1
|
Mereu P, Pirastru M, Morell Miranda P, Atağ G, Başak Vural K, Wilkens B, Rodrigues Soares AE, Kaptan D, Zedda M, Columbano N, Barbato M, Naitana S, Hadjisterkotis E, Somel M, Özer F, Günther T, Leoni GG. Revised phylogeny of mouflon based on expanded sampling of mitogenomes. PLoS One 2025; 20:e0323354. [PMID: 40367058 PMCID: PMC12077669 DOI: 10.1371/journal.pone.0323354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Mouflons are flagship species of the Mediterranean islands where they persist. Once thought to be the remnants of a European wild sheep population, archaeology suggests they were introduced by humans to the islands of Cyprus in the Early Neolithic (~10,000 years ago) and later to Corsica and Sardinia. Their status as truly wild animals remains a subject of debate. To investigate the phylogenetic relationship between these island populations and other domestic and wild sheep from the Mediterranean region, we sequenced 50 mitogenomes of mouflons from Sardinia and Corsica, and modern and ancient Sardinian domestic sheep. A total of 68 additional publicly available mitogenomes were included in the comparative analysis and used to reconstruct the phylogeny of sheep and its closest wild relative, the mouflon (Ovis gmelini). Our study analyzed the evolutionary relationships within the C-E-X and haplogroup B clusters, showing that: a) Cyprus mouflons are more related to Anatolian and Iranian mouflons belonging to the wild haplogroup X, which seems to be basal to the domestic C and E haplogroups; b) Corsican and Sardinian mouflon arise from basal lineages associated with the early European expansion of domestic sheep. These results highlight the phylogenetic distinctiveness of the mouflon populations from the Mediterranean islands, suggesting a revision of their systematic classification and an update of the nomenclature for Sardinian and Corsican mouflons from the current status of subspecies of domestic sheep (Ovis aries musimon) to subspecies of their wild relatives (Ovis gmelini musimon) which would facilitate conservation efforts.
Collapse
Affiliation(s)
- Paolo Mereu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Monica Pirastru
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Pedro Morell Miranda
- Human Evolution Program, Institute for Organismal Biology, Uppsala University, Uppsala, Sweden
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Gözde Atağ
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | | | | | - Damla Kaptan
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Marco Zedda
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicolò Columbano
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Naitana
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Biology/Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Faculty of Letters, Hacettepe University, Ankara, Turkey
- Department of Social Anthropology, Hacettepe University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution Program, Institute for Organismal Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
2
|
Ćosić I, Stojiljković KZ, Pihler I, Cekić B, Ružić-Muslić D, Delić N, Aleksić JM. Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia. Animals (Basel) 2025; 15:1193. [PMID: 40362008 PMCID: PMC12071161 DOI: 10.3390/ani15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Bardoka and Karakachan sheep are primitive regional transboundary Pramenka-type sheep autochthonous to the Balkan Peninsula, whose populations have been reduced to a critically small size in Serbia. We genotyped 105 Bardoka animals (97 ewes and 8 rams from three flocks) and 97 Karakachan sheep (86 ewes and 11 rams from four flocks), along with 28 Ile-de-France (IDF) animals used for a comparison (25 ewes and 3 rams), using 14 nuclear microsatellites to assess their genetic status and establish a foundation for their genetically informed conservation. We utilized genetic data to assess inbreeding values of individuals (I) and pairwise relatedness (r) traditionally inferred from the pedigree data, which are incomplete in the studied autochthonous breeds. We used these data to assemble a data set of unrelated individuals for subsequent genetic analyses. Low but statistically significant genetic differentiation of Bardoka and Karakachan sheep (FST = 0.031, p < 0.01) demonstrates that these phenotypically distinct breeds differ at the genetic level as well. The I and r in ewes were higher in the Karakachan sheep (I = 0.09, r = 0.07) than in Bardoka (I = 0.06, r = 0.06). Contrary to the IDF rams, Bardoka and Karakachan sheep rams were genetically heterogeneous and those of the latter breed displayed higher average r values (0.01 vs. 0.08, respectively). Rams of both local breeds had identical I values of 0.02. Although Bardoka and Karakachan sheep still harbor rather high levels of genetic diversity (HE = 0.761 ± 0.028 and 0.761 ± 0.021, respectively), the overall genetic data demonstrate that the genetic consequences of the population decline were more severe in the latter breed. A genetic structure presenting a general trend of differentiation of flocks with low genetic exchange into separate genetic entities was observed, indicating the effects of genetic drift. The implementation of the genetically informed conservation, together with the ongoing efforts of the state to enlarge the Bardoka and Karakachan sheep populations, would increase the prospects for the long-term survival of both breeds in Serbia.
Collapse
Affiliation(s)
- Ivan Ćosić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (I.Ć.); (K.Z.S.); (B.C.); (D.R.-M.); (N.D.)
| | - Krstina Zeljić Stojiljković
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (I.Ć.); (K.Z.S.); (B.C.); (D.R.-M.); (N.D.)
| | - Ivan Pihler
- Department of Animal Science, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Bogdan Cekić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (I.Ć.); (K.Z.S.); (B.C.); (D.R.-M.); (N.D.)
| | - Dragana Ružić-Muslić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (I.Ć.); (K.Z.S.); (B.C.); (D.R.-M.); (N.D.)
| | - Nikola Delić
- Institute for Animal Husbandry, Belgrade-Zemun, Autoput 16, P.O. Box 23, 11080 Belgrade, Serbia; (I.Ć.); (K.Z.S.); (B.C.); (D.R.-M.); (N.D.)
| | - Jelena M. Aleksić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Bulevar oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
4
|
Ma R, Lu Y, Li M, Gao Z, Li D, Gao Y, Deng W, Wang B. Whole-Genome Resequencing in Sheep: Applications in Breeding, Evolution, and Conservation. Genes (Basel) 2025; 16:363. [PMID: 40282323 PMCID: PMC12026845 DOI: 10.3390/genes16040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Sheep (Ovis aries) were domesticated around 10,000 years ago and have since become an integral part of human agriculture, providing essential resources, such as wool, meat, and milk. Over the past century, advances in communication and agricultural productivity have driven the evolution of selective breeding practices, further enhancing the value of sheep in the global economy. Recently, the rapid development of whole-genome resequencing (WGR) technologies has significantly accelerated research in sheep molecular biology, facilitating the discovery of genetic underpinnings for critical traits. This review offers a comprehensive overview of the evolution of whole-genome resequencing and its application to sheep genetics. It explores the domestication and genetic origins of sheep, examines the genetic structure and differentiation of various sheep populations, and discusses the use of WGR in the development of genetic maps. In particular, the review highlights how WGR technology has advanced our understanding of key traits, such as wool production, lactation, reproductive performance, disease resistance, and environmental adaptability. The review also covers the use of WGR technology in the conservation and sustainable utilization of sheep genetic resources, offering valuable insights for future breeding programs aimed at enhancing the genetic diversity and resilience of sheep populations.
Collapse
Affiliation(s)
- Ruoshan Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Dongfang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Yuyang Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Bo Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| |
Collapse
|
5
|
Ramírez-Díaz J, Bobbo T, Guldbrandtsen B, Schönherz AA, Cozzi P, Kusza S, Sahana G, Stella A, Manunza A. Exploring the complex population structure and admixture of four local Hungarian sheep breeds. Front Genet 2025; 16:1507315. [PMID: 40176790 PMCID: PMC11962792 DOI: 10.3389/fgene.2025.1507315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
The origin of sheep and their spread following domestication have been widely investigated using archaeology, genetics, and genomics. A thorough investigation of the genetic diversity of the breeds is key to providing useful information for conservation and breeding programmes. In Hungary, sheep farming contributes to the agricultural sector and national economy. It plays a crucial role in rural livelihoods, exports, and environmental management while also contributing to the national economy and preserving Hungary's cultural and agricultural heritage through traditional breeds. This study aims to analyse the population structure and patterns of admixture in four local Hungarian sheep breeds, namely, Indigenous Tsigai, Hortobagyi Racka, Cikta, and Bábolna Tetra. Our results revealed that the indigenous Hungarian Hortobagyi Racka sheep are distinct from the other Hungarian breeds studied. The effective population sizes were found to be low, with varying levels of genomic inbreeding both within and across breeds. These results align with documented bottlenecks and instances of crossbreeding with other local or improved breeds. Ancestry analysis demonstrated some introgression between Scandinavian and Hungarian sheep breeds and vice versa. This gene flow may have occurred recently due to the widespread use of northern breeds such as Finnsheep and Romanov to enhance productivity, but it could also date back much further. Despite some limitations, our outcomes can contribute to future conservation plans, and a more comprehensive analysis of all native Hungarian sheep breeds should be highlighted to the relevant authorities in order to secure further funds.
