1
|
Katiyar R, Gonmei C, Deori S, Singh M, Abedin SN, Rautela R, Singh NS, Chakravarty H, Das M, Choudhury BU, Mishra VK. Effect of heat stress on pig production and its mitigation strategies: a review. Trop Anim Health Prod 2025; 57:139. [PMID: 40117038 DOI: 10.1007/s11250-025-04387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Heat stress (HS) poses a significant challenge to pig production worldwide, with far-reaching consequences for productivity, reproduction, and overall animal welfare. Stress, broadly defined as the nonspecific physiological response to environmental demands, disrupts homeostasis, leading to health imbalances, behavioral changes, and reduced productive efficiency. Pigs are particularly susceptible to HS due to their limited thermoregulatory capacity, influenced by a low density of functional sweat glands and a thick subcutaneous fat layer. Rising global temperatures have exacerbated HS-induced economic losses in the swine industry, manifesting as decreased growth rates, poor reproductive performance, reduced feed efficiency, increased morbidity, and mortality. HS impairs pig production by diminishing feed intake and nutrient availability, which leads to reduced growth, suboptimal carcass quality, and compromised reproduction. Sows experience increased anestrus, extended weaning-to-estrus intervals, and smaller litter sizes, while boars exhibit reduced semen quality and fertility. The genetic selection for higher productivity has inadvertently lowered heat tolerance, as metabolic heat production increases with improved production traits. Furthermore, inadequate environmental management in pig housing exacerbates the impact of HS. Variations in heat tolerance among pigs underscore the importance of understanding genetic, physiological, and environmental factors influencing their response to HS. Research reveals genetic differences in thermotolerance, offering potential avenues for selective breeding to improve resilience. Effective management strategies, including nutritional adjustments, environmental modifications, and genetic selection, are crucial for mitigating the negative effects of HS and enhancing pig productivity. This review highlights the multifaceted impacts of HS on swine production, explores the physiological and reproductive consequences, and discusses adaptive and ameliorative measures to address these challenges, with a focus on maintaining sustainable pig production in the face of climatic changes.
Collapse
Affiliation(s)
- Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | | | - Sourabh Deori
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Mahak Singh
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India.
| | | | - Rupali Rautela
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | | | | | - Meena Das
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - B U Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | |
Collapse
|
2
|
Kalaignazhal G, Sejian V, Velayudhan SM, Mishra C, Rebez EB, Chauhan SS, DiGiacomo K, Lacetera N, Dunshea FR. Applications of Next-Generation Sequencing Technologies and Statistical Tools in Identifying Pathways and Biomarkers for Heat Tolerance in Livestock. Vet Sci 2024; 11:616. [PMID: 39728955 DOI: 10.3390/vetsci11120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The climate change-associated abnormal weather patterns negatively influences the productivity and performance of farm animals. Heat stress is the major detrimental factor hampering production, causing substantial economic loss to the livestock industry. Therefore, it is important to identify heat-tolerant breeds that can survive and produce optimally in any given environment. To achieve this goal, a clearer understanding of the genetic differences and the underlying molecular mechanisms associated with climate change impacts and heat tolerance are a prerequisite. Adopting next-generation biotechnological and statistical tools like whole transcriptome analysis, whole metagenome sequencing, bisulphite sequencing, genome-wide association studies (GWAS), and selection signatures provides an opportunity to achieve this goal. Through these techniques, it is possible to identify permanent genetic markers for heat tolerance, and by incorporating those markers in marker-assisted breeding selection, it is possible to achieve the target of breeding for heat tolerance in livestock. This review gives an overview of the recent advancements in assessing heat tolerance in livestock using such 'omics' approaches and statistical models. The salient findings from this research highlighted several candidate biomarkers that have the potential to be incorporated into future heat-tolerance studies. Such approaches could revolutionise livestock production in the changing climate scenario and support the food demands of the growing human population.
Collapse
Affiliation(s)
- Gajendirane Kalaignazhal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | | | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
de Freitas AC, Reolon HG, Abduch NG, Baldi F, Silva RMO, Lourenco D, Fragomeni BO, Paz CCP, Stafuzza NB. Proteomic identification of potential biomarkers for heat tolerance in Caracu beef cattle using high and low thermotolerant groups. BMC Genomics 2024; 25:1079. [PMID: 39538142 PMCID: PMC11562314 DOI: 10.1186/s12864-024-11021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Heat stress has deleterious effects on physiological and performance traits in livestock. Within this context, using tropically adapted cattle breeds in pure herds or terminal crossbreeding schemes to explore heterosis is attractive for increasing animal production in warmer climate regions. This study aimed to identify biological processes, pathways, and potential biomarkers related to thermotolerance in Caracu, a tropically adapted beef cattle breed, by proteomic analysis of blood plasma. To achieve this goal, 61 bulls had their thermotolerance evaluated through a heat tolerance index. A subset of 14 extreme animals, including the seven most thermotolerant (HIGH group) and the seven least thermotolerant (LOW group), had their blood plasma samples used for proteomic analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The differentially regulated proteins detected between HIGH and LOW groups were used to perform functional enrichment analysis and a protein-protein interaction network analysis. RESULTS A total of 217 proteins were detected only in the HIGH thermotolerant group and 51 only in the LOW thermotolerant group. In addition, 81 and 87 proteins had significantly higher and lower abundancies in the HIGH group, respectively. Regarding proteins with the highest absolute log-fold change values, we highlighted those encoded by DUSP5, IGFALS, ROCK2, RTN4, IRAG1, and NNT genes based on their functions. The functional enrichment analysis detected several biological processes, molecular functions, and pathways related to cellular responses to stress, immune system, complement system, and hemostasis in both HIGH and LOW groups, in addition to terms and pathways related to lipids and calcium only in the HIGH group. Protein-protein interaction (PPI) network revealed as important nodes many proteins with roles in response to stress, hemostasis, immune system, inflammation, and homeostasis. Additionally, proteins with high absolute log-fold change values and proteins detected as essential nodes by PPI analysis highlighted herein are potential biomarkers for thermotolerance, such as ADRA1A, APOA1, APOB, APOC3, C4BPA, CAT, CFB, CFH, CLU, CXADR, DNAJB1, DNAJC13, DUSP5, FGA, FGB, FGG, HBA, HBB, HP, HSPD1, IGFALS, IRAG1, KNG1, NNT, OSGIN1, PROC, PROS1, ROCK2, RTN4, RYR1, TGFB2, VLDLR, VTN, and VWF. CONCLUSIONS Identifying potential biomarkers, molecular mechanisms and pathways that act in response to heat stress in tropically adapted beef cattle contributes to developing strategies to improve performance and welfare traits in livestock under tropical climates.
