1
|
Bilgi E, Winkler DA, Oksel Karakus C. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning. J Drug Target 2024; 32:66-73. [PMID: 38009690 DOI: 10.1080/1061186x.2023.2288995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates.
Collapse
Affiliation(s)
- Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
- Department, of Material Science and Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - David A Winkler
- School of Biochemistry & Chemistry, La Trobe University, Bundoora, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
2
|
Aggarwal N, Singh G, Panda HS, Panda JJ. Unravelling the potential of L-carnosine analog-based nano-assemblies as pH-responsive therapeutics in treating glioma: an in vitro perspective. J Mater Chem B 2024; 12:10665-10681. [PMID: 39314035 DOI: 10.1039/d4tb01262c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Self-assembled small peptide-based nanoparticles (NPs) constitute a major section of the biomimetic smart NPs owing to their excellent compatibility and minimal adverse effects in the biological system. Here, we have designed a modified L-carnosine dipeptide analog, "Fmoc-β-Ala-L-His-(Trt)-o-methyl formate", which was assembled along with a modified single amino acid, Fmoc-Arg-(Pbf)-OH and zinc ions to form stable and mono-dispersed L-carnosine analog NPs (CaNPs) with inherent anti-cancer properties. Furthermore, the CaNPs demonstrated an average size of ∼200 nm, making them suitable to invade the tumor site by following the enhanced permeability and retention (EPR) effect. Our studies depicted a remarkable cancer cell killing ability of the NPs of ∼82% in C6 glioma cells. Thereafter, cellular investigations were performed in C6 cells to analyze the influence of the NPs on cellular cytoskeleton integrity by using a phalloidin assay and anti-cancer efficacy by using calcein AM/PI, and an apoptosis assay further indicated their anti-cancer effect. Additionally, the NPs negatively impacted the ability of C6 cells to migrate across a premade scratch (∼44% wound closure) demonstrating their tendency to halt cancer cell migration and metastasis. Also, our NPs depicted ∼19.51 ± 0.17% permeability across the bEnd.3 transwell model establishing their BBB penetrability. Collectively, our results could positively implicate the successful anti-cancer potential of the minimalistic, biologically compliant, L-carnosine analog (Ca)-based nanostructures in glioma.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Gurjot Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Himanshu Sekhar Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
3
|
Musielak M, Bakun P, Liwarska J, Skupin-Mrugalska P, Piotrowski I, Suchorska W. Precision medicine in breast cancer: Targeting molecular subtypes with gold nanoparticle-loaded liposomes. Adv Med Sci 2024; 69:331-338. [PMID: 39025260 DOI: 10.1016/j.advms.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Breast cancer is a complex disease with several molecular subtypes that respond differently to therapy. This paper describes liposomes loaded with gold nanoparticles as a targeted drug delivery method in the rapidly developing precision breast cancer treatment area. The aim was to investigate the cytotoxicity level and cellular uptake using several breast cancer cell lines and a normal breast cell line. MATERIALS AND METHODS We synthesized gold nanoparticles incorporated in liposomes. Nanostructures were incubated with breast cancer cell lines of different subtypes. The analysis included MTT assay, flow cytometry and immunofluorescence. RESULTS Cell viability varied among different cancer cells. Moreover, the time- and concentration-dependent manner of viability change was observed. The internalization of liposomes with gold nanoparticles and nanoparticles alone determined different results depending on molecular breast cancer subtypes. The luminal B and triple-negative breast cancer cells demonstrated the highest resistance and sensitivity, respectively. The intensity of cells' interaction with the proposed nanostructures was observed in both cell lines. In this study, we compare the molecular subtypes of breast cancer and discuss how this novel method might improve the therapy success. CONCLUSIONS Our research sheds light on the possibility of new individualized treatments for breast cancer patients, opening the path for better results and a more detailed cancer therapy strategy.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland.