Collapse
Affiliation(s)
- Johanna Ramírez-Díaz
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Tania Bobbo
- Institute for Biomedical Technologies, National Research Council (CNR), Segrate, Italy
| | - Bernt Guldbrandtsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna A. Schönherz
- Department of Animal and Veterinary Sciences, Aarhus University, Aarhus, Denmark
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Arianna Manunza
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| |
Collapse
|
6
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
7
|
Tang X, Wang S, Yi X, Li Q, Sun X. Identification of Functional Variants Between Tong Sheep and Hu Sheep by Whole-Genome Sequencing Pools of Individuals. Int J Mol Sci 2024; 25:12919. [PMID: 39684630 DOI: 10.3390/ijms252312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Tong sheep, known for their superior meat quality and disease resilience, face breeding challenges due to low prolificacy, unlike Hu sheep, which exhibit higher fertility and growth rates. This study identified over 700,000 genetic variants between these breeds through pooled whole-genome sequencing. Functional analysis reveals key differences in pathways related to fat metabolism, insulin signaling, and cell cycle regulation. Notable findings include unique microRNA variants (miR-1185-3p in Tong sheep and miR-487-5p in Hu sheep), with the miR-487-5p mutation potentially regulating KITLG, a fertility-related gene. These results suggest that non-coding RNA mutations contribute to phenotypic differences and provide a genomic foundation for molecular-assisted selection to improve Tong sheep breeding programs.
Collapse
Affiliation(s)
- Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Kaptan D, Atağ G, Vural KB, Morell Miranda P, Akbaba A, Yüncü E, Buluktaev A, Abazari MF, Yorulmaz S, Kazancı DD, Küçükakdağ Doğu A, Çakan YG, Özbal R, Gerritsen F, De Cupere B, Duru R, Umurtak G, Arbuckle BS, Baird D, Çevik Ö, Bıçakçı E, Gündem CY, Pişkin E, Hachem L, Canpolat K, Fakhari Z, Ochir-Goryaeva M, Kukanova V, Valipour HR, Hoseinzadeh J, Küçük Baloğlu F, Götherström A, Hadjisterkotis E, Grange T, Geigl EM, Togan İZ, Günther T, Somel M, Özer F. The Population History of Domestic Sheep Revealed by Paleogenomes. Mol Biol Evol 2024; 41:msae158. [PMID: 39437846 PMCID: PMC11495565 DOI: 10.1093/molbev/msae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Collapse
Affiliation(s)
- Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Pedro Morell Miranda
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Ali Akbaba
- Selçuklu ve Malazgirt Araştırma ve Uygulama Merkezi, Muş Alparslan Üniversitesi, Muş, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Aleksey Buluktaev
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Mohammad Foad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sevgi Yorulmaz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Duygu Deniz Kazancı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayça Küçükakdağ Doğu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, Istanbul, Turkey
| | - Fokke Gerritsen
- Netherlands Institute in Turkey, Istanbul, Turkey
- Leiden Institute for Area Studies, Leiden University, Leiden, Netherlands
| | - Bea De Cupere
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Refik Duru
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Gülsün Umurtak
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas Baird
- Department of Archaeology, Classics, and Egyptology, University of Liverpool, Liverpool, UK
| | - Özlem Çevik
- Department of Archaeology, Trakya University, Edirne, Turkey
| | - Erhan Bıçakçı
- Department of Prehistory, Istanbul University, Laleli, Istanbul, Turkey
| | | | - Evangelia Pişkin
- Department of Settlement Archaeology, Middle East Technical University, Ankara, Turkey
| | - Lamys Hachem
- Institut National de Recherches Archéologiques Préventives (Inrap), UMR 8215 Trajectoires, Paris, France
| | - Kayra Canpolat
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Zohre Fakhari
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Maria Ochir-Goryaeva
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
- Khalikov Institute of Archaeology, Academy of Sciences of Tatarstan, Kazan, The Republic of Tatarstan, Russia
| | - Viktoria Kukanova
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Hamid Reza Valipour
- Department of Archaeology, Faculty of Letters and Human Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Fatma Küçük Baloğlu
- Department of Biology, Giresun University, Giresun, Turkey
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Anders Götherström
- Center for Paleogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, University of Stockholm, Stockholm, Sweden
| | | | - Thierry Grange
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - Eva-Maria Geigl
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - İnci Z Togan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Torsten Günther
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Kerr E, Marr MM, Collins L, Dubarry K, Salavati M, Scinto A, Woolley S, Clark EL. Analysis of genotyping data reveals the unique genetic diversity represented by the breeds of sheep native to the United Kingdom. BMC Genom Data 2024; 25:82. [PMID: 39289631 PMCID: PMC11409796 DOI: 10.1186/s12863-024-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Sheep breeds native to the United Kingdom exhibit a striking diversity of different traits. Some of these traits are highly sustainable, such as seasonal wool shedding in the Wiltshire Horn, and are likely to become more important as pressures on sheep production increase in coming decades. Despite their clear importance to the future of sheep farming, the genetic diversity of native UK sheep breeds is poorly characterised. This increases the risk of losing the ability to select for breed-specific traits from native breeds that might be important to the UK sheep sector in the future. Here, we use 50 K genotyping to perform preliminary analysis of breed relationships and genetic diversity within native UK sheep breeds, as a first step towards a comprehensive characterisation. This study generates novel data for thirteen native UK breeds, including six on the UK Breeds at Risk (BAR) list, and utilises existing data from the publicly available Sheep HapMap dataset to investigate population structure, heterozygosity and admixture. RESULTS In this study the commercial breeds exhibited high levels of admixture, weaker population structure and had higher heterozygosity compared to the other native breeds, which generally tend to be more distinct, less admixed, and have lower genetic diversity and higher kinship coefficients. Some breeds including the Wiltshire Horn, Lincoln Longwool and Ryeland showed very little admixture at all, indicating a high level of breed integrity but potentially low genetic diversity. Population structure and admixture were strongly influenced by sample size and sample provenance - highlighting the need for equal sample sizes, sufficient numbers of individuals per breed, and sampling across multiple flocks. The genetic profiles both within and between breeds were highly complex for UK sheep, reflecting the complexity in the demographic history of these breeds. CONCLUSION Our results highlight the utility of genotyping data for investigating breed diversity and genetic structure. They also suggest that routine generation of genotyping data would be very useful in informing conservation strategies for rare and declining breeds with small population sizes. We conclude that generating genetic resources for the sheep breeds that are native to the UK will help preserve the considerable genetic diversity represented by these breeds, and safe-guard this diversity as a valuable resource for the UK sheep sector to utilise in the face of future challenges.