Collapse
Affiliation(s)
- Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, MG, 38709-899, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Natalya G Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, SP, 15130-000, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil.
| |
Collapse
|
4
|
Wen H, Johnson JS, Mulim HA, Araujo AC, De Carvalho FE, Rocha AO, Huang Y, Tiezzi F, Maltecca C, Schinckel AP, Brito LF. Genomic regions and biological mechanisms underlying climatic resilience traits derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions. Front Genet 2024; 15:1498380. [PMID: 39574795 PMCID: PMC11578969 DOI: 10.3389/fgene.2024.1498380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Climate change poses a growing threat to the livestock industry, impacting animal productivity, animal welfare, and farm management practices. Thus, enhancing livestock climatic resilience (CR) is becoming a key priority in various breeding programs. CR can be defined as the ability of an animal to be minimally affected or rapidly return to euthermia under thermally stressful conditions. The primary study objectives were to perform genome-wide association studies for 12 CR indicators derived from variability in longitudinal vaginal temperature in lactating sows under heat stress conditions. A total of 31 single nucleotide polymorphisms (SNPs) located on nine chromosomes were considered as significantly associated with nine CR indicators based on different thresholds. Among them, only two SNPs were simultaneously identified for different CR indicators, SSC6:16,449,770 bp and SSC7:39,254,889 bp. These results highlighted the polygenic nature of CR indicators with small effects distributed across different chromosomes. Furthermore, we identified 434 positional genes associated with CR. Key candidate genes include SLC3A2, STX5, POLR2G, and GANAB, which were previously related to heat stress responses, protein folding, and cholesterol metabolism. Furthermore, the enriched KEGG pathways and Gene Ontology (GO) terms associated with these candidate genes are linked to stress responses, immune and inflammatory responses, neural system, and DNA damage and repair. The most enriched quantitative trait loci are related to "Meat and Carcass", followed by "Production", "Reproduction", "Health", and "Exterior (conformation and appearance)" traits. Multiple genomic regions were identified associated with different CR indicators, which reveals that CR is a highly polygenic trait with small effect sizes distributed across the genome. Many heat tolerance or HS related genes in our study, such as HSP90AB1, DMGDH, and HOMER1, have been identified. The complexity of CR encompasses a range of adaptive responses, from behavioral to cellular. These results highlight the possibility of selecting more heat-tolerant individuals based on the identified SNP for CR indicators.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Andre C. Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | | | - Artur O. Rocha
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yijian Huang
- Smithfield Premium Genetics, Raleigh, NC, United States
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Ocampo-Gallego RJ, Vargas YG, Flórez JCR. Genome-wide diversity, linkage disequilibrium, and admixture in the main Colombian Creole pig breeds. Trop Anim Health Prod 2024; 56:336. [PMID: 39384642 PMCID: PMC11464582 DOI: 10.1007/s11250-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Colombian Creole pigs have adapted to tropical conditions for over 500 years. They have been modified by natural and artificial selection in different regions. At present, the diversity and current introgression status are unknown. The objective was to estimate the genomic diversity, linkage disequilibrium, population structure, and admixture of four Colombian pig breeds and their relationship with other breeds worldwide. Three Colombian pig breeds (SPE-San Pedreño, 11 samples; ZUN-Zungo, 11 samples; CM-Casco de Mula, ten samples) from the conservation nucleus and one biotype not recognized as a breed (CCH-Criollo Chocoano, seven samples) were genotyped using the Illumina GGP-Porcine80K chip. Open-access data from seven international breeds were also included. Colombian Creole pigs showed moderate genetic differentiation (FST 0.14) globally, but several groups of animals separated, suggesting local clustering due to geographical isolation or different founding effects. Colombian Creole pigs showed breed imprinting and specific grouping in all analyses except for CCH, which, like the Ecuadorian Creole, was a cluster of admixtures. The Colombian Creole pigs revealed a significant relationship with the Iberian pig and some other breeds to varying degrees. However, good maintenance of the conservation nucleus was evidenced. Potential adaptive genes, mainly related to immunological functions, were found, according to FST and pcadapt analyses. This study provides a foundation and scientific data for policy decisions on zoogenetic resources.
