1
|
Bing H, Gu J, Xia B, Kong X, Luo Y, Wang X, Liu C, Zhao J, Xiang W. Endophytic fungus Stagonosporopsis ajaci NEAU-BLH1 from Adonis amurensis enhances seed germination under low-temperature stress and increases grain yield in direct-seeded rice. Microbiol Res 2025; 295:128111. [PMID: 40020546 DOI: 10.1016/j.micres.2025.128111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Rice direct-seeding technology is regarded as a promising alternative to traditional transplanting due to its labor- and water-saving benefits. However, poor seedling emergence and growth under low-temperature stress remain major obstacles to its widespread adoption in Heilongjiang Province, China. Here, we isolated an endophytic fungus Stagonosporopsis ajaci NEAU-BLH1 from the cold-resistant plant Adonis amurensis, which effectively enhanced rice seed germination and seedling growth under low-temperature stress. Two years of pot and field experiments demonstrated that soaking rice seeds in a spore suspension of NEAU-BLH1 significantly increased tillering, resulting in a 16.0-47.8 % improvement in yield for direct-seeded rice. Mechanistic investigations revealed that NEAU-BLH1 treatment elevated gibberellin levels and reduced abscisic acid, accelerating starch hydrolysis into soluble sugars, thus improving germination under low temperature. Comprehensive physiological, transcriptomic, and metabolomic analyses indicated that NEAU-BLH1 enhances seedling growth by boosting respiratory metabolism, mitigating oxidative damage, and modulating hormone pathways. These findings indicate that seed-soaking with NEAU-BLH1 has good potential to enhance seed germination under low-temperature stress and increases grain yield in direct-seeded rice.
Collapse
Affiliation(s)
- Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Banghua Xia
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Kong
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yanfang Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang H, Zhang F, Wu F, Guo L, Xu X. Purification and Characterization of Endogenous α-Amylase from Glutinous Rice Flour. Foods 2025; 14:1679. [PMID: 40428461 PMCID: PMC12110810 DOI: 10.3390/foods14101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Endogenous α-amylase activity is crucial for determining the end-use value of glutinous rice flour (GRF), and controlling it is a key goal in the milling process. Although the structure and properties of starch and protein in GRF have been extensively studied, there is little information on endogenous α-amylase in GRF. In this study, endogenous α-amylase isolated from GRF was purified and characterized. It was found to have a molecular weight of about 32 kDa, with the highest specific activity at 60 °C and a pH of 6.0. The enzyme is stable below 50 °C and in the pH range of 4.0-7.0. Its activity is Ca2⁺-independent but inhibited by Cu2⁺, Zn2⁺, Mg2⁺, Mn2⁺, and Ba2⁺. Its activity is also reduced by β-mercaptoethanol. The enzyme hydrolyzes amylopectin most efficiently. Circular dichroism spectroscopy showed that the enzyme contains 7.9% α-helix, 35.4% β-folding, 21.1% β-turning, and 35.9% random coils, with a Tm value of 63.68 °C. These results suggest that temperature control may be the best strategy for reducing amylase activity in dry-milled GRF, providing a new approach for the development of GRF dry-milling techniques.
Collapse
Affiliation(s)
- Huang Zhang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, No. 6, Longzihu North Road, Zhengzhou 450046, China
| | - Fengjiao Zhang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, No. 6, Longzihu North Road, Zhengzhou 450046, China
| | - Fengfeng Wu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Lichun Guo
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
4
|
Choi JY, Ju YH, Nakamichi A, Cho SW, Woo SH, Sakagami JI. Effect of Seed Hydropriming on the Elongation of Plumule and Radicle During the Germination Process and Changes in Enzyme Activity Under Water-Deficient Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3537. [PMID: 39771234 PMCID: PMC11679898 DOI: 10.3390/plants13243537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Hydropriming rice seeds effectively improve the germination percentage, shortens the germination period, and promotes seedling growth. The impact of seed hydropriming is to speed up growth under dry soil conditions, thereby avoiding drought damage. This study analyzes the effect of hydropriming on morpho-physiological changes in the water uptake of rice seeds using "Kasalath" and "Nipponbare" under water-deficit conditions. Upon exposure to osmotic stress, both varieties showed delays in the time to reach germination. In addition, all germination phases exhibited reductions in the activity of alpha-amylase and total soluble sugar by osmotic stress; however, in all germination phases of the hydroprimed seeds, the activity and contents of those were significantly increased, resulting in increased size of the coleoptile, plumule, and radicle. In hydroprimed seeds, "Kasalath" was superior to "Nipponbare" in the ratio of the water-deficit-to-well-watered conditions for all traits related to germination, which may have been attributable to hydropriming having a greater effect on "Kasalath". Interestingly, Primed "Kasalath" had a lower level of α-amylase, despite the having a higher content of total soluble sugars than primed "Nipponbare".