Collapse
Affiliation(s)
- Eleanor Kerr
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Melissa M Marr
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Lauren Collins
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Katie Dubarry
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
- Dairy Research Centre, Scotland's Rural College (SRUC), Barony Campus, Dumfries, DG1 3NE, United Kingdom
| | - Alissa Scinto
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Shernae Woolley
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
10
|
Rambaldi Migliore N, Bigi D, Milanesi M, Zambonelli P, Negrini R, Morabito S, Verini-Supplizi A, Liotta L, Chegdani F, Agha S, Salim B, Beja-Pereira A, Torroni A, Ajmone‐Marsan P, Achilli A, Colli L. Mitochondrial DNA control-region and coding-region data highlight geographically structured diversity and post-domestication population dynamics in worldwide donkeys. PLoS One 2024; 19:e0307511. [PMID: 39197009 PMCID: PMC11356394 DOI: 10.1371/journal.pone.0307511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/30/2024] Open
Abstract
Donkeys (Equus asinus) have been used extensively in agriculture and transportations since their domestication, ca. 5000-7000 years ago, but the increased mechanization of the last century has largely spoiled their role as burden animals, particularly in developed countries. Consequently, donkey breeds and population sizes have been declining for decades, and the diversity contributed by autochthonous gene pools has been eroded. Here, we examined coding-region data extracted from 164 complete mitogenomes and 1392 donkey mitochondrial DNA (mtDNA) control-region sequences to (i) assess worldwide diversity, (ii) evaluate geographical patterns of variation, and (iii) provide a new nomenclature of mtDNA haplogroups. The topology of the Maximum Parsimony tree confirmed the two previously identified major clades, i.e. Clades 1 and 2, but also highlighted the occurrence of a deep-diverging lineage within Clade 2 that left a marginal trace in modern donkeys. Thanks to the identification of stable and highly diagnostic coding-region mutational motifs, the two lineages were renamed as haplogroup A and haplogroup B, respectively, to harmonize clade nomenclature with the standard currently adopted for other livestock species. Control-region diversity and population expansion metrics varied considerably between geographical areas but confirmed North-eastern Africa as the likely domestication center. The patterns of geographical distribution of variation analyzed through phylogenetic networks and AMOVA confirmed the co-occurrence of both haplogroups in all sampled populations, while differences at the regional level point to the joint effects of demography, past human migrations and trade following the spread of donkeys out of the domestication center. Despite the strong decline that donkey populations have undergone for decades in many areas of the world, the sizeable mtDNA variability we scored, and the possible identification of a new early radiating lineage further stress the need for an extensive and large-scale characterization of donkey nuclear genome diversity to identify hotspots of variation and aid the conservation of local breeds worldwide.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Daniele Bigi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Marco Milanesi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Paolo Zambonelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Simone Morabito
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | | | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, V.le Palatucci, Messina, Italy
| | - Fatima Chegdani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Saif Agha
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North, Sudan
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre, Porto, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Paolo Ajmone‐Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- CREI Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- BioDNA Centro di Ricerca Sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| |
Collapse
|
11
|
Zhao L, Yuan L, Li F, Zhang X, Tian H, Ma Z, Zhang D, Zhang Y, Zhao Y, Huang K, Li X, Cheng J, Xu D, Yang X, Han K, Weng X, Wang W. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits. J Genet Genomics 2024; 51:866-876. [PMID: 38582298 DOI: 10.1016/j.jgg.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization. Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth. Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock. Here, we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep (Asiatic mouflon) to investigate the genetic characteristics and selection signatures of Hu sheep. Based on six signatures of selection approaches, we detect genomic regions containing genes related to reproduction (BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, and GNAQ), vision (ALDH1A2, SAG, and PDE6B), nervous system (NAV1), and immune response (GPR35, SH2B2, PIK3R3, and HRAS). Association analysis with a population of 1299 Hu sheep reveals that those missense mutations in the GPR35 (GPR35 g.952651 A>G; GPR35 g.952496 C>T) and NAV1 (NAV1 g.84216190 C>T; NAV1 g.84227412 G>A) genes are significantly associated (P < 0.05) with immune and growth traits in Hu sheep, respectively. This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.
Collapse
Affiliation(s)
- Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaobin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kunchao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
12
|
Kusza S, Badaoui B, Wanjala G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci Rep 2024; 14:16515. [PMID: 39019985 PMCID: PMC11255268 DOI: 10.1038/s41598-024-67558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Numerous studies have indicated that Morocco's indigenous sheep breeds are genetically homogenous, posing a risk to their survival in the challenging harsh climate conditions where they predominantly inhabit. To understand the genetic behind genetic homogeneity through the lens of runs of homozygosity (ROH), we analyzed the whole genome sequences of five indigenous sheep breeds (Beni Guil, Ouled Djellal, D'man, Sardi, Timahdite and Admixed).The results from principal component, admixture, Fst, and neighbour joining tree analyses consistently showed a homogenous genetic structure. This structure was characterized by an average length of 1.83 Mb for runs of homozygosity (ROH) segments, with a limited number of long ROH segments (24-48 Mb and > 48 Mb). The most common ROH segments were those ranging from 1-6 Mb. The most significant regions of homozygosity (ROH Islands) were mostly observed in two chromosomes, namely Chr1 and Chr5. Specifically, ROH Islands were exclusively discovered in the Ouled Djellal breed on Chr1, whereas Chr5 exhibited ROH Islands in all breeds. The analysis of ROH Island and iHS technique was employed to detect signatures of selection on Chr1 and Chr5. The results indicate that Chr5 had a high level of homogeneity, with the same genes being discovered across all breeds. In contrast, Chr1 displays some genetic variances between breeds. Genes identified on Chr5 included SLC39A1, IL23A, CAST, IL5, IL13, and IL4 which are responsible for immune response while genes identified on Chr1 include SOD1, SLAMF9, RTP4, CLDN1, and PRKAA2. ROH segment profile and effective population sizes patterns suggests that the genetic uniformity of studied breeds is the outcome of events that transpired between 250 and 300 generations ago. This research not only contributes to the understanding of ROH distribution across breeds but helps design and implement native sheep breeding and conservation strategies in Morocco. Future research, incorporating a broader sample size and utilizing the pangenome for reference, is recommended to further elucidate these breeds' genomic landscapes and adaptive mechanisms.
Collapse
Affiliation(s)
- Szilvia Kusza
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Bouabid Badaoui
- Faculty of Sciences, Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI),, Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - George Wanjala
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138., 4032, Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15., 6800, Hódmezővásárhely, Hungary
| |
Collapse
|
13
|
Djedovic R, Radojkovic D, Stanojevic D, Savic R, Vukasinovic N, Popovac M, Bogdanovic V, Radovic C, Gogic M, Gligovic N, Stojic P, Mitrovic I. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review. Animals (Basel) 2024; 14:1894. [PMID: 38998006 PMCID: PMC11240667 DOI: 10.3390/ani14131894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Preserving local autochthonous domestic animal populations and the products derived from them is a crucial aspect of managing human utilization of the biosphere. This management approach aims to ensure sustainable benefits for both present and future generations. The diversity of autochthonous domestic animal populations plays a vital role in the functionality and sustainability of the food production system. It encompasses both productive and non-productive aspects, contributing significantly to the overall health, nutrition, and food security of the landscape by providing a wide range of animal-derived food resources. Based on the data contained in the Draft Program of Rural Development, a significant presence of more than 44 autochthonous and local breeds of domestic animals has been noted in Serbia. In order to enable the sustainable preservation of local domestic animals, the competent Ministry of Agriculture of the Republic of Serbia has, through a number of projects, implemented models for the preservation of local breeds on farms (in situ), as well as provided technical assistance to small farms that keep animal collections. It also helps the local population to procure animals, conducts product quality research, and provides opportunities to integrate conservation programs through tourism. Given that molecular characterization is a key factor for the preservation of autochthonous breeds, in the Republic of Serbia, DNA markers are used for identification and to investigate the belonging to a specific breeds or strain. All the mentioned activities led to an immediate increase in the number of animals, which is especially true for the autochthonous breeds of cattle (Busha), sheep (Sjenicka, Svrljiska, and Vlach-vitohorn) and pigs (Mangalitsa, Moravka, and Resavka) that are discussed in this paper. In addition to the significant measures undertaken to preserve animal genetic resources (AnGR), it is necessary to continue to work primarily on ex situ conservation in order to prevent the loss of their gene pools. However, regardless of the evident effort that has been made to preserve autochthonous genetic resources in Serbia, we believe that there is still a lot of room for further improvement. This primarily refers to advanced technologies that have not been applied so far, mostly related to the identification of genomic regions associated with economic traits, resistance to diseases, and adaptability to emerging climate changes. In this way, the production capacity and functional characteristics of autochthonous species and breeds of domestic animals in Serbia will be improved.
Collapse
Affiliation(s)
- Radica Djedovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Radojkovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Stanojevic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Radomir Savic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Natasha Vukasinovic
- Zoetis Veterinary Medicine Research and Development (VMRD), Kalamazoo, MI 49001, USA;
| | - Mladen Popovac
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Vladan Bogdanovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Cedomir Radovic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Marija Gogic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Nikolija Gligovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Petar Stojic
- Institute for Science Application in Agriculture, Bulevar Despota Stefana 68b, 11000 Belgrade, Serbia;
| | - Ivan Mitrovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| |
Collapse
|
14
|
Jost SM, Cardona L, Rohrbach E, Mathis A, Holliger C, Verhulst NO. Environment rather than breed or body site shapes the skin bacterial community of healthy sheep as revealed by metabarcoding. Vet Dermatol 2024; 35:273-283. [PMID: 38082464 DOI: 10.1111/vde.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The skin is inhabited by a variety of micro-organisms, with bacteria representing the predominant taxon of the skin microbiome. In sheep, the skin bacterial community of healthy animals has been addressed in few studies, only with culture-based methods or sequencing of cloned amplicons. OBJECTIVES The objectives of this study were to determine the sheep skin bacterial community composition by using metabarcoding for a detailed characterisation and to determine the effect of body part, breed and environment. MATERIALS AND METHODS Overall, 267 samples were taken from 89 adult female sheep, belonging to three different breeds and kept on nine different farms in Switzerland. From every individual, one sample each was taken from belly, left ear and left leg and metabarcoding of the 16S rRNA V3-V4 hypervariable region was performed. RESULTS The main phyla identified were Actinobacteriota, Firmicutes, Proteobacteria and Bacteriodota. The alpha diversity as determined by Shannon's diversity index was significantly different between sheep from different farms. Beta diversity analysis by principal coordinate analysis (PCoA) showed clustering of the samples by farm and body site, while breed had only a marginal influence. A sparse partial least squares discriminant analysis (sPLS-DA) revealed seven main groups of operational taxonomic units (OTUs) of which groups of OTUs were specific for some farms. CONCLUSIONS AND CLINICAL RELEVANCE These findings indicate that environment has a larger influence on skin microbial variability than breed, although the sampled breeds, the most abundant ones in Switzerland, are phenotypically similar. Future studies on the sheep skin microbiome may lead to novel insights in skin diseases and prevention.