Collapse
Affiliation(s)
- Ricardo José Ocampo-Gallego
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Nus Research Center, Corregimiento San José del Nus, San Roque, CP. 250047, Antioquia, Colombia.
| | - Yolanda Gómez Vargas
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Nus Research Center, Corregimiento San José del Nus, San Roque, CP. 250047, Antioquia, Colombia
| | - Juan Carlos Rincón Flórez
- Palmira Zoogenetic Resources Research Group, Deparment of Animal Science, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| |
Collapse
|
6
|
Wen H, Johnson JS, Gloria LS, Araujo AC, Maskal JM, Hartman SO, de Carvalho FE, Rocha AO, Huang Y, Tiezzi F, Maltecca C, Schinckel AP, Brito LF. Genetic parameters for novel climatic resilience indicators derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions. Genet Sel Evol 2024; 56:44. [PMID: 38858613 PMCID: PMC11163738 DOI: 10.1186/s12711-024-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, USA
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
De Prekel L, Maes D, Van den Broeke A, Ampe B, Aluwé M. Evaluation of a heating protocol and stocking density impact on heatstressed fattening pigs. Animal 2024; 18:101172. [PMID: 38772079 DOI: 10.1016/j.animal.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
As climate change intensifies, heat stress mitigation for pigs becomes more important. Trials involving induced heat waves are useful to test several measures (e.g. reduced stocking density) at a faster rate, but only when accurately evaluated and validated. In the present study, we investigated the suitability of an artificial heating protocol at different pig weights (experiment 1). The impact of different stocking densities on fattening pigs during an artificial heat wave (experiment 2) was also investigated. Experiment 1: Forty 20-week-old pigs weighing 96.5 ± 7.3 kg (W100) and forty 17-week-old pigs weighing 72.7 ± 9.9 kg (W70) were housed in two compartments. An artificial heat wave (heat load) was induced for 3 days. During 3-day periods before, during and after the heat load, physiological parameters (respiration rate (RR), rectal temperature (Trectal), skin temperature (Tskin) and behavior) were measured and average daily feed intake was observed. Ambient temperature, relative humidity and temperature-humidity index (THI) were monitored. Experiment 2: A total of 150 fattening pigs were randomly divided into three treatment groups: SD1.3 (1.3 m2/pig), SD1.0 (1.0 m2/pig) and SD0.8 (0.8 m2/pig). All pens had a total pen surface of 4.88 m2, corresponding with 4, 5 and 6 fattening pigs in the SD1.3, SD1.0 and SD0.8 groups, respectively. The heat load was induced for 7 days on week 21. Respiration rate and Trectal were observed as in experiment 1. Average daily gain and average daily feed intake were also noted. During the heat load, THI reached ≥ 75 (78.4 (experiment 1) and 78.6 (experiment 2)), even when relative humidity decreased to ± 45%. Every physiological parameter showed significant increases during the heat load. The prolonged heating protocol in experiment 2 also provoked significant decreases in average daily feed intake (15%) and average daily gain (19%) for all groups. Weight within the studied range of 70-100 kg did not have a significant impact on any of the parameters. However, Tskin was affected by both weight and heat load (P < 0.05), where Tskin from W100 was always lower in comparison to W70. In addition, we found that 0.8 m2/pig doubled the increase of Trectal during the heat load, namely SD0.8 (0.22 °C) compared to SD1.0 (0.12 °C) (P = 0.033) and SD1.3 (0.13 °C) (P = 0.053). This suggests that pigs housed at higher densities are less able to regulate their internal heat production. However, RR and performances were not significantly affected by heat load in this experimental set-up. A stocking density of 1.0 m2/animal may be sufficient to mitigate some negative effects of heat stress.
Collapse
Affiliation(s)
- L De Prekel
- Porcine Health Management Unit, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - D Maes
- Porcine Health Management Unit, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - A Van den Broeke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| | - B Ampe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| | - M Aluwé
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| |
Collapse
|
8
|
Funk T, Rohrer G, Brown-Brandl T, Keel B. Online feeding behavior monitoring of individual group-housed grow-finish pigs using a low-frequency RFID electronic feeding system. Transl Anim Sci 2024; 8:txae051. [PMID: 38827162 PMCID: PMC11143491 DOI: 10.1093/tas/txae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Early identification of animals in need of management intervention is critical to maximize animal health and welfare and minimize issues with productivity. Feeding behavior, captured by automated feeding systems, can be used to monitor the health and welfare status of individual pigs. Here, we present a framework for monitoring feeding behavior of grow-finish pigs in real time, using a low-frequency radio frequency identification (RFID) system. Using historical data, an autoregressive linear model for predicting daily time at the feeder was developed and utilized to detect anomalous decreases in feeding behavior associated with health status of the pig. A total of 2,826 pigs were individually monitored with our warning system over the entire grow-finish period, and health warnings were compared to caretaker diagnoses. The system detected 55.7% of the caretaker diagnoses, and on average these events were detected 2.8 d earlier than diagnosis by the caretaker. High numbers of potentially spurious health warnings, generated by the system, can be partly explained by the lack of a reliable and repeatable gold standard reference data set. Results from this work provide a solid basis for monitoring individual animals, but further improvements to the system are necessary for practical implementation.