Collapse
Affiliation(s)
- Ju-Young Choi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
| | - Young-Hwan Ju
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
| | - Ayaka Nakamichi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Seong-Woo Cho
- Department of Smart Agro-Industry, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Jun-Ichi Sakagami
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
5
|
Liu J, Yuan X, Tian M, Chen J, Chen C, Luo Z, Guo T, Huo X, Xiao W. OsNAL11 and OsGASR9 Regulate the Low-Temperature Germination of Rice Seeds by Affecting GA Content. Int J Mol Sci 2024; 25:11291. [PMID: 39457073 PMCID: PMC11508740 DOI: 10.3390/ijms252011291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Low temperatures cause serious threat to rice seed emergence, which has become one of the main limiting factors in the production of direct seeding rice. It is of great importance to study the genes controlling low-temperature tolerance during seed germination and to mine the possible regulatory mechanism for developing new rice varieties with immense low-temperature germination ability. In the current research study, two types of mutants of nal11 and gasr9, derived from the WT (wild type) ZH11, were used for the analysis of low-temperature germinability. The results showed that the nal11 and gasr9 mutants displayed no significant difference in germination rate with ZH11 at room temperature, but the mutants showed significantly lower germination rates, germination potential and germination index, and slowed seedling growth in the simulated direct seeding experiments at low temperatures compared to ZH11. Additionally, the activity of POD, SOD, CAT, and anti-superoxide anion radial activity were significantly reduced, but the levels of MDA and H2O2 were significantly higher in the nal11 and gasr9 mutant seeds that were germinated at low temperatures compared to ZH11. Further analysis revealed that the levels of total active GA, especially GA4 and GA7, were significantly lower in the nal11 and gasr9 mutants than that in ZH11 during low-temperature germination. Based on qRT-PCR analysis, the expression levels of some GA synthesis-related genes were higher, whereas some were lower in the nal11 and gasr9 mutants than those in ZH11, however, the GA metabolism-related genes OsGA2ox8 and OsGA2ox10 and the GA signaling negative regulator gene SLR1 were significantly up-regulated in both nal11 and gasr9 mutants at several time points during low-temperature germination. This may explain the lower GA levels in the nal11 and gasr9 mutants. Furthermore, the interaction between the OsNAL11 and OsGASR9 proteins was confirmed by Y2H, LUC, and Co-IP assays. This study provides preliminary insights into the regulatory mechanism of the OsNAL11 and OsGASR9 genes, which control the low-temperature germination of rice seeds by affecting the GA pathway. Our study will provide the basis for further mining the molecular mechanisms of low-temperature germination in rice and valuable theoretical reference for breeding varieties with strong low-temperature germinability.
Collapse
Affiliation(s)
- Jinzhao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Xi Yuan
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Mengqing Tian
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Jialing Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Zengtong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| | - Xing Huo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.L.)