| | - Paweł Bakun
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Julia Liwarska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
4
|
Jyakhwo S, Serov N, Dmitrenko A, Vinogradov VV. Machine Learning Reinforced Genetic Algorithm for Massive Targeted Discovery of Selectively Cytotoxic Inorganic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305375. [PMID: 37771186 DOI: 10.1002/smll.202305375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Nanoparticles (NPs) have been employed as drug delivery systems (DDSs) for several decades, primarily as passive carriers, with limited selectivity. However, recent publications have shed light on the emerging phenomenon of NPs exhibiting selective cytotoxicity against cancer cell lines, attributable to distinct metabolic disparities between healthy and pathological cells. This study revisits the concept of NPs selective cytotoxicity, and for the first time proposes a high-throughput in silico screening approach to massive targeted discovery of selectively cytotoxic inorganic NPs. In the first step, this work trains a gradient boosting regression model to predict viability of NP-treated cell lines. The model achieves mean cross-validation (CV) Q2 = 0.80 and root mean square error (RMSE) of 13.6. In the second step, this work develops a machine learning (ML) reinforced genetic algorithm (GA), capable of screening >14 900 candidates/min, to identify the best-performing selectively cytotoxic NPs. As proof-of-concept, DDS candidates for the treatment of liver cancer are screened on HepG2 and hepatocytes cell lines resulting in Ag NPs with selective toxicity score of 42%. This approach opens the door for clinical translation of NPs, expanding their therapeutic application to a wider range of chemical space of NPs and living organisms such as bacteria and fungi.
Collapse
Affiliation(s)
- Susan Jyakhwo
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Andrei Dmitrenko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| |
Collapse
|
5
|
Feye J, Matthias J, Fischer A, Rudolph D, Treptow J, Popescu R, Franke J, Exarhos AL, Boekelheide ZA, Gerthsen D, Feldmann C, Roesky PW, Rösch ES. SMART RHESINs-Superparamagnetic Magnetite Architecture Made of Phenolic Resin Hollow Spheres Coated with Eu(III) Containing Silica Nanoparticles for Future Quantitative Magnetic Particle Imaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301997. [PMID: 37203272 DOI: 10.1002/smll.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented. This superparamagnetic magnetite architecture made of phenolic resin hollow spheres coated with Eu(III) containing silica nanoparticles (SMART RHESINs) was synthesized and studied. Magnetic particle spectroscopy (MPS) measurements confirm their suitability for potential MPI applications. Photobleaching studies show an unexpected photodynamic due to the fluorescence emission peak of the europium ion in combination with the phenol formaldehyde resin (PFR). Cell metabolic activity and proliferation behavior are not affected. Colocalization experiments reveal the distinct accumulation of SMART RHESINs near the Golgi apparatus. Overall, SMART RHESINs show superparamagnetic behavior and special luminescent properties without acute cytotoxicity, making them suitable for bimodal imaging probes for medical use like cancer diagnosis and treatment. SMART RHESINs have the potential to enable quantitative MPS and MPI measurements both in mobile and immobilized environments.
Collapse
Affiliation(s)
- Julia Feye
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Alena Fischer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - David Rudolph
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jens Treptow
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jochen Franke
- Bruker, BioSpin MRI GmbH, Preclinical Imaging Division, 76275, Ettlingen, Germany
| | | | | | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Esther S Rösch
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
| |
Collapse
|
6
|
Loecher A, Bruyns-Haylett M, Ballester PJ, Borros S, Oliva N. A machine learning approach to predict cellular uptake of pBAE polyplexes. Biomater Sci 2023; 11:5797-5808. [PMID: 37401742 DOI: 10.1039/d3bm00741c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The delivery of genetic material (DNA and RNA) to cells can cure a wide range of diseases but is limited by the delivery efficiency of the carrier system. Poly β-amino esters (pBAEs) are promising polymer-based vectors that form polyplexes with negatively charged oligonucleotides, enabling cell membrane uptake and gene delivery. pBAE backbone polymer chemistry, as well as terminal oligopeptide modifications, define cellular uptake and transfection efficiency in a given cell line, along with nanoparticle size and polydispersity. Moreover, uptake and transfection efficiency of a given polyplex formulation also vary from cell type to cell type. Therefore, finding the optimal formulation leading to high uptake in a new cell line is dictated by trial and error, and requires time and resources. Machine learning (ML) is an ideal in silico screening tool to learn the non-linearities of complex data sets, like the one presented herein, with the aim of predicting cellular internalisation of pBAE polyplexes. A library of pBAE nanoparticles was fabricated and the uptake studied in 4 different cell lines, on which various ML models were successfully trained. The best performing models were found to be gradient-boosted trees and neural networks. The gradient-boosted trees model was then analysed using SHapley Additive exPlanations, to interpret the model and gain an understanding into the important features and their impact on the predicted outcome.