Collapse
Affiliation(s)
- Taran H Funk
- U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933, USA
| | - Gary A Rohrer
- U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933, USA
| | - Tami M Brown-Brandl
- Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Brittney N Keel
- U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933, USA
| |
Collapse
|
9
|
Bus JD, Boumans IJMM, Engel J, Te Beest DE, Webb LE, Bokkers EAM. Circadian rhythms and diurnal patterns in the feed intake behaviour of growing-finishing pigs. Sci Rep 2023; 13:16021. [PMID: 37749122 PMCID: PMC10519948 DOI: 10.1038/s41598-023-42612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The feeding behaviour of growing-finishing pigs is an important indicator of performance, health and welfare, but this use is limited by its large, poorly-understood variation. We explored the variation in basal feed intake of individual pigs by detecting circadian rhythms, extracting features of diurnal patterns and assessing consistency over time, from day-to-day and across age. Hourly feed intake data of individual pigs (n = 110) was obtained during one growing-finishing phase, using electronic feeding stations. We applied wavelet analysis to assess rhythms and a hurdle generalised additive model to extract features of diurnal patterns. We found that circadian rhythms could be detected during 58 ± 3% (mean ± standard error) of days in the growing-finishing phase (range 0-100%), predominantly at older ages. Although the group diurnal intake pattern was alternans (small morning peak, larger afternoon peak), individual pigs showed a range of diurnal patterns that changed with age, differing mostly in the extent of night fasting and day-to-day consistency. Our results suggest that the type, day-to-day consistency and age development of diurnal patterns in feed intake show general group patterns but also differ between pigs. Using this knowledge, promising features may be selected to compare against production, health and welfare parameters.
Collapse
Affiliation(s)
- Jacinta D Bus
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands.
| | - Iris J M M Boumans
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| | - Jasper Engel
- Biometris, Wageningen University & Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Dennis E Te Beest
- Biometris, Wageningen University & Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Laura E Webb
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| | - Eddie A M Bokkers
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| |
Collapse
|
10
|
da Silva WA, Pandorfi H, Vigoderis RB, de Almeida GLP, Moraes AS, Guiselini C, da Silva MV, Marinho GTB. Exploratory inference of the ingestive behavior of pigs in the finishing phase in an air-conditioned environment. Trop Anim Health Prod 2023; 55:266. [PMID: 37438616 DOI: 10.1007/s11250-023-03686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The objective of this research is to apply exploratory analysis and modeling associated with abiotic factors, physiological and behavioral variables of swine in the semi-arid region. The experimental design used was completely randomized, in a 3 × 3 factorial scheme, randomly distributed in nine pens, with three animals. The behavior of the animals was recorded using images and analyzed within 10-min interval. The data analysis used was multivariate, using the clustering method (tree diagram) and principal component analysis (PCA), in order to establish the main predictors of swine ingestive behavior, using multiple linear regression models. The PCA showed satisfactory results, in which the lowest eigenvalue observed was 2.82 and the accumulated variance for the treatments ranged from 69.70 to 94% for the first two principal components. Through exploratory data analysis, it was possible to identify the relationship between biotic and abiotic factors with the ingestive behavior of pigs in the finishing phase. Based on the results of the multivariate analysis, the most promising predictor variables for estimating the regression models were determined. Adiabatic evaporative cooling associated with 18 h of light was the combination of factors with the best results, presenting models for eating and drinking behavior, i.e. a complete ingestive characterization.
Collapse
Affiliation(s)
- Weslley Amaro da Silva
- Programa de Pós-Graduação Em Engenharia Agrícola, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil.
| | - Héliton Pandorfi
- Programa de Pós-Graduação Em Engenharia Agrícola, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | | | | - Alex Souza Moraes
- Departamento de Química, Universidade Federal Rural de Pernambuco, Dom Manoel de Medeiros Avenue, SN, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900, Brazil
| | - Cristiane Guiselini
- Programa de Pós-Graduação Em Engenharia Agrícola, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Marcos Vinícius da Silva
- Programa de Pós-Graduação Em Engenharia Agrícola, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
11
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Alvarenga AB, Oliveira HR, Miller SP, Silva FF, Brito LF. Genetic Modeling and Genomic Analyses of Yearling Temperament in American Angus Cattle and Its Relationship With Productive Efficiency and Resilience Traits. Front Genet 2022; 13:794625. [PMID: 35444687 PMCID: PMC9014094 DOI: 10.3389/fgene.2022.794625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cattle temperament has been considered by farmers as a key breeding goal due to its relevance for cattlemen's safety, animal welfare, resilience, and longevity and its association with many economically important traits (e.g., production and meat quality). The definition of proper statistical models, accurate variance component estimates, and knowledge on the genetic background of the indicator trait evaluated are of great importance for accurately predicting the genetic merit of breeding animals. Therefore, 266,029 American Angus cattle with yearling temperament records (1-6 score) were used to evaluate statistical models and estimate variance components; investigate the association of sex and farm management with temperament; assess the weighted correlation of estimated breeding values for temperament and productive, reproductive efficiency and resilience traits; and perform a weighted single-step genome-wide association analysis using 69,559 animals genotyped for 54,609 single-nucleotide polymorphisms. Sex and extrinsic factors were significantly associated with temperament, including conception type, age of dam, birth season, and additional animal-human interactions. Similar results were observed among models including only the direct additive genetic effect and when adding other maternal effects. Estimated heritability of temperament was equal to 0.39 on the liability scale. Favorable genetic correlations were observed between temperament and other relevant traits, including growth, feed efficiency, meat quality, and reproductive traits. The highest approximated genetic correlations were observed between temperament and growth traits (weaning weight, 0.28; yearling weight, 0.28). Altogether, we identified 11 genomic regions, located across nine chromosomes including BTAX, explaining 3.33% of the total additive genetic variance. The candidate genes identified were enriched in pathways related to vision, which could be associated with reception of stimulus and/or cognitive abilities. This study encompasses large and diverse phenotypic, genomic, and pedigree datasets of US Angus cattle. Yearling temperament is a highly heritable and polygenic trait that can be improved through genetic selection. Direct selection for temperament is not expected to result in unfavorable responses on other relevant traits due to the favorable or low genetic correlations observed. In summary, this study contributes to a better understanding of the impact of maternal effects, extrinsic factors, and various genomic regions associated with yearling temperament in North American Angus cattle.
