpenoids were the representative ones. However, there is no systemic review focusing on the potential improved therapeutic activities of these natural compounds caused by gut microbial transformation. Here, this review summarizes the therapeutic activities that are more potent in microbial transformed metabolites than in their parent compounds (alkaloids, flavonoids, polyphenols and terpenoids) from HMs. We hope this review will be conducive to deepening the understanding of the relationship between gut microbial transformation and therapeutic activities of HMs compounds.
Collapse
|
34
|
Lv G, Shen Y, Zheng W, Yang J, Li C, Lin J. Fluorescence Detection and Dissociation of Amyloid‐β Species for the Treatment of Alzheimer's Disease. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Wubin Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Jiajia Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
35
|
Rice Porridge Containing Welsh Onion Root Water Extract Alleviates Osteoarthritis-Related Pain Behaviors, Glucose Levels, and Bone Metabolism in Osteoarthritis-Induced Ovariectomized Rats. Nutrients 2019; 11:nu11071503. [PMID: 31262076 PMCID: PMC6683264 DOI: 10.3390/nu11071503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 01/24/2023] Open
Abstract
Rice porridge containing Allium fistulosum (Welsh onion) root water extract (RAFR) has anti-inflammatory bioactive compounds. We examined whether the long-term administration of rice porridge with RAFR would prevent or delay the progression of osteoarthritis and menopausal symptoms in estrogen-deficient animals by ovariectomy. The rats consumed 40% fat energy diets containing 250 mg RAFR (rice: Allium fistulosum root = 13:1)/kg body weight (bw) (OVX-OA-RAFR-Low), 750 mg RAFR/kg bw (OVX-OA-RAFR-High) and 750 mg starch and protein/kg bw(OVX), respectively. After consuming the assigned diets for eight weeks, monoiodoacetate (OVX-OA) or saline (OVX) were injected into the knee joints of the rats for an additional three weeks. Sham rats were administered saline injections (normal-control). OVX-OA-RAFR improved oral glucose tolerance and also protected against decreases in bone mineral density and lean body mass in the legs and increases in fat mass in the abdomen, compared to the OVX and OVX-OA. OVX-OA-RAFR improved swelling and limping scores, normalized weight distribution between the osteoarthritic and normal limbs, and increased maximum running speeds compared to the OVX-OA. The OVX-OA deteriorated the articular cartilage by reducing the articular matrix and bone loss in the knee joint and it prevented knee joint deterioration when compared to the OVX. The improvement in osteoarthritis symptoms in OVX-OA-RAFR decreased the mRNA expression of matrix metallo-proteinase-1 and matrix metalloproteinase-13, tumor necrosis factor-α, and interleukin-1β and interleukin-6 in the articular cartilage compared to OVX-OA rats. In conclusions, RAFR is effective in treating osteoarthritis symptoms and it may be used for a therapeutic agent in osteoarthritis-induced menopausal women.
Collapse
|
36
|
Zeng JJ, Wang HD, Shen ZW, Yao XD, Wu CJ, Pan T. Curcumin Inhibits Proliferation of Synovial Cells by Downregulating Expression of Matrix Metalloproteinase-3 in Osteoarthritis. Orthop Surg 2018; 11:117-125. [PMID: 30560591 PMCID: PMC6430449 DOI: 10.1111/os.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/15/2018] [Indexed: 01/21/2023] Open
Abstract
Objective To investigate the association between curcumin and the differentially expressed genes (DEG) in synovial tissues of osteoarthritis. Methods Microarray analysis was used to screen for the DEG in osteoarthritis synovial cells. Curcumin‐related genes were identified through the drug–gene interaction network STITCH (http://stitch.embl.de/cgi/input.pl). Expression levels of fibronectin 1 (FN1) and collagen III protein were measured by western blot. MTT assay was used to examine the effects of different concentrations of curcumin on cell viability. Western blot and quantitative real‐time polymerase chain reaction were used to validate the different expression levels of matrix metalloproteinase‐3 (MMP3). Clone formation assay, flow cytometry, and the TUNEL method were conducted for detecting the cell proliferation and apoptosis rate. Results In the two chips of GSE1919 and GSE55235, the average expression of MMP3 in the osteoarthritis group was 63.7% and 12.9% higher than that of the healthy control, respectively. The results of western blot also showed that the average expression of MMP3 in 30 osteoarthritis patients was 132% higher than that of the healthy group, which confirmed that MMP3 was highly expressed in osteoarthritis group. The results of MTT showed that at 72 h, the cell viability of 40 μmol/L curcumin was the lowest and 79.6% lower than for the 0 μmol/L group, so the final curcumin concentration of 40 μmol/L was selected for subsequent experiments. Western blot results further showed that the expression of MMP3 was 44% lower in the untreated groups compared with the curcumin group, and the expressions of FN1 and collagen III were increased by 112% and 84%, respectively, which indicated that curcumin inhibited MMP3 expression and decreased osteoarthritis synovial cell activity. Cloning formation experiments showed that cell numbers increased by 75% and 20.5% in untreated and curcumin groups, and compared with the untreated group, the cells in the curcumin group decreased by 30.8%. Flow cytometry showed that the apoptotic rate in the curcumin group increased by 85.1% compared with the untreated group, but for a single group, MMP3 decreased the apoptotic rate by 53.9% and 46.7%, respectively. Conclusions MMP3 was highly expressed in osteoarthritis synovial cells. Curcumin could reduce cell viability, inhibit cell proliferation, increase cell apoptosis, and eventually alleviate inflammation of osteoarthritis by inhibiting the expression of MMP3.
