1
|
Bond DM, Veale A, Alexander A, Hore TA. Coat colour in marsupials: genetic variants at the ASIP locus determine grey and black fur of the brushtail possum. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240806. [PMID: 39086822 PMCID: PMC11288674 DOI: 10.1098/rsos.240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The possession of fur or hair is a defining characteristic of mammals and can occur in a variety of colours and patterns. While genetic determinants of coat colour are well described in eutherian 'placental' mammals, the other major mammalian infraclass, marsupials, is grossly understudied. The fur of the common brushtail possum (Trichosurus vulpecula), an iconic native mammal found throughout Australia and introduced into Aotearoa New Zealand, possesses two main colour morphs: grey and black. To identify genetic variants associated with coat colour, we performed a genome-wide association study (GWAS) with genotype by sequencing (GBS) data. Single nucleotide variants (SNVs) on chromosome 3, close to the agouti signalling protein (ASIP) gene that controls the temporal and spatial distribution of pigments in eutherian mammals, were identified. Fine-mapping identified a C>T variant at chr3:100483705 that results in a ASIP:p.Arg115Cys missense substitution, and animals homozygous for this variant have black fur. In addition to uncovering the first genetic determinant of coat colour in a natural marsupial population, comparative analysis of ASIP in divergent marsupial species identified the dasyurids as having accelerated evolution, reflecting their well described diversity of coat colour and pattern.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Veale
- Manaaki Whenua—Landcare Research, Lincoln, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Liu X, Peng Y, Zhang X, Wang X, Chen W, Kou X, Liang H, Ren W, Khan MZ, Wang C. Coloration in Equine: Overview of Candidate Genes Associated with Coat Color Phenotypes. Animals (Basel) 2024; 14:1802. [PMID: 38929421 PMCID: PMC11200706 DOI: 10.3390/ani14121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Variation in coat color among equids has attracted significant interest in genetics and breeding research. The range of colors is primarily determined by the type, concentration, and distribution of melanin pigments, with the balance between eumelanin and pheomelanin influenced by numerous genetic factors. Advances in genomic and sequencing technologies have enabled the identification of several candidate genes that influence coat color, thereby clarifying the genetic basis of these diverse phenotypes. In this review, we concisely categorize coat coloration in horses and donkeys, focusing on the biosynthesis and types of melanin involved in pigmentation. Moreover, we highlight the regulatory roles of some key candidate genes, such as MC1R, TYR, MITF, ASIP, and KIT, in coat color variation. Moreover, the review explores how coat color relates to selective breeding and specific equine diseases, offering valuable insights for developing breeding strategies that enhance both the esthetic and health aspects of equine species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
3
|
Zeng L, Li A, Qu K, Zhang J, Huang B, Lei C. TRPM4 gene variation associated with climatic conditions in Chinese cattle. Anim Biotechnol 2023; 34:3256-3260. [PMID: 35994677 DOI: 10.1080/10495398.2022.2112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The transient receptor potential (TRP) superfamily has been reported to play an important role in heat tolerance pathways. Based on the Bovine Genome Variation Database and Selective Signatures, a missense mutation (NC_037345.1: c.2237A > G: p. His746Arg) (rs209689836) was identified in the transient receptor potential cation channel subfamily M member 4 (TRPM4) gene, a member of the TRP family, corresponding to heat tolerance. Here, we explored the prevalence of this variant in 19 native Chinese cattle (comprised of 404 individuals) to determine its possible association with heat tolerance in Chinese cattle by using PCR and DNA sequencing. The distribution of alleles of NC_037345.1: c.2237A > G: p. His746Arg displays significant geographical differences across native Chinese cattle breeds, consistent with the distribution of indicine and taurine cattle in China. Additionally, the association analysis indicated that the G allele was significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (p < .05), suggesting that cattle carrying allele G were distributed in regions with higher T, RH, and THI. In conclusion, our results suggested that the mutation of the TRPM4 gene in Chinese cattle might be a candidate locus associated with heat tolerance.