| |
Collapse
|
6
|
Sha H, Yu Y, Han Y, Liu J, Han Z, Zhao Y, Huo C, Chang H, Zhang F, Wang J, Fang J. Combination of maleic hydrazide and coumarin inhibits rice seed germination involving reactive oxygen species accumulation, ABA metabolism and starch degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109202. [PMID: 39437670 DOI: 10.1016/j.plaphy.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Pre-harvest sprouting (PHS) in cereal crops is a prevalent phenomenon that impacts grain yield and quality. Several PHS inhibitory compounds were screened and identified in previous studies, such as eugenol (EUG), maleic hydrazide (MH), coumarin (COU), etc. However, few studies have focused on the combination of PHS inhibitors, and the inhibitory mechanism remains unclear. Here, through combination tests of EUG, MH, and COU, the optimal combination of PHS inhibitors was selected as MH 20 mg L-1 + COU 100 mg L-1, which presented the lowest germination percentages. The optimal combination treatment significantly decreased the germination rate, α-amylase activity, content of soluble sugar and soluble protein, enhanced ABA content and the activity of superoxide dismutase (SOD) and peroxidase (POD), inhibited the production of superoxide anion (O2-) and hydrogen peroxide, and reduced the content of malondialdehyde (MDA); conversely, this trend is precisely the opposite in normal germination. Furthermore, gene expression analysis revealed that the optimal combination of MH and COU significantly decreased the expression level of OsAmy1A and OsAmy3D at 12 and 48 h after imbibition (HAI); and promoted the expression of OsRbohs (OsRbohA, OsRbohC, OsRbohD, OsRbohE, OsRbohH) and ABA biosynthetic genes OsNCED1, OsNCED2, and OsNCED5, especially OsNCED2 at 12 HAI, but down-regulated expression of OsRbohs and ABA catabolic genes OsABA8ox1-3 at 48 HAI. These results demonstrated that the delay in seed germination induced by MH and COU involved in ROS, ABA, and sugars; the optimal combination of MH and COU inhibited the germination process by promoting ABA biosynthesis and reducing ABA catabolism, and restraining the α-amylase activity to lower soluble sugar content. Intriguingly, although the expression of OsRbohs, which play a crucial role in generating ROS, increased in early imbibition (12h), the activity of the antioxidant enzymes SOD and POD also increased with the optimal combination treatment of MH and COU, which lead to the delay in ROS accumulation and inhibition of germination. These results have deepened our understanding of the regulatory mechanism of PHS inhibitors and provided theoretical support for the application of MH and COU in preventing sprouting before crop harvesting.
Collapse
Affiliation(s)
- Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China; Rice Research Institute, Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China
| | - Yue Yu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yubing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Chunran Huo
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Huilin Chang
- Rice Research Institute, Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
7
|
Li R, Luo D, Rehman M, Li X, Wang C, Cao S, Xu G, Wang M, Chen C, Nie J, Li R, Chen T, Chen P. Seed priming using different agents can alleviate salt stress in kenaf ( Hibiscus cannabinus L.) by activating antioxidant system and related genes expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1741-1757. [PMID: 39506993 PMCID: PMC11534967 DOI: 10.1007/s12298-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
High salinity is an abiotic stress that limits crop production. Kenaf (Hibiscus cannabinus L.) is an annual fiber crop of the genus Hibiscus in the family Malvaceae with a certain tolerance to salt stress. Seed priming has been shown to ameliorate the adverse effects of salt stress on plants. However, the salt resistance mechanism in kenaf seeds treated with priming agents is not fully understood. In this study, we used four priming agents (H2O, PEG, ABA, KNO3) in different concentrations to treat kenaf seeds, and subjected the induced kenaf seedlings to salt stress (150 mM NaCl) to measure their agronomic traits and physiological and biochemical indicators. Our results indicate that the optimal priming concentration for PEG was 10%, 0.5 μM for ABA, and 0.5% for KNO3. Under these treatment concentrations, the germination rate of kenaf was significantly increased, and the fresh weight was also increased by 35.1%, 33.39%, 20.78% and 15.3%, respectively. Furthermore, the use of priming agents can alleviate the adverse effects of salt stress to a certain extent, significantly increase the agronomic indicators such as plant height, stem thickness, and leaf area of kenaf, enhance the ability of plants to perform photosynthesis, further improve the activity of antioxidant enzymes and increase the content of osmotic material, and reduce the accumulation of cell H2O2, O2 - and MDA. Meanwhile, seed priming can also enhance the expression of HcSOS1, HcNHX, HcHKT, HcCBL, HcCIPK, HcPD and HcNCED involved in the salt stress pathway. These results warrant that seed priming can reduce the adverse effects of salt stress on kenaf. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01521-x.