Collapse
Affiliation(s)
- Stéphanie M Jost
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Laëtitia Cardona
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emmanuelle Rohrbach
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander Mathis
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Niels O Verhulst
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Giovannini S, Chessari G, Riggio S, Marletta D, Sardina MT, Mastrangelo S, Sarti FM. Insight into the current genomic diversity, conservation status and population structure of Tunisian Barbarine sheep breed. Front Genet 2024; 15:1379086. [PMID: 38881792 PMCID: PMC11176520 DOI: 10.3389/fgene.2024.1379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Local livestock breeds play a crucial role in global biodiversity, connecting natural and human-influenced environments and contributing significantly to ecosystem services. While commercial breeds dominate industrial systems, local livestock breeds in developing countries, like Barbarine sheep in Tunisia, are vital for food security and community maintenance. The Tunisian Barbarine sheep, known for its adaptability and distinctive fat-tailed morphology, faces challenges due to historical crossbreeding. In this study, the Illumina Ovine SNP50K BeadChip array was used to perform a genome-wide characterization of Tunisian Barbarine sheep to investigate its genetic diversity, the genome structure, and the relationship within the context of Mediterranean breeds. The results show moderate genetic diversity and low inbreeding. Runs of Homozygosity analysis find genomic regions linked to important traits, including fat tail characteristics. Genomic relationship analysis shows proximity to Algerian thin-tailed breeds, suggesting crossbreeding impacts. Admixture analysis reveals unique genetic patterns, emphasizing the Tunisian Barbarine's identity within the Mediterranean context and its closeness to African breeds. Current results represent a starting point for the creation of monitoring and conservation plans. In summary, despite genetic dilution due to crossbreeding, the identification of genomic regions offers crucial insights for conservation. The study confirms the importance of preserving unique genetic characteristics of local breeds, particularly in the face of ongoing crossbreeding practices and environmental challenges. These findings contribute valuable insights for the sustainable management of this unique genetic reservoir, supporting local economies and preserving sheep species biodiversity.
Collapse
Affiliation(s)
- Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Donata Marletta
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
18
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Morell Miranda P, Soares AER, Günther T. Demographic reconstruction of the Western sheep expansion from whole-genome sequences. G3 (BETHESDA, MD.) 2023; 13:jkad199. [PMID: 37675574 PMCID: PMC11648245 DOI: 10.1093/g3journal/jkad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
As one of the earliest livestock, sheep (Ovis aries) were domesticated in the Fertile Crescent about 12,000-10,000 years ago and have a nearly worldwide distribution today. Most of our knowledge about the timing of their expansions stems from archaeological data but it is unclear how the genetic diversity of modern sheep fits with these dates. We used whole-genome sequencing data of 63 domestic breeds and their wild relatives, the Asiatic mouflon (O. gmelini, previously known as O. orientalis), to explore the demographic history of sheep. On the global scale, our analysis revealed geographic structuring among breeds with unidirectional recent gene flow from domestics into Asiatic mouflons. We then selected 4 representative breeds from Spain, Morocco, the United Kingdom, and Iran to build a comprehensive demographic model of the Western sheep expansion. We inferred a single domestication event around 11,000 years ago. The subsequent westward expansion is dated to approximately 7,000 years ago, later than the original Neolithic expansion of sheep and slightly predating the Secondary Product Revolution associated with wooly sheep. We see some signals of recent gene flow from an ancestral population into Southern European breeds which could reflect admixture with feral European mouflon. Furthermore, our results indicate that many breeds experienced a reduction of their effective population size during the last centuries, probably associated with modern breed development. Our study provides insights into the complex demographic history of Western Eurasian sheep, highlighting interactions between breeds and their wild counterparts.
Collapse
Affiliation(s)
- Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| | - André E R Soares
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory,
Department of Medical Biochemistry and Microbiology, Uppsala University,
SE-752 37 Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
20
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The genome-wide relationships of the critically endangered Quadricorna sheep in the Mediterranean region. PLoS One 2023; 18:e0291814. [PMID: 37851594 PMCID: PMC10584175 DOI: 10.1371/journal.pone.0291814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Nowadays most of the sheep European breeds derive from the second wave which is supposed to have largely replaced oldest genetic signatures, with the exception of several primitive breeds confined on the very edge of Northern Europe. Despite this, some populations also in the Mediterranean region are characterised by the presence of phenotypic traits considered ancestral such as the policeraty, large horns in the ram, short tail, and a moulting fleece. Italy is home of a large number of local breeds, albeit some are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterised by several traits considered as ancestral. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 41 breeds from the Mediterranean region and Middle-East, with the specific aim to reconstruct its origin. After retaining 32,862 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. The Quadricorna breed exhibit genetic diversity indices comparable with those of most of the other analysed breeds, however, the two populations showed opposing patterns of genetic diversity suggesting different levels of genomic inbreeding and drift (FIS and FROH). In general, all the performed genome-wide analyses returned complementary results, indicating a westward longitudinal cline compatible with human migrations from the Middle-East and several additional genetic footprints which might mirror more recent historical events. Interestingly, among the Italian breeds, the original Quadricorna (QUAD_SA) first separated showing its own ancestral component. In addition, the admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of this population. On the other hand, both the neighbor-joining tree and the treemix analysis seem to suggest a proximity of the Quadricorna populations to breeds of South-Eastern Mediterranean origin. Although our results do not support a robust link between the genetics of the first wave and the presence of primitive traits, the observed genetic uniqueness together with the inferred phylogeograpic reconstruction would suggest an ancient presence of the Quadricorna breed in the Italian Peninsula. Because of this singularity, urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
21
|
Long GS, Hider J, Duggan AT, Klunk J, Eaton K, Karpinski E, Giuffra V, Ventura L, Prowse TL, Fornaciari A, Fornaciari G, Holmes EC, Golding GB, Poinar HN. A 14th century CE Brucella melitensis genome and the recent expansion of the Western Mediterranean clade. PLoS Pathog 2023; 19:e1011538. [PMID: 37523413 PMCID: PMC10414615 DOI: 10.1371/journal.ppat.1011538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/10/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Brucellosis is a disease caused by the bacterium Brucella and typically transmitted through contact with infected ruminants. It is one of the most common chronic zoonotic diseases and of particular interest to public health agencies. Despite its well-known transmission history and characteristic symptoms, we lack a more complete understanding of the evolutionary history of its best-known species-Brucella melitensis. To address this knowledge gap we fortuitously found, sequenced and assembled a high-quality ancient B. melitensis draft genome from the kidney stone of a 14th-century Italian friar. The ancient strain contained fewer core genes than modern B. melitensis isolates, carried a complete complement of virulence genes, and did not contain any indication of significant antimicrobial resistances. The ancient B. melitensis genome fell as a basal sister lineage to a subgroup of B. melitensis strains within the Western Mediterranean phylogenetic group, with a short branch length indicative of its earlier sampling time, along with a similar gene content. By calibrating the molecular clock we suggest that the speciation event between B. melitensis and B. abortus is contemporaneous with the estimated time frame for the domestication of both sheep and goats. These results confirm the existence of the Western Mediterranean clade as a separate group in the 14th CE and suggest that its divergence was due to human and ruminant co-migration.
Collapse
Affiliation(s)
- George S. Long
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Jessica Hider
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Ana T. Duggan
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Jennifer Klunk
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Daicel Arbor Biosciences, Ann Arbor, Michigan, United States of America
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Emil Karpinski
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Division of Pathology, San Salvatore Hospital, Coppito, Italy
| | - Tracy L. Prowse
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, Australia
| | | | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- CIFAR Humans and the Microbiome Program, Toronto, Canada
| |
Collapse
|
22
|
Massouras T, Charmanta AA, Koutsouli P, Masoura M, Politis I, Hettinga K. The Effect of Milking Frequency, Breed, and Stage of Lactation on the Milk Fat Globule Size and Fatty Acid Composition in Sheep's Milk. Foods 2023; 12:2446. [PMID: 37444184 DOI: 10.3390/foods12132446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study examined the effects of milking frequency, breed, and stage of lactation on the milk fat globules (MFG) size and fatty acids (FA) composition of sheep milk. Milk from Karagouniko (n = 13) and Chios (n = 13) ewes was sampled postpartum on the 93rd, 101st, 108th, 121st, 156th, and 188th days of lactation. On the 108th day, the ewes were divided randomly into two milking groups: Once daily at 06:00 a.m. or twice daily at 06:00 a.m. and 16:00 p.m. Morphometric characteristics of MFG and FA composition were determined for each sample. Once versus twice daily milking had no effect on MFG dimensions, which tended to vary according to breed (smaller MFG were secreted from Chios with p = 0.065), while the stage of lactation had a significant effect (p < 0.001). FA composition differed significantly according to the stage of lactation and breed. The FA profile of the Karagouniko breed showed higher concentrations of short-chain FA. The milk samples from late lactation were characterized by higher concentrations of mono-unsaturated FA (MUFA) compared to early and mid-lactation. Moreover, correlations were found between the average diameter of MFG and FA concentrations, where the size of MFG was positively correlated with saturated FA (SFA) and negatively correlated with MUFA.