Collapse
Affiliation(s)
- Aparna Loecher
- Department of Bioengineering, Imperial College London, SW7 2AZ London, UK.
| | | | - Pedro J Ballester
- Department of Bioengineering, Imperial College London, SW7 2AZ London, UK.
| | - Salvador Borros
- Department of Bioengineering, Institut Quimic de Sarria, Via Augusta 390, 08017 Barcelona, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, SW7 2AZ London, UK.
- Department of Bioengineering, Institut Quimic de Sarria, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
7
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
8
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
9
|
Akter Z, Khan FZ, Khan MA. Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics. Curr Med Chem 2023; 30:316-334. [PMID: 34477507 DOI: 10.2174/0929867328666210902141257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
Collapse
Affiliation(s)
- Zakia Akter
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas, USA
| | - Fabiha Zaheen Khan
- Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Md Asaduzzaman Khan
- Key laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
10
|
Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations. Pharmaceutics 2022; 15:pharmaceutics15010112. [PMID: 36678741 PMCID: PMC9864587 DOI: 10.3390/pharmaceutics15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and therapeutic resistance. These issues are closely linked to the tumour microenvironment (TME) surrounding the tumour tissue. The association between residing TME components with tumour progression, survival, and metastasis has been well elucidated. Focusing on cancer cells alone is no longer considered a viable approach to therapy; thus, there is a high demand for TME targeting. The benefit of using nanoparticles is their preferential tumour accumulation and their ability to target TME components. Several nano-based platforms have been investigated to mitigate microenvironment-induced angiogenesis, therapeutic resistance, and tumour progression. These have been achieved by targeting mesenchymal originating cells (e.g., cancer-associated fibroblasts, adipocytes, and stem cells), haematological cells (e.g., tumour-associated macrophages, dendritic cells, and myeloid-derived suppressor cells), and the extracellular matrix within the TME that displays functional and architectural support. This review highlights the importance of nanotechnology-based therapeutics as a promising approach to target the TME and improve treatment outcomes for TNBC patients, which can lead to enhanced survival and quality of life. The role of different nanotherapeutics has been explored in the established TME cell-driven populations.
Collapse
|
11
|
Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203706. [PMID: 36296896 PMCID: PMC9608376 DOI: 10.3390/nano12203706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
12
|
Biological Response of Human Cancer Cells to Ionizing Radiation in Combination with Gold Nanoparticles. Cancers (Basel) 2022; 14:cancers14205086. [PMID: 36291870 PMCID: PMC9600885 DOI: 10.3390/cancers14205086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Various types of metallic nanoparticles and especially gold nanoparticles (AuNPs) have been utilized in radiation studies to enhance the radiosensitization of cancer cells while minimizing detrimental effects in normal tissue. The aim of our study was to investigate the biological responses of various human cancer cells to gold-nanoparticle-induced radiosensitization. This was accomplished by using different AuNPs and several techniques in order to provide valuable insights regarding the multiple adverse biological effects, following ionizing radiation (IR) in combination with AuNPs. Insightful methodologies such as transmission electron microscopy were employed to identify comprehensively the complexity of the biological damage occurrence. Our findings confirm that AuNP radiosensitization may occur due to extensive and/or complex DNA damage, cell death, or cellular senescence. This multiparameter study aims to further elucidate the biological mechanisms and at the same time provide new information regarding the use of AuNPs as radiosensitizers in cancer treatment. Abstract In the context of improving radiation therapy, high-atomic number (Z) metallic nanoparticles and, more importantly, gold-based nanostructures are developed as radiation enhancers/radiosensitizers. Due to the diversity of cell lines, nanoparticles, as well as radiation types or doses, the resulting biological effects may differ and remain obscure. In this multiparameter study, we aim to shed light on these effects and investigate them further by employing X-irradiation and three human cancer cell lines (PC3, A549, and U2OS cells) treated by multiple techniques. TEM experiments on PC3 cells showed that citrate-capped AuNPs were found to be located mostly in membranous structures/vesicles or autophagosomes, but also, in the case of PEG-capped AuNPs, inside the nucleus as well. The colony-forming capability of cancer cells radiosensitized by AuNPs decreased significantly and the DNA damage detected by cytogenetics, γH2AX immunostaining, and by single (γH2AX) or double (γH2AX and OGG1) immunolocalization via transmission electron microscopy (TEM) was in many cases higher and/or persistent after combination with AuNPs than upon individual exposure to ionizing radiation (IR). Moreover, different cell cycle distribution was evident in PC3 but not A549 cells after treatment with AuNPs and/or irradiation. Finally, cellular senescence was investigated by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13) which showed that based on the AuNPs’ concentration, an increased number of senescent cells might be observed after exposure to IR. Even though different cell lines or different types and concentrations of AuNPs may alter the levels of radiosensitization, our results imply that the complexity of damage might also be an important factor of AuNP-induced radiosensitization.