Collapse
Affiliation(s)
- Renxue Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Xin Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Guofeng Xu
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Meng Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Jingzhi Nie
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| |
Collapse
|
8
|
Kong CKY, Lee RS, Hasan K, Wong CKF, Teh CY. Proline Priming Enhances Seed Vigour and Biochemical Attributes of Rice ( Oryza sativa L.) during Germination. Trop Life Sci Res 2024; 35:149-163. [PMID: 39464668 PMCID: PMC11507969 DOI: 10.21315/tlsr2024.35.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/30/2024] [Indexed: 10/29/2024] Open
Abstract
Seed vigour is a desirable trait especially for direct seeded rice (DSR) cultivation. Seeds with high vigour could improve seed germination, support seedlings in competing with weeds for water and nutrients, and improving seedling establishment throughout the early stages of crop growth. The success of DSR system which account for more 25% of world cultivation areas is highly dependent on the seed vigour and seedling establishment. Seed priming is a promising technique to improve seed vigour. Proline is an amino acid that has been well studied for its roles in plants under different environmental stress conditions. Nevertheless, the effect of proline as a seed priming agent in improving seed vigour in rice remain elusive. In this research, the effect of 24 h of proline priming at various concentrations (0 mM, 1 mM, 2 mM, 10 mM and 20 mM) on rice seed vigour, amylase activity, and total soluble sugar (TSS) content of a Malaysia indica rice variety, MR269 was investigated. Results showed that seeds primed with lower concentration of proline (0 mM, 1 mM and 2 mM) had better germination responses while priming at high concentrations (10 mM and 20 mM) reduced seed germination. Among the concentration tested, priming with 1 mM proline enhanced seed vigour with significantly higher germination percentage (GP), germination rate index (GRI) and seedling vigour index (SVI). In addition, proline primed seeds also exhibited increased amylase activity and TSS content as compared to unprimed seeds. However, priming seed with 20 mM proline was detrimental to the seed vigour and seedling growth whereby lower GP, GRI and SVI and higher mean germination time (MGT) were observed. In short, this study shows that proline could be a potential seed priming agent to improve seed vigour in rice.
Collapse
Affiliation(s)
- Cloee Kher Yan Kong
- School of Applied Sciences, Faculty of Integrated Life Sciences, Quest International University, No. 227, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak, Malaysia
| | - Rattanak Sambath Lee
- School of Postgraduate Studies, Research and Internalisation (SPRINT), Faculty of Integrated Life Sciences, Quest International University, No. 227, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak, Malaysia
| | - Kamariah Hasan
- School of Applied Sciences, Faculty of Integrated Life Sciences, Quest International University, No. 227, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak, Malaysia
| | - Clement Kiing Fook Wong
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Chui Yao Teh
- School of Applied Sciences, Faculty of Integrated Life Sciences, Quest International University, No. 227, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak, Malaysia
| |
Collapse
|
9
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Ren M, Tan B, Xu J, Yang Z, Zheng H, Tang Q, Zhang X, Wang W. Priming methods affected deterioration speed of primed rice seeds by regulating reactive oxygen species accumulation, seed respiration and starch degradation. FRONTIERS IN PLANT SCIENCE 2023; 14:1267103. [PMID: 37868303 PMCID: PMC10586809 DOI: 10.3389/fpls.2023.1267103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Introduction Seed priming is a pre-sowing seed treatment that is beneficial for rice seed germination and seedling growth, but the reduced seed longevity after seed priming greatly limited its adoption. The deterioration of primed seeds showed large differences among different studies, and the priming method might play an important role in regulating the deterioration speed of primed seeds. However, whether and how the priming method affected the deterioration of primed rice seeds during storage remains unknown. Methods In this study, two typical seed priming methods, namely hydropriming (HP) and osmopriming (PEG) were compared under artificially accelerated aging conditions, the changes in germination performance, starch metabolism, seed respiration and reactive oxygen species accumulation before and after accelerated aging were determined. Results and discussion Hydroprimed rice seeds exhibited significantly faster deterioration speed than that of PEG-primed seeds in terms of germination speed and percentage. Meanwhile, α-amylase activity and total soluble sugar content in hydroprimed seeds were reduced by 19.3% and 10.0% respectively after aging, as compared with PEG-primed seeds. Such effects were strongly associated with the increased reactive oxygen generation and lipid peroxidation, as the content of superoxide anion, hydrogen peroxide and malondialdehyde in hydroprimed seeds were 4.4%, 12.3% and 13.7% higher than those in PEG-primed seeds after aging, such effect could be attributed to the increased respiratory metabolism in hydroprimed seeds. In addition, the simultaneous use of N-acetylcysteine with HP and PEG priming greatly inhibited the deterioration of primed rice seeds, suggesting that the ability to scavenge reactive oxygen species may be the key factor affecting the speed of deterioration in primed rice seeds during storage.