Collapse
Affiliation(s)
- Theofilos Massouras
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Aggeliki-Alexandra Charmanta
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Panagiota Koutsouli
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham B12 2TT, UK
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kasper Hettinga
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
23
|
Ceccobelli S, Landi V, Senczuk G, Mastrangelo S, Sardina MT, Ben-Jemaa S, Persichilli C, Karsli T, Bâlteanu VA, Raschia MA, Poli MA, Ciappesoni G, Muchadeyi FC, Dzomba EF, Kunene NW, Lühken G, Deniskova TE, Dotsev AV, Zinovieva NA, Zsolnai A, Anton I, Kusza S, Carolino N, Santos-Silva F, Kawęcka A, Świątek M, Niżnikowski R, Špehar M, Anaya G, Granero A, Perloiro T, Cardoso P, Grande S, de Los Santos BL, Danchin-Burge C, Pasquini M, Martínez Martínez A, Delgado Bermejo JV, Lasagna E, Ciani E, Sarti FM, Pilla F. A comprehensive analysis of the genetic diversity and environmental adaptability in worldwide Merino and Merino-derived sheep breeds. Genet Sel Evol 2023; 55:24. [PMID: 37013467 PMCID: PMC10069132 DOI: 10.1186/s12711-023-00797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.
Collapse
Affiliation(s)
- Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari ''Aldo Moro", 70010, Valenzano, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Maria Teresa Sardina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia
| | - Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Taki Karsli
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Valentin-Adrian Bâlteanu
- Laboratory of Genomics, Biodiversity, Animal Breeding and Molecular Pathology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - María Agustina Raschia
- Instituto de Genética "Ewald A. Favret", Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, B1686, Hurlingham, Buenos Aires, Argentina
| | - Mario Andrés Poli
- Instituto de Genética "Ewald A. Favret", Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, B1686, Hurlingham, Buenos Aires, Argentina
| | - Gabriel Ciappesoni
- Instituto Nacional de Investigación Agropecuaria, 90200, Canelones, Uruguay
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, 3209, Scottsville, Pietermaritzburg, South Africa
| | | | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390, Giessen, Germany
| | | | | | | | - Attila Zsolnai
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053, Herceghalom, Hungary
| | - István Anton
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053, Herceghalom, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Nuno Carolino
- Instituto Nacional de Investigação Agrária e Veterinária, 2005-048, Vale de Santarém, Portugal
| | - Fátima Santos-Silva
- Instituto Nacional de Investigação Agrária e Veterinária, 2005-048, Vale de Santarém, Portugal
| | - Aldona Kawęcka
- Department of Sheep and Goat Breeding, National Research Institute of Animal Production, 32-083, Kraków, Poland
| | - Marcin Świątek
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Roman Niżnikowski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Marija Špehar
- Croatian Agency for Agriculture and Food, 10000, Zagreb, Croatia
| | - Gabriel Anaya
- MERAGEM Group, Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Antonio Granero
- Asociación Nacional de Criadores de Ganado Merino (ACME), 28028, Madrid, Spain
| | - Tiago Perloiro
- Associação Nacional de Criadores de Ovinos da Raça Merina (ANCORME), 7005-665, Évora, Portugal
| | - Pedro Cardoso
- Associação de Produtores Agropecuários (OVIBEIRA), 6000-244, Castelo Branco, Portugal
| | - Silverio Grande
- Associazione Nazionale della Pastorizia (ASSONAPA), 00187, Rome, Italy
| | | | | | - Marina Pasquini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | | | | | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Elena Ciani
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
24
|
Gaspar D, Usié A, Leão C, Guimarães S, Pires AE, Matos C, Ramos AM, Ginja C. Genome-wide assessment of the population structure and genetic diversity of four Portuguese native sheep breeds. Front Genet 2023; 14:1109490. [PMID: 36713074 PMCID: PMC9880275 DOI: 10.3389/fgene.2023.1109490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
As the effects of global warming become increasingly complex and difficult to manage, the conservation and sustainable use of locally adapted sheep breeds are gaining ground. Portuguese native sheep breeds are important reservoirs of genetic diversity, highly adapted to harsh environments and reared in low input production systems. Genomic data that would describe the breeds in detail and accelerate the selection of more resilient animals to be able to cope with climatic challenges are still lacking. Here, we sequenced the genomes of 37 animals from four Portuguese native sheep breeds (Campaniça, Bordaleira Serra da Estrela, Merino Branco and Merino Preto) and 19 crossbred sheep to make inferences on their genomic diversity and population structure. Mean genomic diversities were very similar across these breeds (.30 ≤ Ho ≤ .34; .30 ≤ He ≤ .35; 1.7 × 10-3 ≤ π ≤ 3.1 × 10-3) and the levels of inbreeding were negligible (.005 ≤ FIS ≤ .038). The Principal Components, Bayesian clustering and Treemix analyses split the Portuguese breeds in two main groups which are consistent with historical records: one comprising Campaniça and Serra da Estrela together with other European and transboundary dairy breeds; and another of the well-differentiated multi-purpose Merino and Merino-related breeds. Runs of homozygosity analyses yielded 1,690 ROH segments covering an average of 2.27 Gb across the genome in all individuals. The overall genome covered by ROH segments varied from 27,75 Mb in Serra da Estrela to 61,29 Mb in Campaniça. The phylogenetic analysis of sheep mitogenomes grouped the Portuguese native breeds within sub-haplogroup B1a along with two animals of the Akkaraman breed from Turkey. This result provides additional support to a direct influence of Southwest Asian sheep in local breeds from the Iberian Peninsula. Our study is a first step pertaining to the genomic characterization of Portuguese sheep breeds and the results emphasize the potential of genomic data as a valid tool to guide conservation efforts in locally adapted sheep breeds. In addition, the genomic data we generated can be used to identify markers for breed assignment and traceability of certified breed-products.
Collapse
Affiliation(s)
- Daniel Gaspar
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,*Correspondence: Daniel Gaspar, ; Catarina Ginja,
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Célia Leão
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Sílvia Guimarães
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ana Elisabete Pires
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,Faculdade de Medicina Veterinária, Universidade Lusófona, Lisboa, Portugal
| | | | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Catarina Ginja
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,*Correspondence: Daniel Gaspar, ; Catarina Ginja,
| |
Collapse
|
25
|
Chessari G, Criscione A, Tolone M, Bordonaro S, Rizzuto I, Riggio S, Macaluso V, Moscarelli A, Portolano B, Sardina MT, Mastrangelo S. High-density SNP markers elucidate the genetic divergence and population structure of Noticiana sheep breed in the Mediterranean context. Front Vet Sci 2023; 10:1127354. [PMID: 37205231 PMCID: PMC10185747 DOI: 10.3389/fvets.2023.1127354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Among livestock species, sheep have played an early major role in the Mediterranean area. Italy has a long history of sheep breeding and, despite a dramatic contraction in numbers, still raise several local populations that may represent a unique source of genetic diversity. The Noticiana is a breed of the south-eastern part of Sicily appreciated both for its dairy products and for its resistance to harsh environment. In this study, the high-density Illumina Ovine SNP600K BeadChip array was used for the first genome-wide characterization of 48 individuals of Noticiana sheep to investigate its diversity, the genome structure and the relationship within the context of worldwide and Italian breeds. Moreover, the runs of homozygosity (ROH) pattern and the pairwise FST-outliers were examined. Noticiana reported moderate levels of genetic diversity. The high percentage of short and medium length ROH segments (93% under 4 Mb) is indicative of a within breed relatedness dating back to ancient times, despite the absence of management for the mating plans and the reduced population size. In the worldwide context, the Southern Italian, Spanish and Albanian breeds overlapped in a macro cluster which also included the Noticiana sheep. The results highlighted ancestral genetic components of Noticiana shared with Comisana breed, and showed the clear separation from the other Italian sheep. This is likely the consequence of the combined effects of genetic drift, small population size and reproductive isolation. ROH islands and FST-outliers approaches in Noticiana identified genes and QTLs involved in milk and meat production, as well as related to the local adaptation, and therefore are consistent with the phenotypic traits of the studied breed. Although a wider sampling could be useful to deepen the genomic survey on Noticiana, these results represent a crucial starting point for the characterization of an important local genetic resource, with a view of supporting the local economy and preserving the biodiversity of the sheep species.
