1
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Alhasan A, Abdul Sani S, Tajuddin HA, Ali TH, Hisham S, Ung N, Azhar NA, BM Said NA, Abd Jamil AH, Bradley D. Synthesis of I@MPA-Mn:ZnSe as an efficient contrast agent for CT/fluorescence Bi-modal imaging application. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
4
|
Xu Z, Luo T, Mao J, McCleary C, Yuan E, Lin W. Monte Carlo Simulation-Guided Design of a Thorium-Based Metal-Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202208685. [PMID: 36149753 PMCID: PMC9647855 DOI: 10.1002/anie.202208685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/09/2022]
Abstract
High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th6 -oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient. Upon X-ray or γ-ray radiation, Th-DBP enhanced energy deposition, generated more reactive oxygen species, and induced significantly higher cytotoxicity to cancer cells over the previously reported Hf-DBP nMOF. With low-dose X-ray irradiation, Th-DBP suppressed tumor growth by 88 % in a colon cancer and 97 % in a pancreatic cancer mouse model.
Collapse
Affiliation(s)
- Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Caroline McCleary
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 (USA)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| |
Collapse
|
5
|
Maciejewska K, Marciniak L. Influence of the Synthesis Conditions on the Morphology and Thermometric Properties of the Lifetime-Based Luminescent Thermometers in YPO 4:Yb 3+,Nd 3+ Nanocrystals. ACS OMEGA 2022; 7:31466-31473. [PMID: 36092587 PMCID: PMC9453944 DOI: 10.1021/acsomega.2c03990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
An increase in the accuracy of remote temperature readout using luminescent thermometry is determined, among other things, by the relative sensitivity of the thermometer. Therefore, to increase the sensitivity, intensive work is carried out to optimize the host material composition and select the luminescent ions accordingly. However, the role of nanocrystal morphology in thermometric performance is often neglected. This paper presents a systematic study determining the role of synthesis parameters of the solvothermal method on the morphology of YPO4:Yb3+,Nd3+ nanocrystals and their effect on the lifetime of Yb3+ ion-based luminescent thermometer performance. It was shown that by changing the RE3+:(PO4)3- ratio and the concentration of Nd3+ ions, the size, shape, and aggregation level of the nanocrystals can be modified changing the thermometric parameters of the luminescent thermometer. The highest relative sensitivity was obtained for the low RE3+:(PO4)3- ratio and 1% Nd3+ ion concentration.
Collapse
Affiliation(s)
- Kamila Maciejewska
- Institute of Low Temperature
and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Lukasz Marciniak
- Institute of Low Temperature
and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
6
|
Dubey P, Sertorio M, Takiar V. Therapeutic Advancements in Metal and Metal Oxide Nanoparticle-Based Radiosensitization for Head and Neck Cancer Therapy. Cancers (Basel) 2022; 14:514. [PMID: 35158781 PMCID: PMC8833418 DOI: 10.3390/cancers14030514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Although radiation therapy (RT) is one of the mainstays of head and neck cancer (HNC) treatment, innovative approaches are needed to further improve treatment outcomes. A significant challenge has been to design delivery strategies that focus high doses of radiation on the tumor tissue while minimizing damage to surrounding structures. In the last decade, there has been increasing interest in harnessing high atomic number materials (Z-elements) as nanoparticle radiosensitizers that can also be specifically directed to the tumor bed. Metallic nanoparticles typically display chemical inertness in cellular and subcellular systems but serve as significant radioenhancers for synergistic tumor cell killing in the presence of ionizing radiation. In this review, we discuss the current research and therapeutic efficacy of metal nanoparticle (MNP)-based radiosensitizers, specifically in the treatment of HNC with an emphasis on gold- (AuNPs), gadolinium- (AGdIX), and silver- (Ag) based nanoparticles together with the metallic oxide-based hafnium (Hf), zinc (ZnO) and iron (SPION) nanoparticles. Both in vitro and in vivo systems for different ionizing radiations including photons and protons were reviewed. Finally, the current status of preclinical and clinical studies using MNP-enhanced radiation therapy is discussed.
Collapse
Affiliation(s)
- Poornima Dubey
- Department of Radiation Oncology, University of Cincinnati Barrett Cancer Center, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, USA; (P.D.); (M.S.)
- Cincinnati Department of Veterans Affairs (VA) Medical Center, 3200 Vine St., Cincinnati, OH 45220, USA
| | - Mathieu Sertorio
- Department of Radiation Oncology, University of Cincinnati Barrett Cancer Center, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, USA; (P.D.); (M.S.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati Barrett Cancer Center, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, USA; (P.D.); (M.S.)
- Cincinnati Department of Veterans Affairs (VA) Medical Center, 3200 Vine St., Cincinnati, OH 45220, USA
| |
Collapse
|
7
|
Lisjak D, Vozlič M, Kostiv U, Horák D, Majaron B, Kralj S, Zajc I, Žiberna L, Ponikvar-Svet M. NaYF 4-based upconverting nanoparticles with optimized phosphonate coatings for chemical stability and viability of human endothelial cells. Methods Appl Fluoresc 2021; 10. [PMID: 34883469 DOI: 10.1088/2050-6120/ac41ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
The increasing interest in upconverting nanoparticles (UCNPs) in biodiagnostics and therapy fuels the development of biocompatible UCNPs platforms. UCNPs are typically nanocrystallites of rare-earth fluorides codoped with Yb3+and Er3+or Tm3+. The most studied UCNPs are based on NaYF4but are not chemically stable in water. They dissolve significantly in the presence of phosphates. To prevent any adverse effects on the UCNPs induced by cellular phosphates, the surfaces of UCNPs must be made chemically inert and stable by suitable coatings. We studied the effect of various phosphonate coatings on chemical stability andin vitrocytotoxicity of the Yb3+,Er3+-codoped NaYF4UCNPs in human endothelial cells obtained from cellular line Ea.hy926. Cell viability of endothelial cells was determined using the resazurin-based assay after the short-term (15 min), and long-term (24 h and 48 h) incubations with UCNPs dispersed in cell-culture medium. The coatings were obtained from tertaphosphonic acid (EDTMP), sodium alendronate and poly(ethylene glycol)-neridronate. Regardless of the coating conditions, 1 - 2 nm-thick amorphous surface layers were observed on the UCNPs with transmission electron microscopy. The upconversion fluorescence was measured in the dispersions of all UCNPs. Surafce quenching in aqueous suspensions of the UCNPs was reduced by the coatings. The dissolution degree of the UCNPs was determined from the concentration of dissolved fluoride measured with ion-selective electrode after the ageing of UCNPs in water, physiological buffer (i.e., phosphate-buffered saline-PBS) and cell-culture medium. The phosphonate coatings prepared at 80 °C significantly suppressed the dissolution of UCNPs in PBS while only minor dissolution of bare and coated UCNPs was measured in water and cell-culture medium. The viability of human endothelial cells was significantly reduced when incubated with UCNPs, but it increased with the improved chemical stability of UCNPs by the phosphonate coatings with negligible cytotoxicity when coated with EDTMP at 80 °C.
Collapse
Affiliation(s)
- Darja Lisjak
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maša Vozlič
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Boris Majaron
- Jožef Stefan Institute, Department of Complex Matter, Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty for Mathematics and Physics, Jadranska 13, 1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Irena Zajc
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lovro Žiberna
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Maja Ponikvar-Svet
- Jožef Stefan Institute, Department of Inroganic Chemistry and Technology, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|