Collapse
Affiliation(s)
- Muyao Ren
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Biao Tan
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jiayi Xu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhengpeng Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiaoli Zhang
- Rice Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiqin Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Liu C, Li C, Bing H, Zhao J, Li L, Sun P, Li T, Du D, Zhao J, Wang X, Xiang W. Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals the Mechanism of Guvermectin Promoting Seed Germination in Direct-Seeded Rice under Chilling Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7348-7358. [PMID: 37129443 DOI: 10.1021/acs.jafc.3c00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rice direct seeding technology has been considered as a promising alternative to traditional transplanting because of its advantages in saving labor and water. However, the poor emergence and seedling growth caused by chill stress are the main bottlenecks in wide-scale adoption of direct-seeded rice in Heilongjiang Province, China. Here, we found that natural plant growth regulator guvermectin (GV) effectively improved rice seed germination and seedling growth under chilling stress. Results from 2 year field trials showed that seed-soaking with GV not only enhanced the emergence rate and seedling growth but also increased the panicle number per plant and grain number per panicle, resulting in 9.0 and 6.8% increase in the yield of direct-seeded rice, respectively. Integrative physiological, transcriptomic, and metabolomic assays revealed that GV promoted seed germination under chilling stress mainly by enhancing the activities of α-amylase and antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), increasing the contents of soluble sugar and soluble protein, improving the biosynthesis of glutathione and flavonoids, as well as activating gibberellin-responsive transcription factors and inhibiting the abscisic acid signaling pathway. These findings indicate that seed-soaking with GV has good potential to improve seedling establishment and yield of direct-seeded rice even under chilling stress.
Collapse
Affiliation(s)
- Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Dandan Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Junlei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Zhang H, Zhang X, Gao G, Ali I, Wu X, Tang M, Chen L, Jiang L, Liang T. Effects of various seed priming on morphological, physiological, and biochemical traits of rice under chilling stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1146285. [PMID: 36993861 PMCID: PMC10040639 DOI: 10.3389/fpls.2023.1146285] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION/BACKGROUND Direct-seeded rice is exceptionally vulnerable to chilling stress, especially at the seed germination and seedling growth stages in the early season of the double cropping system. METHODS Therefore, we conducted two experiments to evaluate the role of various seed primings and their different concentrations of plant growth regulators [experiment 1-abscisic acid (ABA), gibberellin (GA3), salicylic acid (SA), brassinolide (BR), paclobutrazol, uniconazole (UN), melatonin (MT), and jasmonic acid (JA)] and osmopriming substances (chitosan, polyethylene glycol 6000 (PEG6000), and CaCl2) and experiment 2-GA, BR (two best), CaCl2 (worst), and control (CK)] on rice seedlings under low temperature condition. RESULTS Results showed that the maximum germination rate of 98% was recorded in GA3 (10 mgL-1) and BR (0.3 mgL-1) among treatments. Compared to CK, root and shoot length were improved in ABA (0.5 mgL-1) and GA3 (100 mgL-1) by 64% and 68%, respectively. At the same time, root and shoot weights (fresh and dry) were enhanced in Paclobutrazol (300 mgL-1) and GA3 among treatments. Furthermore, the average root volume, average root diameter, and total root surface area were increased by 27%, 38%, and 33% in Paclobutrazol (300 mgL-1), Paclobutrazol (200 mgL-1) and JA (1 mgL-1) treatments, respectively compared to CK. In the second experiment, a respective increase of 26%, 19%, 38%, and 59% was noted in SOD, POD, CAT, and APX enzyme activities in GA treatment compared to CK. Similarly, proline, soluble sugar, soluble protein, and GA content were also improved by 42%, 25.74%, 27%, and 19%, respectively, in GA treatment compared to CK. However, a respective reduction of 21% and 18% was noted in MDA and ABA content in GA treatment compared to CK. Our finding highlighted that better germination of primed-rice seedlings was associated with fresh and dry weights of the roots and shoots and the average root volume of the seedlings. DISCUSSION Our results suggested that GA3 (10 mg L-1) and BR (0.3 mg L-1) seed priming prevent rice seedlings from chilling-induced oxidative stress by regulating antioxidant enzyme activities and maintaining ABA, GA, MDA, soluble sugar, and protein content. However, further studies (transcriptome and proteome) are needed to explore the molecular mechanisms involved in seed priming-induced chilling tolerance under field conditions.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xiaoli Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guoqing Gao
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Xiaoyan Wu