Collapse
|
13
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
14
|
Alhussan A, Palmerley N, Smazynski J, Karasinska J, Renouf DJ, Schaeffer DF, Beckham W, Alexander AS, Chithrani DB. Potential of Gold Nanoparticle in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblast Cells. Cancers (Basel) 2022; 14:cancers14153586. [PMID: 35892845 PMCID: PMC9332249 DOI: 10.3390/cancers14153586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Many cancer therapeutics do not account for the complexity of the tumor microenvironment (TME), which may result in failure when applied clinically. In this paper we utilized a simple tumor model made of two types of pancreatic cancer cells that contribute to the tumor environment, i.e., cancer cells and cancer associated fibroblasts. Herein, radiotherapy along with radiosensitizing gold nanoparticles were used to test the efficacy of a co-culture vs. monoculture model. The results show that the co-culture model exhibited heightened resistance to radiation. Furthermore, we found that the combination of gold radiosensitizers with radiotherapy reduced the radioresistance of the co-culture model compared to radiotherapy alone. This study demonstrates the potential of using nanotherapeutics in targeting the complex tumor microenvironment. Abstract Many cancer therapeutics are tested in vitro using only tumour cells. However, the tumour promoting effect of cancer associated fibroblasts (CAFs) within the tumour microenvironment (TME) is thought to reduce cancer therapeutics’ efficacy. We have chosen pancreatic ductal adenocarcinoma (PDAC) as our tumor model. Our goal is to create a co-culture of CAFs and tumour cells to model the interaction between cancer and stromal cells in the TME and allow for better testing of therapeutic combinations. To test the proposed co-culture model, a gold nanoparticle (GNP) mediated-radiation response was used. Cells were grown in co-culture with different ratios of CAFs to cancer cells. MIA PaCa-2 was used as our PDAC cancer cell line. Co-cultured cells were treated with 2 Gy of radiation following GNP incubation. DNA damage and cell proliferation were examined to assess the combined effect of radiation and GNPs. Cancer cells in co-culture exhibited up to a 23% decrease in DNA double strand breaks (DSB) and up to a 35% increase in proliferation compared to monocultures. GNP/Radiotherapy (RT) induced up to a 25% increase in DNA DSBs and up to a 15% decrease in proliferation compared to RT alone in both monocultured and co-cultured cells. The observed resistance in the co-culture system may be attributed to the role of CAFs in supporting cancer cells. Moreover, we were able to reduce the activity of CAFs using GNPs during radiation treatment. Indeed, CAFs internalize a significantly higher number of GNPs, which may have led to the reduction in their activity. One reason experimental therapeutics fail in clinical trials relates to limitations in the pre-clinical models that lack a true representation of the TME. We have demonstrated a co-culture platform to test GNP/RT in a clinically relevant environment.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Nicholas Palmerley
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Julian Smazynski
- Deeley Research Centre, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Joanna Karasinska
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S. Alexander
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
15
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
16
|
Xu C, Peng C, Yang X, Zhang R, Zhao Z, Yan B, Zhang J, Gong J, He X, Kwok RTK, Lam JWY, Tang BZ. One-Pot Synthesis of Customized Metal-Phenolic-Network-Coated AIE Dots for In Vivo Bioimaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104997. [PMID: 35132827 PMCID: PMC9008423 DOI: 10.1002/advs.202104997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/10/2023]
Abstract