Collapse
Affiliation(s)
- LuLan Zeng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - AiXin Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
5
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
6
|
Zhou Z, Fan Y, Wang G, Lai Z, Gao Y, Wu F, Lei C, Dang R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals (Basel) 2020; 10:ani10101823. [PMID: 33036357 PMCID: PMC7600737 DOI: 10.3390/ani10101823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary After a long period of artificial selection, the donkey now presents a variety of body types and production performance values. In this experiment, we performed selective signal scanning on the second-generation resequencing data of six different varieties. The regions and candidate genes related to artificial selection were identified to provide reference for future breeding. Abstract Donkeys (Equus asinus) are an important farm animal. After long-term natural and artificial selection, donkeys now exhibit a variety of body sizes and production performance values. In this study, six donkey breeds, representing different regions and phenotypes, were used for second-generation resequencing. The sequencing results revealed more than seven million single nucleotide variants (SNVs), with an average of more than four million SNVs per species. We combined two methods, Z-transformed heterozygosity (ZHp) and unbiased estimates of pairwise fixation index (di) values, to analyze the signatures of selection. We mapped 11 selected regions and identified genes associated with coat color, body size, motion capacity, and high-altitude adaptation. These candidate genes included staining (ASIP and KITLG), body type (ACSL4, BCOR, CDKL5, LCOR, NCAPG, and TBX3), exercise (GABPA), and adaptation to low-oxygen environments (GLDC and HBB). We also analyzed the SNVs of the breed-specific genes for their potential functions and found that there are three varieties in the conserved regions with breed-specific mutation sites. Our results provide data to support the establishment of the donkey SNV chip and reference information for the utilization of the genetic resources of Chinese domestic donkeys.
Collapse
|
7
|
Gao J, Lyu Y, Zhang D, Reddi KK, Sun F, Yi J, Liu C, Li H, Yao H, Dai J, Xu F. Genomic Characteristics and Selection Signatures in Indigenous Chongming White Goat ( Capra hircus). Front Genet 2020; 11:901. [PMID: 32973871 PMCID: PMC7472782 DOI: 10.3389/fgene.2020.00901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The Chongming white goat (CM) is an indigenous goat breed exhibits unique traits that are adapted to the local environment and artificial selection. By performing whole-genome re-sequencing, we generated 14-20× coverage sequences from 10 domestic goat breeds to explore the genomic characteristics and selection signatures of the CM breed. We identified a total of 23,508,551 single-nucleotide polymorphisms (SNPs) and 2,830,800 insertion-deletion mutations (indels) after read mapping and variant calling. We further specifically identified 1.2% SNPs (271,713) and 0.9% indels (24,843) unique to the CM breed in comparison with the other nine goat breeds. Missense (SIFT < 0.05), frameshift, splice-site, start-loss, stop-loss, and stop-gain variants were identified in 183 protein-coding genes of the CM breed. Of the 183, 36 genes, including AP4E1, FSHR, COL11A2, and DYSF, are involved in phenotype ontology terms related to the nervous system, short stature, and skeletal muscle morphology. Moreover, based on genome-wide F ST and pooled heterozygosity (Hp) calculation, we further identified selection signature genes between the CM and the other nine goat breeds. These genes are significantly associated with the nervous system (C2CD3, DNAJB13, UCP2, ZMYND11, CEP126, SCAPER, and TSHR), growth (UCP2, UCP3, TSHR, FGFR1, ERLIN2, and ZNF703), and coat color (KITLG, ASIP, AHCY, RALY, and MC1R). Our results suggest that the CM breed may be differentiated from other goat breeds in terms of nervous system owing to natural or artificial selection. The whole-genome analysis provides an improved understanding of genetic diversity and trait exploration for this indigenous goat breed.