Collapse
Affiliation(s)
- Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Bordonaro
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Vito Macaluso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
- *Correspondence: Salvatore Mastrangelo,
| |
Collapse
|
26
|
Marković M, Radonjić D, Zorc M, Đokić M, Marković B. Genetic Diversity of Montenegrin Local Sheep Breeds Based on Microsatellite Markers. Animals (Basel) 2022; 12:3029. [PMID: 36359153 PMCID: PMC9653887 DOI: 10.3390/ani12213029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/29/2023] Open
Abstract
The Montenegrin sheep population mostly consists of local breeds and their crossbreeds that are very valuable from their genome preservation point of view. The aim of this study was the investigation of the genetic diversity of seven Montenegrin sheep breeds (Jezeropivska-JP, Sora-SOR, Zetska zuja-ZZ, Bardoka-BAR, Sjenička-SJ, Ljaba-Lj, and Piperska zuja-PIP) using 18 microsatellite sets of markers. The genotyping was done for 291 samples from seven populations using the multiplex amplification of sequences with polymerase chain reaction (PCR). The parameters of genetic diversity were estimated using several software tools. In total, 243 alleles were found, with a range of 6 to 25 by locus. The mean observed heterozygosity (Ho), polymorphism information content (PIC), and Fis values (fixation index) per marker were 0.728, 0.781, and -0.007, respectively. The mean number of alleles per breed varied from 4.889 in ZZ to 10.056 in JP. The highest Ho was estimated for JP (0.763) and the lowest for ZZ (0.640). The genetic structure showed close relations between SOR and JP, and both of them with SJ, while ZZ, LJ, and PIP were more distanced. This study provides useful indicators for the development of further in-depth studies and the creation of appropriate conservation programs.
Collapse
Affiliation(s)
- Milan Marković
- Biotechnical Faculty, University of Montenegro, Mihaila Lalića 15, 81000 Podgorica, Montenegro
| | - Dušica Radonjić
- Biotechnical Faculty, University of Montenegro, Mihaila Lalića 15, 81000 Podgorica, Montenegro
| | - Minja Zorc
- Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Milena Đokić
- Biotechnical Faculty, University of Montenegro, Mihaila Lalića 15, 81000 Podgorica, Montenegro
| | - Božidarka Marković
- Biotechnical Faculty, University of Montenegro, Mihaila Lalića 15, 81000 Podgorica, Montenegro
| |
Collapse
|
27
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The ancestral origin of the critically endangered Quadricorna sheep as revealed by genome-wide analysis. PLoS One 2022; 17:e0275989. [PMID: 36288337 PMCID: PMC9605034 DOI: 10.1371/journal.pone.0275989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Among primitive breeds, aside from sharing common ancestral genomic components, they also show several traits such as the policeraty, large horns in the ram, short tail, and a moulting fleece, considered as ancestral. Although most of the primitive breeds characterized by these traits are confined on the very edge of Northern Europe, several residual populations are also scattered in the Mediterranean region. In fact, although in Italy a large number of local breeds are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterized by several ancestral traits. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 33 primitive traits-related, Mediterranean and Middle-East breeds, with the specific aim to reconstruct its origin. After retaining 35,680 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. Multiple convergent evidence from all our population genetics analyses, indicated that the two Quadricorna populations differ from all the other Italian breeds, while they resulted to be very close to the Middle Eastern and primitive European breeds. In addition, the genetic diversity indices highlighted values comparable with those of most of the other analyzed breeds, despite the two populations exhibit slightly different genetic indices suggesting different levels of genomic inbreeding and drift (FIS and FROH). The admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of the two populations, while on the other hand the treemix analysis seems to suggest an ancient admixture with other primitive European breeds. Finally, all these evidences seem to trace back the residual Quadricorna sheep to an early Neolithic spread, probably following a Mediterranean route and that urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
- * E-mail:
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
28
|
How Geography and Climate Shaped the Genomic Diversity of Italian Local Cattle and Sheep Breeds. Animals (Basel) 2022; 12:ani12172198. [PMID: 36077919 PMCID: PMC9454691 DOI: 10.3390/ani12172198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In this paper, we study the inter-relationships among geography, climate, and genetics in Italian local cattle and sheep breeds. In terms of genetic diversity, geography (latitude and longitude) appears to play a larger role in sheep (26.4%) than that in cattle (13.8%). Once geography is accounted for, 10.1% of cattle genomic diversity and 13.3% of that of sheep are attributable to climatic effects. Stronger geographic effects in sheep can be related to a combination of higher predomestication genetic variability together with biological and productive specializations. The climate alone seems to have had less impact on the current genetic diversity in both species even if climate and geography are greatly confounded. Results confirm that both species are the result of complex evolutionary histories triggered by interactions between human needs and environmental conditions. Abstract Understanding the relationships among geography, climate, and genetics is increasingly important for animal farming and breeding. In this study, we examine these inter-relationships in the context of local cattle and sheep breeds distributed along the Italian territory. To this aim, we used redundancy analysis on genomic data from previous projects combined with geographical coordinates and corresponding climatic data. The effect of geographic factors (latitude and longitude) was more important in sheep (26.4%) than that in cattle (13.8%). Once geography had been partialled out of analysis, 10.1% of cattle genomic diversity and 13.3% of that of sheep could be ascribed to climatic effects. Stronger geographic effects in sheep can be related to a combination of higher pre-domestication genetic variability together with biological and productive specificities. Climate alone seems to have had less impact on current genetic diversity in both species, even if climate and geography are greatly confounded. Results confirm that both species are the result of complex evolutionary histories triggered by interactions between human needs and environmental conditions.
Collapse
|
29
|
Ben Sassi-Zaidy Y, Mohamed-Brahmi A, Chaouch M, Maretto F, Cendron F, Charfi-Cheikhrouha F, Ben Abderrazak S, Djemali M, Cassandro M. Historical Westward Migration Phases of Ovis aries Inferred from the Population Structure and the Phylogeography of Occidental Mediterranean Native Sheep Breeds. Genes (Basel) 2022; 13:genes13081421. [PMID: 36011332 PMCID: PMC9408117 DOI: 10.3390/genes13081421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, the genetic relationship and the population structure of western Mediterranean basin native sheep breeds are investigated, analyzing Maghrebian, Central Italian, and Venetian sheep with a highly informative microsatellite markers panel. The phylogeographical analysis, between breeds’ differentiation level (Wright’s fixation index), gene flow, ancestral relatedness measured by molecular coancestry, genetic distances, divergence times estimates and structure analyses, were revealed based on the assessment of 975 genotyped animals. The results unveiled the past introduction and migration history of sheep in the occidental Mediterranean basin since the early Neolithic. Our findings provided a scenario of three westward sheep migration phases fitting properly to the westward Neolithic expansion argued by zooarcheological, historical and human genetic studies.
Collapse
Affiliation(s)
- Yousra Ben Sassi-Zaidy
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Aziza Mohamed-Brahmi
- Laboratory of Agricultural Production Systems Sustainability in the North Western Region of Tunisia, Department of Animal Production, Ecole Supérieure d’Agriculture du Kef Boulifa, University of Jendouba, Le Kef 7119, Tunisia
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Fabio Maretto
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| | - Filippo Cendron
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Faouzia Charfi-Cheikhrouha
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Souha Ben Abderrazak
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Mnaour Djemali
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
| | - Martino Cassandro
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| |
Collapse
|
30
|
Drzaic I, Curik I, Lukic B, Shihabi M, Li MH, Kantanen J, Mastrangelo S, Ciani E, Lenstra JA, Cubric-Curik V. High-Density Genomic Characterization of Native Croatian Sheep Breeds. Front Genet 2022; 13:940736. [PMID: 35910220 PMCID: PMC9337876 DOI: 10.3389/fgene.2022.940736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
A recent comprehensive genomic analysis based on 50K SNP profiles has shown that the regional Balkan sheep populations have considerable genetic overlap but are distinctly different from surrounding breeds. All eight Croatian sheep breeds were represented by a small number of individuals per breed. Here, we genotyped 220 individuals representing the native Croatian sheep breeds (Istrian Sheep, Krk Island Sheep, Cres Island Sheep, Rab Island Sheep, Lika Pramenka, Pag Island Sheep, Dalmatian Pramenka, Dubrovnik Sheep) and mouflon using the Ovine Infinium® HD SNP BeadChip (606,006 SNPs). In addition, we included publicly available Balkan Pramenka and other Mediterranean sheep breeds. Our analyses revealed the complex population structure of Croatian sheep breeds and their origin and geographic barriers (island versus mainland). Migration patterns confirmed the historical establishment of breeds and the pathways of gene flow. Inbreeding coefficients (FROH>2 Mb) between sheep populations ranged from 0.025 to 0.070, with lower inbreeding coefficients observed in Dalmatian Pramenka and Pag Island Sheep and higher inbreeding in Dubrovnik sheep. The estimated effective population size ranged from 61 to 1039 for Krk Island Sheep and Dalmatian Pramenka, respectively. Higher inbreeding levels and lower effective population size indicate the need for improved conservation management to maintain genetic diversity in some breeds. Our results will contribute to breeding and conservation strategies of native Croatian sheep breeds.