The integration of aggregation-induced emission luminogens (AIEgens) and inorganic constituents to generate multifunctional nanocomposites has attracted much attention because it couples the bright aggregate-state fluorescence of AIEgens with the diverse imaging modalities of inorganic constituents. Herein, a facile and universal strategy to prepare metal-phenolic-network (MPN)-coated AIE dots in a high encapsulation efficiency is reported. Through precise control on the nucleation of AIEgens and deposition of MPNs in tetrahydrofuran/water mixtures, termed as coacervation, core-shell MPN-coated AIE dots with bright emission are assembled in a one-pot fashion. The optical properties of MPN-coated AIE dots can be readily tuned by varying the incorporated AIEgens. Different metal ions, such as Fe3+ , Ti4+ , Cu2+ , Ni2+ , can be introduced to the nanoparticles. The MPN-coated AIE dots with a red-emissive AIEgen core are successfully used to perform magnetic resonance/fluorescence dual-modality imaging in a tumor-bearing mouse model and blood flow visualization in a zebrafish larva. It is believed that the present study provides a tailor-made nanoplatform to meet the individual needs of in vivo bioimaging.
Collapse
Affiliation(s)
- Changhuo Xu
- Shenzhen Institute of Aggregate Science and TechnologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Chen Peng
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
- Department of RadiologyShanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Xueqin Yang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Ruoyao Zhang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and TechnologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
| | - Bo Yan
- Department of RadiologyShanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Jun Zhang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Junyi Gong
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Xuewen He
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and TechnologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
- Center for Aggregation‐Induced EmissionSCUT–HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
- AIE InstituteHuangpuGuangzhou510530China
| |
Collapse
|
17
|
Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022; 12:70. [PMID: 35223356 PMCID: PMC8841383 DOI: 10.1007/s13205-022-03121-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with different intrinsic subtypes. The conventional treatment of surgical resection, chemotherapy, immunotherapy and radiotherapy has not shown significant improvement in the survival rate of breast cancer patients. The therapeutics used cause bystander toxicities deteriorating healthy tissues. The breakthroughs of nanotechnology have been a promising feat in selective targeting of tumor site thus increasing the therapeutic gain. By the application of nanoenabled carriers, nanomedicines ensure targeted delivery, stability, enhanced cellular uptake, biocompatibility and higher apoptotic efficacy. The present review focuses on breakthrough of nanoscale intervention in targeted drug delivery as novel class of therapeutics. Nanoenabled carriers like polymeric and metallic nanoparticles, dendrimers, quantum dots, liposomes, solid lipid nanoparticles, carbon nanotubes, drug-antibody conjugates and exosomes revolutionized the targeted therapeutic delivery approach. These nanoassemblies have shown additional effect of improving the solubility of drugs such as paclitaxel, reducing the dose and toxicity. The present review provides an insight on the different drug conjugates employed/investigated to curb breast cancer using nanocarrier mediated targeted drug delivery. However, identification of appropriate biomarkers to target, clearer insight of the biological processes, batch uniformity, reproducibility, nanomaterial toxicity and stabilities are the hurdles faced by nanodrugs. The potential of nano-therapeutics delivery necessitates the agglomerated efforts of research community to bridge the route of nanodrugs for scale-up, commercialization and clinical applications.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan India
| | - Dhiraj Daga
- Department of Radiation Oncology, JLN Medical College, Ajmer, Rajasthan India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Rishabh Chaudhary
- Department of Emergency Medicine, Institute of Bioelectronic Medicine, Feinstein Institute of Medical Research, Northwell Health, New Hyde Park, NY USA
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| |
Collapse
|
18