Collapse
Affiliation(s)
- Amanda B Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Stephen P Miller
- American Angus Association, Angus Genetics Inc., St Joseph, MO, United States
| | - Fabyano F Silva
- Department of Animal Sciences, Federal University of Vicosa, Viçosa, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Plasticity of feeding behaviour traits in response to production environment (temperate vs. tropical) in group-housed growing pigs. Sci Rep 2022; 12:847. [PMID: 35039563 PMCID: PMC8764086 DOI: 10.1038/s41598-021-04752-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
Heat stress affects pig metabolism, health and welfare, resulting in reduced growth and important economic losses. The present experiment aimed to evaluate the effects of two climatic environments [temperate (TEMP) vs. tropical humid (TROP)] on feeding behaviour in growing pigs. The feeding behaviour traits were measured with automated feeders and included: daily feed intake, daily eating time, feeding rate, daily number of meals, feed intake per meal, and feeding time per meal. Pigs came from a backcross population between Large White (LW, heat sensitive) and Creole (CR, heat tolerant) pigs. The same 10 F1 LW × CR boars (sire families [SF]) were mated with related LW sows in each environment. Feeding behaviour was recorded for a total of 1,296 pigs (n = 634 pigs for TEMP and n = 662 pigs for TROP) between 11 and 23 weeks of age. Growth performance and thermoregulatory responses (rectal and skin temperatures) were also measured. Results show that TROP conditions affect feeding behaviour traits: animals had more meals per day but these meals were smaller both in duration and in size, resulting in lower daily feed intake and less time eating per day. Significant SF by environment (GxE) interactions were found for all feeding behaviour traits. When SF were distributed into robust and sensitive groups (previously defined according to performance and thermoregulatory traits), results showed group by environment interactions for all feeding traits, except meal frequency. Moreover, a significant difference in feeding rate between robust and sensitive group was detected in TEMP, suggesting that feeding rate may be a good candidate to evaluate heat tolerance.
Collapse
|
14
|
Ogawa S, Ohnishi C, Satoh M. Effect of ambient temperature on average daily gain of pigs evaluated using public weather data and a plateau-linear regression model. Anim Sci J 2022; 93:e13762. [PMID: 35946833 PMCID: PMC10078422 DOI: 10.1111/asj.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
We performed a plateau-linear regression model analysis of the average daily gain (ADG) of pigs on daily average temperature at the end of performance testing (T). Records for performance testing between 30 kg and 105 kg of 2268 purebred Duroc pigs raised at the National Livestock Breeding Center Miyazaki Station were used. Off-farm ambient temperatures were measured at the nearest Automated Meteorological Data Acquisition System station at Kobayashi, Miyazaki (Kobayashi station). A plateau-linear regression equation was obtained in which ADG decreased by 12.6 g for every 1°C when T > 21.1°C. We calculated the expected age in day at the end of testing (D105) using the regression equation obtained and T observed at the Kobayashi station in 2020. The number of days that D105 was prolonged due to higher T was 125 days, corresponding to approximately one third of the year. These results could contribute to planning and management of stable pork production in response to heat in Japan.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chika Ohnishi
- National Livestock Breeding Center, Miyazaki Station, Kobayashi, Japan
| | - Masahiro Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Gourdine JL, Rauw WM, Gilbert H, Poullet N. The Genetics of Thermoregulation in Pigs: A Review. Front Vet Sci 2021; 8:770480. [PMID: 34966808 PMCID: PMC8711629 DOI: 10.3389/fvets.2021.770480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Heat stress (HS) affects pig performance, health and welfare, resulting in a financial burden to the pig industry. Pigs have a limited number of functional sweat glands and their thermoregulatory mechanisms used to maintain body temperature, are challenged by HS to maintain body temperature. The genetic selection of genotypes tolerant to HS is a promising long-term (adaptation) option that could be combined with other measures at the production system level. This review summarizes the current knowledge on the genetics of thermoregulation in pigs. It also discusses the different phenotypes that can be used in genetic studies, as well as the variability in thermoregulation between pig breeds and the inheritance of traits related to thermoregulation. This review also considers on-going challenges to face for improving heat tolerance in pigs.