Collapse
Affiliation(s)
- Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhua Lyu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kiran Kumar Reddi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fengping Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianzhong Yi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chengqian Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huijuan Yao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Tanaka J, Grahn R, Bellone RR. Evidence supports white spotting in donkeys as a homozygous lethal condition. Anim Genet 2020; 51:840-842. [PMID: 32657451 DOI: 10.1111/age.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Jocelyn Tanaka
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Robert Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.,Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Grilz-Seger G, Utzeri VJ, Ribani A, Taurisano V, Fontanesi L, Brem G. Known loci in the KIT and TYR genes do not explain the depigmented white coat colour of Austro-Hungarian Baroque donkey. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1790997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gertrud Grilz-Seger
- Institut für Tierzucht und Genetik, University of Veterinary Sciences Vienna, Wien, Austria
| | - Valerio Joe Utzeri
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Anisa Ribani
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Valeria Taurisano
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Gottfried Brem
- Institut für Tierzucht und Genetik, University of Veterinary Sciences Vienna, Wien, Austria
| |
Collapse
|
10
|
Yu Y, Shang S, Zhang X, Wang Z, Dang W, Zhang J, Zhu Y, Dang R, Irwin DM, Zhang S. A missense mutation in ASIP is associated with light point variation in donkeys. Anim Genet 2020; 51:629. [PMID: 32311147 DOI: 10.1111/age.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Yan Yu
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Songyang Shang
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoying Zhang
- Liaoning Province Engineering Center of Modern Agricultural Production Base, Shenyang, 110000, China
| | - Zhe Wang
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wanyi Dang
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Junpeng Zhang
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanxu Zhu
- Liaoning Province Engineering Center of Modern Agricultural Production Base, Shenyang, 110000, China
| | - Ruihua Dang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shuyi Zhang
- Institute of Equine Sciences, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
11
|
Brosnahan MM. Genetics, Evolution, and Physiology of Donkeys and Mules. Vet Clin North Am Equine Pract 2019; 35:457-467. [PMID: 31672199 DOI: 10.1016/j.cveq.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The genus Equus is made up of donkeys, horses, and zebras. Despite significant variation in chromosome number across these species, interspecies breeding results in healthy, although infertile, hybrid offspring. Most notable among these are the horse-donkey hybrids, the mule and hinny. Donkeys presently are used for everything from companion animals to beasts of burden. Although closely related from an evolutionary standpoint, differences in anatomy and physiology preclude the assumption that they can be treated identically to the domestic horse. Veterinarians should be aware of these differences and adjust their practice accordingly.
Collapse
Affiliation(s)
- Margaret M Brosnahan
- College of Veterinary Medicine, Midwestern University, 19555 North 59th Avenue, Cactus Wren Hall 336-P, Glendale, AZ 85308, USA.
| |
Collapse
|
12
|
Mendoza MN, Raudsepp T, Alshanbari F, Gutiérrez G, Ponce de León FA. Chromosomal Localization of Candidate Genes for Fiber Growth and Color in Alpaca ( Vicugna pacos). Front Genet 2019; 10:583. [PMID: 31275359 PMCID: PMC6593342 DOI: 10.3389/fgene.2019.00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
The alpaca (Vicugna pacos) is an economically important and cultural signature species in Peru. Thus, molecular genomic information about the genes underlying the traits of interest, such as fiber properties and color, is critical for improved breeding and management schemes. Current knowledge about the alpaca genome, particularly the chromosomal location of such genes of interest is limited and lags far behind other livestock species. The main objective of this work was to localize alpaca candidate genes for fiber growth and color using fluorescence in situ hybridization (FISH). We report the mapping of candidate genes for fiber growth COL1A1, CTNNB1, DAB2IP, KRT15, KRTAP13-1, and TNFSF12 to chromosomes 16, 17, 4, 16, 1, and 16, respectively. Likewise, we report the mapping of candidate genes for fiber color ALX3, NCOA6, SOX9, ZIC1, and ZIC5 to chromosomes 9, 19, 16, 1, and 14, respectively. In addition, since KRT15 clusters with five other keratin genes (KRT31, KRT13, KRT9, KRT14, and KRT16) in scaffold 450 (Vic.Pac 2.0.2), the entire gene cluster was assigned to chromosome 16. Similarly, mapping NCOA6 to chromosome 19, anchored scaffold 34 with 8 genes, viz., RALY, EIF2S2, XPOTP1, ASIP, AHCY, ITCH, PIGU, and GGT7 to chromosome 19. These results are concordant with known conserved synteny blocks between camelids and humans, cattle and pigs.