Collapse
Affiliation(s)
- Jian-Jun Zeng
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Hai-Dong Wang
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Zhong-Wei Shen
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xiao-Dong Yao
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Cheng-Jun Wu
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Tao Pan
- Department of Orthopaedics and Traumatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| |
Collapse
|
37
|
Ravalli S, Szychlinska MA, Leonardi RM, Musumeci G. Recently highlighted nutraceuticals for preventive management of osteoarthritis. World J Orthop 2018; 9:255-261. [PMID: 30479972 PMCID: PMC6242728 DOI: 10.5312/wjo.v9.i11.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease of articular cartilage with limited treatment options. This reality encourages clinicians to suggest preventive measures to delay and contain the outbreak of the pathological conditions. Articular cartilage and synovium suffering from OA are characterised by an inflammatory state and by significant oxidative stress, responsible for pain, swelling and loss of mobility in the advanced stages. This review will focus on the ability of olive oil to exert positive effects on the entire joint to reduce pro-inflammatory cytokine release and increase lubricin synthesis, olive leaf extract, since it maintains lubrication by stimulating high molecular weight hyaluronan synthesis in synovial cells, curcumin, which delays the start of pathological cartilage breakdown, sanguinarine, which downregulates catabolic proteases, vitamin D for its capacity to influence the oxidative and pro-inflammatory environment, and carnosic acid as an inducer of heme oxygenase-1, which helps preserve cartilage degeneration. These molecules, considered as natural dietary supplements, appear like a cutting-edge answer to this tough health problem, playing a major role in controlling homeostatic balance loss and slowing down the pathology progression. Natural or food-derived molecules that are able to exert potential therapeutic effects are known as “nutraceutical”, resulting from the combination of the words “nutrition” and “pharmaceutical”. These compounds have gained popularity due to their easy availability, which represents a huge advantage for food and pharmaceutical industries. In addition, the chronic nature of OA implies the use of pharmacological compounds with proven long-term safety, especially because current treatments like nonsteroidal anti-inflammatory drugs and analgesics improve pain relief but have no effect on degenerative progression and can also cause serious side effects.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| | - Rosalia Maria Leonardi
- Department of Orthodontics, Policlinico Universitario “Vittorio Emanuele”, University of Catania, Catania 95124, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
38
|
Liu H, He S, Wang T, Orang-Ojong B, Lu Q, Zhang Z, Pan L, Chai X, Wu H, Fan G, Zhang P, Feng Y, Song YS, Gao X, Karas RH, Zhu Y. Selected Phytoestrogens Distinguish Roles of ERα Transactivation and Ligand Binding for Anti-Inflammatory Activity. Endocrinology 2018; 159:3351-3364. [PMID: 30010822 DOI: 10.1210/en.2018-00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/05/2018] [Indexed: 11/19/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-activated transcriptional activator that is also involved vascular inflammation and atherosclerosis. Whether different ligands may affect this activity has not been explored. We screened a panel of phytoestrogens for their role in ERα binding and transcriptional transcription, and correlated the findings to anti-inflammatory activities in vascular endothelial cells stably expressing either a wild-type or mutant form of ERα deficient in its membrane association. Taxifolin and silymarin were "high binders" for ERα ligand binding; quercetin and curcumin were "high activators" for ERα transactivation. Using these phytoestrogens as functional probes, we found, in endothelial cells expressing wild-type ERα, the ERα high activator, but not the ERα high binder, promoted ERα nuclear translocation, estrogen response element (ERE) reporter activity, and the downstream gene expression. In endothelial cells expressing membrane association-deficient mutant ERα, the ERα nuclear translocation was significantly enhanced by taxifolin and silymarin, which still failed to activate ERα. Inflammation response was examined using the systemic or vascular inflammation inducers lipopolysaccharide or oxidized low-density lipoprotein. In both cases, only the ERα high activator inhibited nuclear translocation of nuclear factor κB, JNK, and p38, and the production of inflammatory cytokines IL-1β and TNFα. We confirm a threshold nuclear accumulation of ERα is necessary for its transactivation. The anti-inflammatory activity of phytoestrogens is highly dependent on ERα transactivation, less so on the ligand binding, and independent of its membrane association. A pre-examination of phytoestrogens for their mode of ERα interaction could facilitate their development as better targeted receptor modifiers.