Collapse
Affiliation(s)
| | - Wendy Mercedes Rauw
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Madrid, Spain
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, INP, Castanet Tolosan, France
| | | |
Collapse
|
16
|
Bus JD, Boumans IJ, Webb LE, Bokkers EA. The potential of feeding patterns to assess generic welfare in growing-finishing pigs. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep 2021; 11:13335. [PMID: 34172761 PMCID: PMC8233360 DOI: 10.1038/s41598-021-92455-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
18
|
Kim B, Kim HR, Kim KH, Ji SY, Kim M, Lee Y, Lee SD, Jeong JY. Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:319-331. [PMID: 33987607 PMCID: PMC8071736 DOI: 10.5187/jast.2021.e23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Heat stress (HS) causes adverse impacts on pig production and health. A potential
biomarker of HS is required to predict its occurrence and thereby better manage
pigs under HS. Information about the saliva metabolome in heat-stressed pigs is
limited. Therefore, this study was aimed to investigate the effects of acute HS
on the saliva metabolome and identify metabolites that could be used as
potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in
a thermal neutral (TN; 25°C) environment for a 5-d adaptation period
(CON). After adaptation, the pigs were first exposed to HS (30°C; HS30)
and then exposed to higher HS (33°C; HS33) for 24 h. Saliva was collected
after adaptation, first HS, and second HS, respectively, for metabolomic
analysis using 1H-nuclear magnetic resonance spectroscopy. Four
metabolites had significantly variable importance in the projection (VIP
> 1; p < 0.05) different levels in TN compared to
HS groups from all genders (boars and gilts). However, sex-specific
characteristics affected metabolites (glutamate and leucine) by showing the
opposite results, indicating that HS was less severe in females than in males. A
decrease in creatine levels in males and an increase in creatine phosphate
levels in females would have contributed to a protective effect from protein
degradation by muscle damage. The results showed that HS led to an alteration in
metabolites related to energy and protein. Protection from muscle damage may be
attributed to the alteration in protein-related metabolites. However,
energy-related metabolites showed opposing results according to sex-specific
characteristics, such as sex hormone levels and subcutaneous fat layer. This
study had shown that saliva samples could be used as a noninvasive method to
evaluate heat-stressed pigs. And the results in this study could be contributed
to the development of a diagnostic tool as a noninvasive biomarker for managing
heat-stressed pigs.
Collapse
Affiliation(s)
- Byeonghyeon Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hye Ran Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Yookyung Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sung Dae Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
19
|
Alvarenga AB, Oliveira HR, Chen SY, Miller SP, Marchant-Forde JN, Grigoletto L, Brito LF. A Systematic Review of Genomic Regions and Candidate Genes Underlying Behavioral Traits in Farmed Mammals and Their Link with Human Disorders. Animals (Basel) 2021; 11:ani11030715. [PMID: 33800722 PMCID: PMC7999279 DOI: 10.3390/ani11030715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This study is a comprehensive review of genomic regions associated with animal behavior in farmed mammals (beef and dairy cattle, pigs, and sheep) which contributes to a better understanding of the biological mechanisms influencing the target indicator trait and to gene expression studies by suggesting genes likely controlling the trait, and it will be useful in optimizing genomic predictions of breeding values incorporating biological information. Behavioral mechanisms are complex traits, genetically controlled by multiple genes spread across the whole genome. The majority of the genes identified in cattle, pigs, and sheep in association with a plethora of behavioral measurements (e.g., temperament, terrain use, milking speed, tail biting, and sucking reflex) are likely controlling stimuli reception (e.g., olfactory), internal recognition of stimuli (e.g., neuroactive ligand–receptor interaction), and body response to a stimulus (e.g., blood pressure, fatty acidy metabolism, hormone signaling, and inflammatory pathways). Six genes were commonly identified between cattle and pigs. About half of the genes for behavior identified in farmed mammals were also identified in humans for behavioral, mental, and neuronal disorders. Our findings indicate that the majority of the genes identified are likely controlling animal behavioral outcomes because their biological functions as well as potentially differing allele frequencies between two breed groups (subjectively) clustered based on their temperament characteristics. Abstract The main objectives of this study were to perform a systematic review of genomic regions associated with various behavioral traits in the main farmed mammals and identify key candidate genes and potential causal mutations by contrasting the frequency of polymorphisms in cattle breeds with divergent behavioral traits (based on a subjective clustering approach). A total of 687 (cattle), 1391 (pigs), and 148 (sheep) genomic regions associated with 37 (cattle), 55 (pigs), and 22 (sheep) behavioral traits were identified in the literature. In total, 383, 317, and 15 genes overlap with genomic regions identified for cattle, pigs, and sheep, respectively. Six common genes (e.g., NR3C2, PITPNM3, RERG, SPNS3, U6, and ZFAT) were found for cattle and pigs. A combined gene-set of 634 human genes was produced through identified homologous genes. A total of 313 out of 634 genes have previously been associated with behavioral, mental, and neurologic disorders (e.g., anxiety and schizophrenia) in humans. Additionally, a total of 491 candidate genes had at least one statistically significant polymorphism (p-value < 0.05). Out of those, 110 genes were defined as having polymorphic regions differing in greater than 50% of exon regions. Therefore, conserved genomic regions controlling behavior were found across farmed mammal species and humans.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| | | | - Jeremy N. Marchant-Forde