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Guo XX, Guo ZH, Lu JS, Xie WS, Zhong QZ, Sun XD, Wang XM, Wang JY, Liu M, Zhao LY. All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. NANOSCALE 2021; 13:14525-14537. [PMID: 34473816 DOI: 10.1039/d1nr03869a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiotherapy (RT) is one of the main treatments for men with prostate cancer (PCa). To date, numerous sophisticated nano-formulations as radiosensitizers have been synthesized with inspiring therapeutic effects both in vitro and in vivo; however, almost all the attention has been paid on the enhanced dose deposition effect by secondary electrons of nanomaterials with high atomic numbers (Z); despite this, cell-cycle arrest, DNA damage, and also reactive oxygen species (ROS) production are critical working mechanisms that account for radiosensitization. Herein, an 'all-purpose' nanostrategy based on dose deposition enhancement, cell cycle arrest, and ROS production as prostate cancer radiosensitizer for potential clinical translation was proposed. The rather simple structure of docetaxel-loaded Au nanoparticles (NPs) with prostate specific membrane antigen (PSMA) ligand conjugation have been successfully synthesized. Enhanced cellular uptake achieved via the selective internalization of the NPs by PCa cells with positive PSMA expression could guarantee enhanced dose deposition. Moreover, the as-synthesized nanosystem could effectively arrest the cell cycle at G2/M phases, which would reduce the ability of DNA damage repair for more irradiation sensitive of the PCa cells. Moreover, the G2/M phase arrest would further promote cascade retention and the enrichment of NPs within the cells. Furthermore, ROS generation and double strand breaks greatly promoted by NPs under irradiation (IR) could also provide an underlying basis for effective radiosensitizers. In vitro and in vivo investigations confirmed the as-synthesized NPs as an effective nano-radiosensitizer with ideal safety. More importantly, all moieties within the present nanosystem have been approved by FDA for the purpose of PCa treatment, thus making it highly attractive for clinical translation.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Zhen-Hu Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing-Song Lu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen-Sheng Xie
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiu-Zi Zhong
- Department of Radiotherapy, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Xiao-Dan Sun
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiu-Mei Wang
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian-Ye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ling-Yun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
22
|
Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression. Polymers (Basel) 2021; 13:polym13152395. [PMID: 34371999 PMCID: PMC8347857 DOI: 10.3390/polym13152395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
DNA hydrogels are an emerging class of materials that hold great promise for numerous biotechnological applications, ranging from tissue engineering to targeted drug delivery and cell-free protein synthesis (CFPS). In addition to the molecular programmability of DNA that can be used to instruct biological systems, the formulation of DNA materials, e.g., as bulk hydrogels or microgels, is also relevant for specific applications. To advance the state of knowledge in this research area, the present work explores the scope of a recently developed class of complex DNA nanocomposites, synthesized by RCA polymerization of DNA-functionalized silica nanoparticles (SiNPs) and carbon nanotubes (CNTs). SiNP/CNT-DNA composites were produced as bulk materials and microgels which contained a plasmid with transcribable genetic information for a fluorescent marker protein. Using confocal microscopy and flow cytometry, we found that the materials are very efficiently taken up by various eukaryotic cell lines, which were able to continue dividing while the ingested material was evenly distributed to the daughter cells. However, no expression of the encoded protein occurred within the cells. While the microgels did not induce production of the marker protein even in a CFPS procedure with eukaryotic cell lysate, the bulk composites proved to be efficient templates for CFPS. This work contributes to the understanding of the molecular interactions between DNA composites and the functional cellular machinery. Implications for the use of such materials for CFPS procedures are discussed.