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Maoyan Tang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Tianfeng Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
13
|
Growth changes of tomato seedlings responding to sodium salt of α-naphthalene acetic acid and potassium salt of fulvic acid. Sci Rep 2023; 13:4024. [PMID: 36899076 PMCID: PMC10006168 DOI: 10.1038/s41598-023-31023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In present study, sodium salt of α-naphthalene acetic acid (NA), potassium salt of fulvic acid (KF) and their combinations were applied to the growth substrates of tomato seedlings (Solanum lycopersicum L.) under chilling stress. The changes in aboveground biomass, root attributes, pigment contents, chlorophyll fluorescence, photosynthesis, osmotic regulation substances, and antioxidant enzymes activity of the tomato seedlings in response to NA and KF were investigated. The application of NA, KF and their combination could promote the growth of plant height and stem diameter of tomato seedlings under chilling stress to varying degrees, and improve root characteristics by increasing root volume, root length and root activity, and increase dry matter accumulation. In addition, the combined use of NA and KF improved the seedling leaf chlorophyll content, qP, Fv/Fm, ΦPSII , Pn and increased the activity of antioxidant enzymes in the tomato plants. The above results suggested a synergistic effect between NA and KF to stimulate the seedlings growth and to enhance the ROS scavenging ability of tomato, which has never been reported in previous research before. However, further researches are needed to explore the physiological and molecular mechanism underlying the synergistic effect between NA and KF.
Collapse
|
14
|
Liu C, Yao Z, Jiang B, Yu W, Wang Y, Dong W, Li Y, Shi X, Liu C, Zhou Y. Effects of Exogenous Auxin on Mesocotyl Elongation of Sorghum. PLANTS (BASEL, SWITZERLAND) 2023; 12:944. [PMID: 36840291 PMCID: PMC9959298 DOI: 10.3390/plants12040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The length of sorghum mesocotyl plays a vital role in seed emergence from the soil, which is the foundation of healthy growth. In this study, we aimed to understand how exogenous auxin (IAA) promoted mesocotyl elongation of sorghum and its physiology mechanism. The results presented that exogenous IAA significantly promoted mesocotyl elongation in MS24B (short mesocotyl inbred line) by increasing the cell length, while with extra exogenous NPA (IAA inhibitor) application, the mesocotyl length presented a significant short phenotype. In Z210 (long mesocotyl inbred line), exogenous IAA had a slight effect on mesocotyl length elongation, while the NPA treatment decreased the mesocotyl length considerably. In MS24B, IAA treatment increased the activity of amylase to degrade starch to soluble sugar, and the activity of hexokinase was improved to consume the increased soluble sugar to offer more energy. The energy will help to increase the activity of PM H+-ATPase and the expression of expansin-related genes, which ultimately will promote the acidification of the plasma membrane in MS24B for cell elongation. Overall, the exogenous IAA functioned on the activation of energy metabolism, which in turn, inducted the acidification of the plasma membrane for mesocotyl elongation.
Collapse
Affiliation(s)
- Chang Liu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Ziqing Yao
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Bing Jiang
- Jinzhou Academy of Agricultural Sciences, Jinzhou 121006, China
| | - Wenbo Yu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Yu Wang
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Wenhui Dong
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Yutong Li
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Chunjuan Liu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| |
Collapse
|
15
|
Orzechowski S, Compart J, Zdunek-Zastocka E, Fettke J. Starch parameters and short-term temperature fluctuations - Important but not yet in focus? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153902. [PMID: 36565529 DOI: 10.1016/j.jplph.2022.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plants are regularly challenged by unfavorable environmental conditions. As climate change continues, adverse situations such as drought, heat, and cold are expected to increase and become more severe. Most starchy crops are affected by such stresses. In recent years, researchers have made many new discoveries about starch metabolism in general and also on granule structure, including effects on starch following longer-term temperature stresses. However, in this study, we focus on short-term temperature stress on storage starch granule properties. Here our knowledge is less and it is likely that also short-term temperature stresses can affect various starch parameters. Therefore, we see a need for this type of analysis and discuss the matter in more detail and we conclude that a deeper knowledge particularly of starch granule parameters could allow targeted breeding of cultivars that exhibit different starch characteristics as a result of short-term stress. For these reasons, we are convinced that more comprehensive research on the effects of short-term temperature stress on starch granule characteristics is important, necessary, and timely.
Collapse
Affiliation(s)
- Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|