- Livestock Behavior Research Unit, United States Department of Agriculture—Agricultural Research Service (USDA–ARS), West Lafayette, IN 47907, USA;
| | - Lais Grigoletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 05508, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Correspondence:
| |
Collapse
|
20
|
Godyń D, Herbut P, Angrecka S, Corrêa Vieira FM. Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress-A Review. Animals (Basel) 2020; 10:ani10091459. [PMID: 32825297 PMCID: PMC7552673 DOI: 10.3390/ani10091459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
An increase in the frequency of hot periods, which has been observed over the past decades, determines the novel approach to livestock facilities improvement. The effects of heat stress are revealed in disorders in physiological processes, impaired immunity, changes in behaviour and decreases in animal production, thus implementation of cooling technologies is a key factor for alleviating these negative consequences. In pig facilities, various cooling methods have been implemented. Air temperature may be decreased by using adiabatic cooling technology such as a high-pressure fogging system or evaporative pads. In modern-type buildings large-surface evaporative pads may support a tunnel ventilation system. Currently a lot of attention has also been paid to developing energy- and water-saving cooling methods, using for example an earth-air or earth-to-water heat exchanger. The pigs' skin surface may be cooled by using sprinkling nozzles, high-velocity air stream or conductive cooling pads. The effectiveness of these technologies is discussed in this article, taking into consideration the indicators of animal welfare such as respiratory rate, skin surface and body core temperature, performance parameters and behavioural changes.
Collapse
Affiliation(s)
- Dorota Godyń
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice n Kraków, 31-047 Kraków, Poland
- Correspondence:
| | - Piotr Herbut
- Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland; (P.H.); (S.A.)
| | - Sabina Angrecka
- Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland; (P.H.); (S.A.)
| | - Frederico Márcio Corrêa Vieira
- Biometeorology Study Group (GEBIOMET), Universida de Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos PR 85660-000, Brazil;
| |
Collapse
|
21
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
22
|
Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front Genet 2020; 11:793. [PMID: 32849798 PMCID: PMC7411239 DOI: 10.3389/fgene.2020.00793] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Genomic breeding programs have been paramount in improving the rates of genetic progress of productive efficiency traits in livestock. Such improvement has been accompanied by the intensification of production systems, use of a wider range of precision technologies in routine management practices, and high-throughput phenotyping. Simultaneously, a greater public awareness of animal welfare has influenced livestock producers to place more emphasis on welfare relative to production traits. Therefore, management practices and breeding technologies in livestock have been developed in recent years to enhance animal welfare. In particular, genomic selection can be used to improve livestock social behavior, resilience to disease and other stress factors, and ease habituation to production system changes. The main requirements for including novel behavioral and welfare traits in genomic breeding schemes are: (1) to identify traits that represent the biological mechanisms of the industry breeding goals; (2) the availability of individual phenotypic records measured on a large number of animals (ideally with genomic information); (3) the derived traits are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with other traits already included in the selection indexes; and (4) genomic information is available for a large number of individuals (or genetically close individuals) with phenotypic records. In this review, we (1) describe a potential route for development of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic selection schemes; (2) summarize key indicator variables of livestock behavior and welfare, including a detailed assessment of thermal stress in livestock; (3) describe the primary statistical and bioinformatic methods available for large-scale data analyses of animal welfare; and (4) identify major advancements, challenges, and opportunities to generate high-throughput and large-scale datasets to enable genetic and genomic selection for improved welfare in livestock. A wide variety of novel welfare indicator traits can be derived from information captured by modern technology such as sensors, automatic feeding systems, milking robots, activity monitors, video cameras, and indirect biomarkers at the cellular and physiological levels. The development of novel traits coupled with genomic selection schemes for improved welfare in livestock can be feasible and optimized based on recently developed (or developing) technologies. Efficient implementation of genetic and genomic selection for improved animal welfare also requires the integration of a multitude of scientific fields such as cell and molecular biology, neuroscience, immunology, stress physiology, computer science, engineering, quantitative genomics, and bioinformatics.