Collapse
|
23
|
Alhussan A, Bromma K, Perez MM, Beckham W, Alexander AS, Howard PL, Chithrani DB. Docetaxel-Mediated Uptake and Retention of Gold Nanoparticles in Tumor Cells and in Cancer-Associated Fibroblasts. Cancers (Basel) 2021; 13:cancers13133157. [PMID: 34202574 PMCID: PMC8269007 DOI: 10.3390/cancers13133157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Currently, radiotherapy and chemotherapy are the most commonly used options, in addition to surgery, to treat cancer. There has been tremendous progress in interfacing nanotechnology to current cancer therapeutic protocols. For example, nanoparticles are used as drug carriers in chemotherapy and as radiation dose enhancers in radiotherapy. However, most of the work to date has been focused on tumor cells. To make significant progress in this field, we need to consider the tumor microenvironment, especially cancer-associated fibroblast cells that promote tumor growth. Our study shows the potential of targeting both tumor cells and cancer-associated fibroblasts to reap the full benefits of cancer nanomedicine. Abstract Due to recent advances in nanotechnology, the application of nanoparticles (NPs) in cancer therapy has become a leading area in cancer research. Despite the importance of cancer-associated fibroblasts (CAFs) in creating an optimal niche for tumor cells to grow extensively, most of the work has been focused on tumor cells. Therefore, to effectively use NPs for therapeutic purposes, it is important to elucidate the extent of NP uptake and retention in tumor cells and CAFs. Three tumor cell lines and three CAF cell lines were studied using gold NPs (GNPs) as a model NP system. We found a seven-fold increase in NP uptake in CAFs compared to tumor cells. The retention percentage of NPs was three-fold higher in tumor cells as compared to CAFs. Furthermore, NP uptake and retention were significantly enhanced using a 50 nM concentration of docetaxel (DTX). NP uptake was improved by a factor of three in tumor cells and a factor of two in CAFs, while the retention of NPs was two-fold higher in tumor cells compared to CAFs, 72 h post-treatment with DTX. However, the quantity of NPs in CAFs was still three-fold higher compared to tumor cells. Our quantitative data were supported by qualitative imaging data. We believe that targeting of NPs in the presence of DTX is a very promising approach to accumulate a higher percentage of NPs and maintain a longer retention in both tumor cells and CAFs for achieving the full therapeutic potential of cancer nanotechnology.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
| | - Monica Mesa Perez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.M.P.); (P.L.H.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S Alexander
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.M.P.); (P.L.H.)
| | - Devika B Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
24
|
Investigation of Nano-Bio Interactions within a Pancreatic Tumor Microenvironment for the Advancement of Nanomedicine in Cancer Treatment. ACTA ACUST UNITED AC 2021; 28:1962-1979. [PMID: 34073974 PMCID: PMC8161808 DOI: 10.3390/curroncol28030183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer is one of the deadliest types of cancer, with a five-year survival rate of only 10%. Nanotechnology offers a novel perspective to treat such deadly cancers through their incorporation into radiotherapy and chemotherapy. However, the interaction of nanoparticles (NPs) with cancer cells and with other major cell types within the pancreatic tumor microenvironment (TME) is yet to be understood. Therefore, our goal is to shed light on the dynamics of NPs within a TME of pancreatic origin. In addition to cancer cells, normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were examined in this study due to their important yet opposite roles of suppressing tumor growth and promoting tumor growth, respectively. Gold nanoparticles were used as the model NP system due to their biocompatibility and physical and chemical proprieties, and their dynamics were studied both quantitatively and qualitatively in vitro and in vivo. The in vitro studies revealed that both cancer cells and CAFs take up 50% more NPs compared to NFs. Most importantly, they all managed to retain 70–80% of NPs over a 24-h time period. Uptake and retention of NPs within an in vivo environment was also consistent with in vitro results. This study shows the paradigm-changing potential of NPs to combat the disease.
Collapse
|
25
|
Combination Chemotherapy with Cisplatin and Chloroquine: Effect of Encapsulation in Micelles Formed by Self-Assembling Hybrid Dendritic-Linear-Dendritic Block Copolymers. Int J Mol Sci 2021; 22:ijms22105223. [PMID: 34069278 PMCID: PMC8156097 DOI: 10.3390/ijms22105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical outcomes of conventional drug combinations are not ideal due to high toxicity to healthy tissues. Cisplatin (CDDP) is the standard component for many cancer treatments, yet its principal dose-limiting side effect is nephrotoxicity. Thus, CDDP is commonly used in combination with other drugs, such as the autophagy inhibitor chloroquine (CQ), to enhance tumor cell killing efficacy and prevent the development of chemoresistance. In addition, nanocarrier-based drug delivery systems can overcome chemotherapy limitations, decreasing side effects and increasing tumor accumulation. The aim of this study was to evaluate the toxicity of CQ and CDDP against tumor and non-tumor cells when used in a combined treatment. For this purpose, two types of micelles based on Pluronic® F127 hybrid dendritic–linear–dendritic block copolymers (HDLDBCs) modified with polyester or poly(esteramide) dendrons derived from 2,2′-bis(hydroxymethyl)propionic acid (HDLDBC-bMPA) or 2,2′-bis(glycyloxymethyl)propionic acid (HDLDBC-bGMPA) were explored as delivery nanocarriers. Our results indicated that the combined treatment with HDLDBC-bMPA(CQ) or HDLDBC-bGMPA(CQ) and CDDP increased cytotoxicity in tumor cells compared to the single treatment with CDDP. Encapsulations demonstrated less short-term cytotoxicity individually or when used in combination compared to the free drugs. However, and more importantly, a low degree of cytotoxicity against non-tumor cells was maintained, even when drugs were given simultaneously.