Collapse
Affiliation(s)
- Ivana Drzaic
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
- *Correspondence: Ivana Drzaic, ; Vlatka Cubric-Curik,
| | - Ino Curik
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Boris Lukic
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Chair for Domestic Animal Breeding and Genetics, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Universita Degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Vlatka Cubric-Curik
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
- *Correspondence: Ivana Drzaic, ; Vlatka Cubric-Curik,
| |
Collapse
|
31
|
Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection. Animals (Basel) 2022; 12:ani12111423. [PMID: 35681887 PMCID: PMC9179914 DOI: 10.3390/ani12111423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Fatness-related traits are economically very important in sheep production and are associated with serious diseases in humans. Using a denser set of SNP markers and a variety of statistical approaches, our results were able to refine the regions associated with fat deposition and to suggest new insights into molecular aspects of fat tail selection. These results may provide a strong foundation for studying the regulation of fat deposition in sheep and do offer hope that the causal mutations and the mode of inheritance of this trait will soon be discovered by further investigation. Abstract The fat tail is a phenotype that divides indigenous Iranian sheep genetic resources into two major groups. The objective of the present study is to refine the map location of candidate regions associated with fat deposition, obtained via two separate whole genome scans contrasting thin and fat tail breeds, and to determine the nature of the selection occurring in these regions using a hitchhiking approach. Zel (thin tail) and Lori-Bakhtiari (fat tail) breed samples that had previously been run on the Illumina Ovine 50 k BeadChip, were genotyped with a denser set of SNPs in the three candidate regions using a Sequenom Mass ARRAY platform. Statistical tests were then performed using different and complementary methods based on either site frequency (FST and Median homozygosity) or haplotype (iHS and XP-EHH). The results from candidate regions on chromosome 5 and X revealed clear evidence of selection with the derived haplotypes that was consistent with selection to near fixation for the haplotypes affecting fat tail size in the fat tail breed. An analysis of the candidate region on chromosome 7 indicated that selection differentiated the beneficial alleles between breeds and homozygosity has increased in the thin tail breed which also had the ancestral haplotype. These results enabled us to confirm the signature of selection in these regions and refine the critical intervals from 113 kb, 201 kb, and 2831 kb to 28 kb, 142 kb, and 1006 kb on chromosome 5, 7, and X respectively. These regions contain several genes associated with fat metabolism or developmental processes consisting of TCF7 and PPP2CA (OAR5), PTGDR and NID2 (OAR7), AR, EBP, CACNA1F, HSD17B10,SLC35A2, BMP15, WDR13, and RBM3 (OAR X), and each of which could potentially be the actual target of selection. The study of core haplotypes alleles in our regions of interest also supported the hypothesis that the first domesticated sheep were thin tailed, and that fat tail animals were developed later. Overall, our results provide a comprehensive assessment of how and where selection has affected the patterns of variation in candidate regions associated with fat deposition in thin and fat tail sheep breeds.
Collapse
|
32
|
Changes in Neuropeptide Prohormone Genes among Cetartiodactyla Livestock and Wild Species Associated with Evolution and Domestication. Vet Sci 2022; 9:vetsci9050247. [PMID: 35622775 PMCID: PMC9144646 DOI: 10.3390/vetsci9050247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
The impact of evolution and domestication processes on the sequences of neuropeptide prohormone genes that participate in cell–cell signaling influences multiple biological process that involve neuropeptide signaling. This information is important to understand the physiological differences between Cetartiodactyla domesticated species such as cow, pig, and llama and wild species such as hippopotamus, giraffes, and whales. Systematic analysis of changes associated with evolutionary and domestication forces in neuropeptide prohormone protein sequences that are processed into neuropeptides was undertaken. The genomes from 118 Cetartiodactyla genomes representing 22 families were mined for 98 neuropeptide prohormone genes. Compared to other Cetartiodactyla suborders, Ruminantia preserved PYY2 and lost RLN1. Changes in GNRH2, IAPP, INSL6, POMC, PRLH, and TAC4 protein sequences could result in the loss of some bioactive neuropeptides in some families. An evolutionary model suggested that most neuropeptide prohormone genes disfavor sequence changes that incorporate large and hydrophobic amino acids. A compelling finding was that differences between domestic and wild species are associated with the molecular system underlying ‘fight or flight’ responses. Overall, the results demonstrate the importance of simultaneously comparing the neuropeptide prohormone gene complement from close and distant-related species. These findings broaden the foundation for empirical studies about the function of the neuropeptidome associated with health, behavior, and food production.
Collapse
|
33
|
Capturing Genetic Diversity and Selection Signatures of the Endangered Kosovar Balusha Sheep Breed. Genes (Basel) 2022; 13:genes13050866. [PMID: 35627251 PMCID: PMC9140571 DOI: 10.3390/genes13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is a growing concern about the loss of animal genetic resources. The aim of this study was to analyze the genetic diversity and potential peculiarity of the endangered Kosovar sheep breed Balusha. For this purpose, a dataset consisting of medium-density SNP chip genotypes (39,879 SNPs) from 45 Balusha sheep was generated and compared with SNP chip genotypes from 29 individuals of a second Kosovar breed, Bardhoka. Publicly available SNP genotypes from 39 individuals of the relatively closely located sheep breeds Istrian Pramenka and Ruda were additionally included in the analyses. Analysis of heterozygosity, allelic richness and effective population size was used to assess the genetic diversity. Inbreeding was evaluated using two different methods (FIS, FROH). The standardized FST (di) and cross-population extended haplotype homozygosity (XPEHH) methods were used to detect signatures of selection. We observed the lowest heterozygosity (HO = 0.351) and effective population size (Ne5 = 25, Ne50 = 228) for the Balusha breed. The mean allelic richness levels (1.780–1.876) across all analyzed breeds were similar and also comparable with those in worldwide breeds. FROH estimates (0.023–0.077) were highest for the Balusha population, although evidence of decreased inbreeding was observed in FIS results for the Balusha breed. Two Gene Ontology (GO) TERMs were strongly enriched for Balusha, and involved genes belonging to the melanogenesis and T cell receptor signaling pathways, respectively. This could result from selection for the special coat color pattern of Balusha (black head) and resistance to certain infectious diseases. The analyzed diversity parameters highlight the urgency to preserve the local Kosovar Balusha sheep as it is clearly distinguished from other sheep of Southeastern Europe, has the lowest diversity level and may harbor valuable genetic variants, e.g., for resistance to infectious diseases.
Collapse
|
34
|
Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, Vostry L, Curik I. Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach. Front Genet 2022; 13:887582. [PMID: 35615375 PMCID: PMC9126029 DOI: 10.3389/fgene.2022.887582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Collapse
Affiliation(s)
- Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| | - Boris Lukic
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Milan Oršanić
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Damir Ugarković
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Luboš Vostry
- Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| |
Collapse
|
35
|
Giantsis IA, Antonopoulou D, Dekolis N, Zaralis K, Avdi M. Origin, demographics, inbreeding, phylogenetics, and phenogenetics of Karamaniko breed, a major common ancestor of the autochthonous Greek sheep. Trop Anim Health Prod 2022; 54:73. [PMID: 35072809 DOI: 10.1007/s11250-022-03081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
Greece has a long history in autochthonous sheep, the genetic ancestry of which has been associated with four subtypes known to inhabit Greece at the end of the nineteenth century. Among them, the Karamaniko breed is still surviving, however endangered. This study was designed in order to (a) determine the phylogenetic status, (b) to evaluate the levels of inbreeding, and (c) to assess the genetic basis of coat color of Karamaniko breed. For these purposes, the mitochondrial cyt b gene was sequenced, the AFLP methodology was applied, and the MC1R was genotyped, respectively, in 72 female sheep from the Karamaniko breed. Four different novel cyt b haplotypes were defined and three MC1R genotypes were scored, whereas inbreeding levels estimated using AFLPs by the means of relatedness coefficient (r) were 0.287, with gene diversity at the levels of 0.105. Phylogenetic analysis indicated an eastern Asian tropical and subtropical origin of the Karamaniko breed, close with breeds originating from central Turkey, or a clustering within western European or Mediterranean sheep, mirroring a recent genetic divergence, with a non-random spread towards the formation of lowland breeds. The MC1R genotypes were all associated with the white coat color, in which selective breeding has probably been based on traditional morphological characters. Finally, levels of inbreeding do not constitute an indication for a particular mating plan to prevent unpleasant phenomena such as inbreeding depression, probably because of the special attention paid by the farmers towards the avoidance of relative recurrent mating.