Collapse
Affiliation(s)
- Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Betty R. McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Aitor Arrazola
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | | | - Jay S. Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, United States
| |
Collapse
|
23
|
Cross AJ, Brown-Brandl TM, Keel BN, Cassady JP, Rohrer GA. Feeding behavior of grow-finish swine and the impacts of heat stress. Transl Anim Sci 2020; 4:txaa023. [PMID: 32705022 DOI: 10.1093/tas/txaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
Heat stress has negative impacts on pork production, particularly in the grow-finish phase. During heat stress events, the feeding behavior of pigs is altered to reduce heat production. Several different systems have been developed to study feeding behavior. Most systems are not accurate representations of grow-finish commercial production as feed intake is monitored for only one pig at a time. The objective of this study was to utilize a feed monitoring system, representative of commercial conditions, to determine feeding behavior patterns of grow-finish pigs throughout the year and to identify changes that occurred during heat stress events. Feeder visit data were collected on barrows and gilts (n = 932) from three different sire breeds, Landrace, Yorkshire, and Duroc, between May 2014 and April 2016. Days in the study were partitioned into groups based on their maximum temperature-humidity index (THI), where a THI less than 23.33 °C was classified as "Normal", a THI between 23.33 and 26.11 °C was classified as "Alert", a THI between 26.11 and 28.88 °C was classified as "Danger", and a THI greater than 28.88 °C was classified as "Emergency". Feeding behavioral differences among breeds and sex were observed across all THI categories. Landrace-sired pigs had fewer feeder visits compared to Duroc- and Yorkshire-sired pigs. Gilts had fewer feeder visits than barrows in all THI categories. Differences in feeding behavior patterns between THI categories demonstrated that heat stress reduced the feeding duration of Landrace-sired pigs without any dramatic effects on the other pigs in the study. During elevated temperatures, all pigs tended to increase feeding events during the early (03:00-05:59) and late (18:00-20:59) periods of the day. Utilizing a feed monitoring system that is a more accurate representation of commercial conditions will lead to a greater understanding of feeding behavior among breed types and sexes during heat stress, allowing producers to enhance their ability to properly care for their pigs during both normal and heat stress events.
Collapse
Affiliation(s)
- Amanda J Cross
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Tami M Brown-Brandl
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| | - Brittney N Keel
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| | - Joseph P Cassady
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Gary A Rohrer
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| |
Collapse
|
24
|
Abstract
Heat stress is a global issue constraining pig productivity, and it is likely to intensify under future climate change. Technological advances in earth observation have made tools available that enable identification and mapping livestock species that are at risk of exposure to heat stress due to climate change. Here, we present a methodology to map the current and likely future heat stress risk in pigs using R software by combining the effects of temperature and relative humidity. We applied the method to growing-finishing pigs in Uganda. We mapped monthly heat stress risk and quantified the number of pigs exposed to heat stress using 18 global circulation models and projected impacts in the 2050s. Results show that more than 800 000 pigs in Uganda will be affected by heat stress in the future. The results can feed into evidence-based policy, planning and targeted resource allocation in the livestock sector.
Collapse
|
25
|
Zhuang ZX, Chen SE, Chen CF, Lin EC, Huang SY. Genomic regions and pathways associated with thermotolerance in layer-type strain Taiwan indigenous chickens. J Therm Biol 2019; 88:102486. [PMID: 32125976 DOI: 10.1016/j.jtherbio.2019.102486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate genetic markers and candidate genes associated with thermotolerance in a layer-type strain Taiwan indigenous chickens exposed to acute heat stress. One hundred and ninety-two 30-week-old roosters were subjected to acute heat stress. Changes in body temperature (BT, ΔT) were calculated by measuring the difference between the initial BT and the highest BT during heat stress and the results were categorized into dead, susceptible, tolerant, and intermediate groups depending on their survival and ΔT values at the end of the experiment. A genome-wide association study on survival and ΔT values was conducted using the Cochran-Armitage trend test and Fisher's exact test. Association analyses identified 80 significant SNPs being annotated to 23 candidate genes, 440 SNPs to 71 candidate genes, 64 SNPs to 25 candidate genes, and 378 SNPs to 78 candidate genes in the dead versus survivor, tolerant versus susceptible, intermediate versus tolerant, and intermediate versus susceptible groups, respectively. The annotated genes were associated with apoptosis, cellular stress responses, DNA repair, and metabolic oxidative stress. In conclusion, the identified SNPs of candidate genes provide insights into the potential mechanisms underlying physiological responses to acute heat stress in chickens.
Collapse
Affiliation(s)
- Zi-Xuan Zhuang
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, 50, Lane 155, Section 3, Keelung Road, Taipei, 10673, Taiwan.
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
26
|
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A Survey of Copy Number Variation in the Porcine Genome Detected From Whole-Genome Sequence. Front Genet 2019; 10:737. [PMID: 31475038 PMCID: PMC6707380 DOI: 10.3389/fgene.2019.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of large regions of genomic sequence between individuals of a species. Although CNVs have been associated with various phenotypic traits in humans and other species, the extent to which CNVs impact phenotypic variation remains unclear. In swine, as well as many other species, relatively little is understood about the frequency of CNV in the genome, sizes, locations, and other chromosomal properties. In this work, we identified and characterized CNV by utilizing whole-genome sequence from 240 members of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the purebred founding boars (12 Duroc and 12 Landrace), 48 of the founding Yorkshire-Landrace composite sows, 109 composite animals from generations 4 through 9, 29 composite animals from generation 15, and 30 purebred industry boars (15 Landrace and 15 Yorkshire) used as sires in generations 10 through 15. Using a combination of split reads, paired-end mapping, and read depth approaches, we identified a total of 3,538 copy number variable regions (CNVRs), including 1,820 novel CNVRs not reported in previous studies. The CNVRs covered 0.94% of the porcine genome and overlapped 1,401 genes. Gene ontology analysis identified that CNV-overlapped genes were enriched for functions related to organism development. Additionally, CNVRs overlapped with many known quantitative trait loci (QTL). In particular, analysis of QTL previously identified in the USMARC herd showed that CNVRs were most overlapped with reproductive traits, such as age of puberty and ovulation rate, and CNVRs were significantly enriched for reproductive QTL.
Collapse
Affiliation(s)
- Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Gary A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|