Collapse
Affiliation(s)
- Mayra N. Mendoza
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Terje Raudsepp
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Fahad Alshanbari
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Gustavo Gutiérrez
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - F. Abel Ponce de León
- Department of Animal Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Peng Y, Wang Y, Wang R, Geng L, Ma R, Zhang C, Liu Z, Gong Y, Li J, Li X. Exploring differentially expressed genes associated with coat color in goat skin using RNA-seq. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fur color in domestic goats is an important, genetically determined characteristic that is associated with economic value. This study was designed to perform a comprehensive expression profiling of genes expressed in the skin tissues from Laiwu Black goat and Lubei White goat. Comparisons of black and white goat skin transcriptomes revealed 102 differentially expressed genes (DEGs), of which 38 were upregulated and 64 downregulated in black skin compared with white skin. Among the DEGs, we identified six genes involved in pigmentation, including agouti signaling protein (ASIP), CAMP responsive element binding protein 3-like 1 (CREB3L1), dopachrome tautomerase (DCT), premelanosome protein (PMEL), transient receptor potential cation channel subfamily M member 1 (TRPM1), and tyrosinase-related protein 1 (TYRP1). Notably, there were no significant differences in the expression of melanocortin 1 receptor, microphthalmia-associated transcription factor, tyrosinase, and KIT proto-oncogene receptor tyrosine kinase between the black and white skin samples, whereas ASIP expression was detected only in white skin. PMEL, TRPM1, TYRP1, and DCT showed higher expression in black goat skin, but ASIP and CREB3L1 had higher expression in white goat skin. Quantitative polymerase chain reaction results for PMEL, TRPM1, DCT, TYRP1, and CREB3L1 expression were consistent with those for RNA-seq. These results will expand our understanding of the complex molecular mechanisms of skin physiology and melanogenesis in goats, and provide a foundation for future studies.
Collapse
Affiliation(s)
- Yongdong Peng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Yaqi Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Ruining Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Liying Geng
- College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding, Hebei 071001, People’s Republic of China
| | - Ruxue Ma
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Yuanfang Gong
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| | - Jingshi Li
- College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding, Hebei 071001, People’s Republic of China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China
| |
Collapse
|
14
|
Bhat B, Singh A, Iqbal Z, Kaushik JK, Rao AR, Ahmad SM, Bhat H, Ayaz A, Sheikh FD, Kalra S, Shanaz S, Mir MS, Agarwal PK, Mohapatra T, Ganai NA. Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Sci Rep 2019; 9:6361. [PMID: 31015528 PMCID: PMC6478727 DOI: 10.1038/s41598-019-42676-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
The genetics of coat color variation remains a classic area. Earlier studies have focused on a limited number of genes involved in color determination; however, the complete set of trait determinants are still not well known. In this study, we used high-throughput sequencing technology to identify and characterize intricate interactions between genes that cause complex coat color variation in Changthangi Pashmina goats, producer of finest and costly commercial animal fiber. We systematically identified differentially expressed mRNAs and lncRNAs from black, brown and white Pashmina goat skin samples by using RNA-sequencing technique. A pairwise comparison of black, white and brown skin samples yielded 2479 significantly dysregulated genes (2422 mRNA and 57 lncRNAs). Differentially expressed genes were enriched in melanin biosynthesis, melanocyte differentiation, developmental pigmentation, melanosome transport activities GO terms. Our analysis suggested the potential role of lncRNAs on color coding mRNAs in cis and trans configuration. We have also developed online data repository as a component of the study to provide a central location for data access, visualization and interpretation accessible through http://pcd.skuastk.org/.