Collapse
|
26
|
Combining Gold Nanoparticles with Other Radiosensitizing Agents for Unlocking the Full Potential of Cancer Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13040442. [PMID: 33805917 PMCID: PMC8064393 DOI: 10.3390/pharmaceutics13040442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
About half of cancer patients (50%) receive radiotherapy (RT) for the treatment of local tumors. However, one of the main obstacles in RT is the close proximity of adjacent organs at risk, resulting in treatment doses being limited by significant tissue toxicity, hence preventing the necessary dose escalation that would guarantee local control. Effective local cancer therapy is needed to avoid progression of tumors and to decrease the development of systemic metastases which may further increase the possibility of resection. In an effort to do so, radiosensitizing agents are introduced to further increase damage to the tumor while minimizing normal tissue toxicity. Cisplatin and docetaxel (DTX) are currently being used as radiation dose enhancers in RT. Recent research shows the potential of gold nanoparticles (GNPs) as a radiosensitizing agent. GNPs are biocompatible and have been tested in phase I clinical trials. The focus will be on exploring the effects of adding other radiosensitizing agents such as DTX and cisplatin to the GNP-RT platform. Therefore, a combined use of local radiosensitizing agents, such as GNPs, with currently available radiosensitizing drugs could make a significant impact in future RT. The ultimate goal is to develop treatments that have limited or nonexistent side effects to improve the quality of life of all cancer patients.
Collapse
|
27
|
Nakhla S, Rahawy A, Salam MAE, Shalaby T, Zaghloul M, El-Abd E. Radiosensitizing and Phototherapeutic Effects of AuNPs are Mediated by Differential Noxa and Bim Gene Expression in MCF-7 Breast Cancer Cell Line. IEEE Trans Nanobioscience 2020; 20:20-27. [PMID: 33017288 DOI: 10.1109/tnb.2020.3028562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To compare the apoptotic efficiency of AuNPs, ionizing and non-ionizing radiotherapy, phototherapy, and AuNPs-ionizing-radiotherapy), MCF-7 cells were used as a model for luminal B subtypes of breast carcinoma. A mixture of AuNPs [66% of Au-nanospheres (AuNSs) and 34% of Au-nanorods (AuNRs)] was synthesized and characterized by optical spectroscopy, zeta potential, and transmission electron microscopy (TEM). MCF-7 were divided into six groups (triplicates); after each treatment, cell viability was tested by MTT assay and relative gene expression levels of Bim and Noxa proapoptotic markers were assayed by qRT-PCR. A dose-dependent significant reduction in cell viability of MCF-7 was detected by all examined treatment protocols. Lower viability detected at extended exposure (48 hours) to AuNPs ( [Formula: see text]/ml) was mediated by the upregulation of Noxa gene expression. AuNS and AuNR in vitro PTTs were mediated by differential expression of Bim and Noxa while AuNPs mixture had a combined effect on both Bim and Noxa. Cellular recovery was observed two days-post x-rays irradiation at does < 3 Gy. AuNPs showed dose enhancement factor (DEF) > 12 indicating a high radiosensitizing effect that was partially mediated by Noxa. In conclusion, AuNPs combined therapies exert better anti-proliferative effects via differential regulation of Noxa and Bim gene expressions.
Collapse
|