Collapse
Affiliation(s)
- Haixin Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Taiyi Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Barnabas Orang-Ojong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| | - Zhongqun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Lanlan Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Xin Chai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Honghua Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Xuimei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
39
|
Kakkar V, Kaur IP, Kaur AP, Saini K, Singh KK. Topical delivery of tetrahydrocurcumin lipid nanoparticles effectively inhibits skin inflammation: in vitro and in vivo study. Drug Dev Ind Pharm 2018; 44:1701-1712. [DOI: 10.1080/03639045.2018.1492607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Amrit Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
40
|
Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci Rep 2018; 8:6652. [PMID: 29703905 PMCID: PMC5923426 DOI: 10.1038/s41598-018-24866-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/13/2018] [Indexed: 01/17/2023] Open
Abstract
There is evidence indicating that curcumin has multiple biological activities, including anti-inflammatory properties. In vitro and in vivo studies demonstrate that curcumin may attenuate inflammation and the connective tissue destruction associated with periodontal disease. Most of these studies use systemic administration, and considering the site-specific nature of periodontal disease and also the poor pharmacodynamic properties of curcumin, we conducted this proof of principle study to assess the biological effect of the local administration of curcumin in a nanoparticle vehicle on experimental periodontal disease. We used 16 rats divided into two groups of 8 animals according to the induction of experimental periodontal disease by bilateral injections of LPS or of the vehicle control directly into the gingival tissues 3×/week for 4 weeks. The same volume of curcumin-loaded nanoparticles or of nanoparticle vehicle was injected into the same sites 2×/week. µCT analysis showed that local administration of curcumin resulted in a complete inhibition of inflammatory bone resorption and in a significant decrease of both osteoclast counts and of the inflammatory infiltrate; as well as a marked attenuation of p38 MAPK and NF-kB activation. We conclude that local administration of curcumin-loaded nanoparticles effectively inhibited inflammation and bone resorption associated with experimental periodontal disease.
Collapse
|
41
|
Abstract
Arthritis is a chronic disease of joints. It is highly prevalent, particularly in the elderly, and is commonly associated with pain that interferes with quality of life. Because of its chronic nature, pharmacological approaches to pain relief and joint repair must be safe for long term use, a quality many current therapies lack. Nutraceuticals refer to compounds or materials that can function as nutrition and exert a potential therapeutic effect, including the relief of pain, such as pain related to arthritis, of which osteoarthritis (OA) is the most common form. Of interest, nutraceuticals have recently been shown to have potential in relieving OA pain in human clinical trials. Emerging evidence indicates nutraceuticals may represent promising alternatives for the relief of OA pain. In this paper, we will overview OA pain and the use of nutraceuticals in OA pain management, focusing on those that have been evaluated by clinical trials. Furthermore, we discuss the biologic and pharmacologic actions underlying the nutraceutical effects on pain relief based on the potential active ingredients identified from traditional nutraceuticals in OA pain management and their potential for drug development. The review concludes by sharing our viewpoints that future studies should prioritize elucidating the mechanisms of action of nutraceuticals in OA and developing nutraceuticals that not only relieve OA pain, but also mitigate OA pathology.
Collapse
Affiliation(s)
- Angela Wang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Luis Cardoso
- Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Ratanavaraporn J, Soontornvipart K, Shuangshoti S, Shuangshoti S, Damrongsakkul S. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model. Inflammopharmacology 2017; 25:211-221. [PMID: 28251487 DOI: 10.1007/s10787-017-0318-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The previously developed gelatin/silk fibroin microspheres were loaded with curcumin and applied for anti-inflammatory treatment in monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in a rat model. The MIA-induced OA rats received a single intra-articular injection with gelatin or gelatin/silk fibroin (30/70) microspheres encapsulating curcumin. The therapeutic effects of treatment groups [concentration of interleukin-6 (IL-6) in blood serum, radiographic and the histological grading on articular joint] were compared with those of normal saline treated OA and normal rats. The result showed that both microsphere groups reduced the level of IL-6 in serum after 1 week of treatment. The gelatin/silk fibroin (30/70) microspheres encapsulating curcumin delayed the cellular destruction in articular joint and synovial tissue after 8 weeks. The radiographic and histological gradings on articular cartilage lesion and synovial tissue change of rats treated with gelatin/silk fibroin (30/70) microspheres encapsulating curcumin were close to those of the normal rats. It was explained that the slow-degrading gelatin/silk fibroin (30/70) microspheres released curcumin for extended period and showed a prolonged anti-inflammatory effect, compared to the fast-degrading gelatin microspheres. This delivery system of curcumin was suggested to be applied for localized treatment of anti-inflammatory in OA with minimal invasion.
Collapse
Affiliation(s)
- Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, PhayaThai Road, Bangkok, 10330, Thailand
| | - Kumpanart Soontornvipart
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, PhayaThai Road, Bangkok, 10330, Thailand
| | - Somruetai Shuangshoti
- Department of Medical Services, Institute of Pathology, Ministry of Public Health, Yothi Road, Bangkok, 10400, Thailand
| | - Shanop Shuangshoti
- Department of Pathology and Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok, 10330, Thailand
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, PhayaThai Road, Bangkok, 10330, Thailand.
| |
Collapse
|