Collapse
Affiliation(s)
- Basharat Bhat
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India
| | - Ashutosh Singh
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India
| | - Zaffar Iqbal
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Jai K Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - A R Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Hina Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Aadil Ayaz
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - F D Sheikh
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Shalini Kalra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Syed Shanaz
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Masood Salim Mir
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | | | | | - Nazir A Ganai
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India.
| |
Collapse
|
15
|
Alshanbari F, Castaneda C, Juras R, Hillhouse A, Mendoza MN, Gutiérrez GA, Ponce de León FA, Raudsepp T. Comparative FISH-Mapping of MC1R, ASIP, and TYRP1 in New and Old World Camelids and Association Analysis With Coat Color Phenotypes in the Dromedary ( Camelus dromedarius). Front Genet 2019; 10:340. [PMID: 31040864 PMCID: PMC6477024 DOI: 10.3389/fgene.2019.00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Melanocortin 1 receptor (MC1R), the agouti signaling protein (ASIP), and tyrosinase related protein 1 (TYRP1) are among the major regulators of pigmentation in mammals. Recently, MC1R and ASIP sequence variants were associated with white and black/dark brown coat colors, respectively, in the dromedary. Here we confirmed this association by independent sequencing and mutation discovery of MC1R and ASIP coding regions and by TaqMan genotyping in 188 dromedaries from Saudi Arabia and United States, including 38 black, 53 white, and 97 beige/brown/red animals. We showed that heterozygosity for a missense mutation c.901C > T in MC1R is sufficient for the white coat color suggesting a possible dominant negative effect. Likewise, we confirmed that the majority of black dromedaries were homozygous for a frameshift mutation in ASIP exon 2, except for 4 animals, which were heterozygous. In search for additional mutations underlying the black color, we identified another frameshift mutation in ASIP exon 4 and 6 new variants in MC1R including a significantly associated SNP in 3'UTR. In pursuit of sequence variants that may modify dromedary wild-type color from dark-reddish brown to light beige, we identified 4 SNPs and one insertion in TYRP1 non-coding regions. However, none of these were associated with variations in wild-type colors. Finally, the three genes were cytogenetically mapped in New World (alpaca) and Old World (dromedary and Bactrian camel) camelids. The MC1R was assigned to chr21, ASIP to chr19 and TYRP1 to chr4 in all 3 species confirming extensive conservation of camelid karyotypes. Notably, while the locations of ASIP and TYRP1 were in agreement with human-camelid comparative map, mapping MC1R identified a new evolutionary conserved synteny segment between camelid chromosome 21 and HSA16. The findings contribute to coat color genomics and the development of molecular tests in camelids and toward the chromosome level reference assemblies of camelid genomes.
Collapse
Affiliation(s)
- Fahad Alshanbari
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Hillhouse
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Mayra N. Mendoza
- Animal Breeding Program, National Agrarian University La Molina, Lima, Peru
| | | | | | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
Peng Y, Liu X, Geng L, Ma R, Li L, Li J, Zhang C, Liu Z, Gong Y, Li X. Illumina-sequencing based transcriptome study of coat color phenotypes in domestic goats. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Sun T, Li S, Xia X, Ji C, Shen S, Zhang G, Yu J, Jiang G, Dang R, Lei C. ASIP gene variation in Chinese donkeys. Anim Genet 2017; 48:372-373. [PMID: 28198029 DOI: 10.1111/age.12530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiying Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoting Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanliang Ji
- Donge Ejiao Company Limited by shares, Donge, Shandong, 252299, China
| | - Shanyi Shen
- Donge Ejiao Company Limited by shares, Donge, Shandong, 252299, China
| | - Guoliang Zhang
- Donge Ejiao Company Limited by shares, Donge, Shandong, 252299, China
| | - Jie Yu
- Donge Ejiao Company Limited by shares, Donge, Shandong, 252299, China
| | - Guimiao Jiang
- Donge Ejiao Company Limited by shares, Donge, Shandong, 252299, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Wu X, Tan Z, Shen L, Yang Q, Cheng X, Liao K, Bai L, Shuai S, Li M, Li X, Zhang S, Zhu L. Coat colour phenotype of Qingyu pig is associated with polymorphisms of melanocortin receptor 1 gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:938-943. [PMID: 28002929 PMCID: PMC5495671 DOI: 10.5713/ajas.16.0376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/10/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
Abstract
Objective Qingyu pig, a Chinese indigenous pig breed, exhibits two types of coat colour phenotypes, including pure black and white with black spotting respectively. Melanocortin receptor 1 (MC1R) and agouti signaling protein (ASIP) are two widely reported pivotal genes that significantly affect the regulation of coat colour. The objectives of this study were to investigate whether the polymorphisms of these two genes are associated with coat colour and analyze the molecular mechanism of the coat colour separation in Qingyu pig. Methods We studied the phenotype segregation and used polymerase chain reaction amplification and Sanger sequencing to investigate the polymorphism of MC1R and ASIP in 121 Qingyu pigs, consisting of 115 black and 6 white with black spotted pigs. Results Coat colour of Qingyu pig is associated with the polymorphisms of MC1R but not ASIP. We only found 2 haplotypes, EQY and Eqy, based on the 13 observed mutations from MC1R gene. Among which, Eqy presented a recessive inheritance mode in black spotted Qingyu pigs. Further analysis revealed a g.462–463CC insertion that caused a frameshift mutation and a premature stop codon, thus changed the first transmembrane domain completely and lost the remaining six transmembrane domains. Altogether, our results strongly support that the variety of Qingyu pig’s coat colour is related to MC1R. Conclusion Our findings indicated that black coat colour in Qingyu pig was dominant to white with black spotted phenotype and MC1R gene polymorphism was associated with coat colour separation in Qingyu pig.
Collapse
Affiliation(s)
- Xiaoqian Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China
| | - Xiao Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Liao
- Pasturage Station of Tongjiang Agriculture Bbureau, Tongjiang, 636718, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Martin PM, Palhière I, Ricard A, Tosser-Klopp G, Rupp R. Genome Wide Association Study Identifies New Loci Associated with Undesired Coat Color Phenotypes in Saanen Goats. PLoS One 2016; 11:e0152426. [PMID: 27030980 PMCID: PMC4816504 DOI: 10.1371/journal.pone.0152426] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
This paper reports a quantitative genetics and genomic analysis of undesirable coat color patterns in goats. Two undesirable coat colors have routinely been recorded for the past 15 years in French Saanen goats. One fifth of Saanen females have been phenotyped “pink” (8.0%) or “pink neck” (11.5%) and consequently have not been included in the breeding program as elite animals. Heritability of the binary “pink” and “pink neck” phenotype, estimated from 103,443 females was 0.26 for “pink” and 0.21 for “pink neck”. Genome wide association studies (using haplotypes or single SNPs) were implemented using a daughter design of 810 Saanen goats sired by 9 Artificial Insemination bucks genotyped with the goatSNP50 chip. A highly significant signal (-log10pvalue = 10.2) was associated with the “pink neck” phenotype on chromosome 11, suggesting the presence of a major gene. Highly significant signals for the “pink” phenotype were found on chromosomes 5 and 13 (-log10p values of 7.2 and, 7.7 respectively). The most significant SNP on chromosome 13 was in the ASIP gene region, well known for its association with coat color phenotypes. Nine significant signals were also found for both traits. The highest signal for each trait was detected by both single SNP and haplotype approaches, whereas the smaller signals were not consistently detected by the two methods. Altogether these results demonstrated a strong genetic control of the “pink” and “pink neck” phenotypes in French Saanen goats suggesting that SNP information could be used to identify and remove undesired colored animals from the breeding program.
Collapse
Affiliation(s)
- Pauline Marie Martin
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- * E-mail:
| | - Isabelle Palhière
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anne Ricard
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Gwenola Tosser-Klopp
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Rachel Rupp
- INRA, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR 1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|