Collapse
Affiliation(s)
- Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece.
| | - Danai Antonopoulou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece.,Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Dekolis
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zaralis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Melpomeni Avdi
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
37
|
Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, Li WR, Zhou P, Wang XH, Shen M, Gao L, Yang JQ, Yang H, Yang YL, Liu CB, Wan PC, Zhang YS, Pi WH, Ren YL, Shen ZQ, Wang F, Wang YT, Li JQ, Salehian-Dehkordi H, Hehua E, Liu YG, Chen JF, Wang JK, Deng XM, Esmailizadeh A, Dehghani-Qanatqestani M, Charati H, Nosrati M, Štěpánek O, Rushdi HE, Olsaker I, Curik I, Gorkhali NA, Paiva SR, Caetano AR, Ciani E, Amills M, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Periasamy K, Johansson AM, Hallsson JH, Kantanen J, Coltman DW, Bruford MW, Lenstra JA, Li MH. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression and agronomically important loci. Mol Biol Evol 2021; 39:6459180. [PMID: 34893856 PMCID: PMC8826587 DOI: 10.1093/molbev/msab353] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Collapse
Affiliation(s)
- Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | | | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Lu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yong-Lin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jian-Fei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Kui Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Mei Deng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hadi Charati
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Neena A Gorkhali
- Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council (NARC), Kathmandu, Nepal
| | - Samuel R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24 Moro, Bari, Italy
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Agraw Amane
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- CTLGH and SRUC, The Roslin Institute Building, Easter Bush Campus, Edinburgh, Scotland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jón H Hallsson
- Faculty of Natural Resources and Environmental Sciences, Agricultural University of Iceland, Borgarnes, Iceland
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Wales, United Kingdom
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author: E-mail:
| |
Collapse
|
38
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
39
|
Serranito B, Cavalazzi M, Vidal P, Taurisson-Mouret D, Ciani E, Bal M, Rouvellac E, Servin B, Moreno-Romieux C, Tosser-Klopp G, Hall SJG, Lenstra JA, Pompanon F, Benjelloun B, Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Sci Rep 2021; 11:21363. [PMID: 34725398 PMCID: PMC8560853 DOI: 10.1038/s41598-021-00682-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Small ruminants are suited to a wide variety of habitats and thus represent promising study models for identifying genes underlying adaptations. Here, we considered local Mediterranean breeds of goats (n = 17) and sheep (n = 25) from Italy, France and Spain. Based on historical archives, we selected the breeds potentially most linked to a territory and defined their original cradle (i.e., the geographical area in which the breed has emerged), including transhumant pastoral areas. We then used the programs PCAdapt and LFMM to identify signatures of artificial and environmental selection. Considering cradles instead of current GPS coordinates resulted in a greater number of signatures identified by the LFMM analysis. The results, combined with a systematic literature review, revealed a set of genes with potentially key adaptive roles in relation to the gradient of aridity and altitude. Some of these genes have been previously implicated in lipid metabolism (SUCLG2, BMP2), hypoxia stress/lung function (BMPR2), seasonal patterns (SOX2, DPH6) or neuronal function (TRPC4, TRPC6). Selection signatures involving the PCDH9 and KLH1 genes, as well as NBEA/NBEAL1, were identified in both species and thus could play an important adaptive role.
Collapse
Affiliation(s)
- Bruno Serranito
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France
- CRESCO, Museum National d'Histoire Naturelle (MNHN), 35800, Dinard, France
| | | | - Pablo Vidal
- Universidad Catolica de Valencia, Valencia, Spain
| | - Dominique Taurisson-Mouret
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
- CNRS, UMR 5815, Dynamiques du droit, Université de Montpellier, Montpellier, France
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marie Bal
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
| | | | - Bertrand Servin
- GenPhySE, INRAE, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | | | - Stephen J G Hall
- Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
- National Institute of Agronomic Research (INRA), Regional Centre of Agronomic Research, Beni-Mellal, Morocco
| | - Anne Da Silva
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France.
| |
Collapse
|
40
|
New insights into the past and recent evolutionary history of the Corsican mouflon (Ovis gmelini musimon) to inform its conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Kominakis A, Tarsani E, Hager-Theodorides AL, Mastranestasis I, Gkelia D, Hadjigeorgiou I. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation. PLoS One 2021; 16:e0257461. [PMID: 34529728 PMCID: PMC8445479 DOI: 10.1371/journal.pone.0257461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
In Greece, a number of local sheep breeds are raised in a wide range of ecological niches across the country. These breeds can be used for the identification of genetic variants that contribute to local adaptation. To this end, 50k genotypes of 90 local sheep from mainland Greece (Epirus, n = 35 and Peloponnesus, n = 55) were used, as well as 147 genotypes of sheep from insular Greece (Skyros, n = 21), Lemnos, n = 36 and Lesvos, n = 90). Principal components and phylogenetic analysis along with admixture and spatial point patterns analyses suggested genetic differentiation of 'mainland-island' populations. Genome scans for signatures of selection and genome-wide association analysis (GWAS) pointed to one highly differentiating marker on OAR4 (FST = 0.39, FLK = 21.93, FDR p-value = 0.10) that also displayed genome wide significance (FDR p-value = 0.002) during GWAS. A total number of 6 positional candidate genes (LOC106990429, ZNF804B, TEX47, STEAP4, SRI and ADAM22) were identified within 500 kb flanking regions around the significant marker. In addition, two QTLs related to fat tail deposition are reported in genomic regions 800 kb downstream the significant marker. Based on gene ontology analysis and literature evidence, the identified candidate genes possess biological functions relevant to local adaptation that worth further investigation.
Collapse
Affiliation(s)
- Antonios Kominakis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Eirini Tarsani
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | | | | | - Dimitra Gkelia
- Association of Pastoral Farmers of Epirus, Ioannina, Greece
| | | |
Collapse
|
42
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
43
|
Satta V, Mereu P, Barbato M, Pirastru M, Bassu G, Manca L, Naitana S, Leoni GG. Genetic characterization and implications for conservation of the last autochthonous Mouflon population in Europe. Sci Rep 2021; 11:14729. [PMID: 34282202 PMCID: PMC8289818 DOI: 10.1038/s41598-021-94134-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Population genetic studies provide accurate information on population structure, connectivity, and hybridization. These are key elements to identify units for conservation and define wildlife management strategies aimed to maintain and restore biodiversity. The Mediterranean island of Sardinia hosts one of the last autochthonous mouflon populations, descending from the wild Neolithic ancestor. The first mouflon arrived in Sardinia ~ 7000 years ago and thrived across the island until the twentieth century, when anthropogenic factors led to population fragmentation. We analysed the three main allopatric Sardinian mouflon sub-populations, namely: the native sub-populations of Montes Forest and Mount Tonneri, and the reintroduced sub-population of Mount Lerno. We investigated the spatial genetic structure of the Sardinian mouflon based on the parallel analysis of 14 highly polymorphic microsatellite loci and mitochondrial D-loop sequences. The Montes Forest sub-population was found to harbour the ancestral haplotype in the phylogeny of European mouflon. We detected high levels of relatedness in all the sub-populations and a mitochondrial signature of hybridization between the Mount Lerno sub-population and domestic sheep. Our findings provide useful insights to protect such an invaluable genetic heritage from the risk of genetic depletion by promoting controlled inter-population exchange and drawing informed repopulation plans sourcing from genetically pure mouflon stocks.
Collapse
Affiliation(s)
- Valentina Satta
- grid.11450.310000 0001 2097 9138Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Paolo Mereu
- grid.11450.310000 0001 2097 9138Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Mario Barbato
- grid.8142.f0000 0001 0941 3192Department of Animal Science, Food and Technology–DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Monica Pirastru
- grid.11450.310000 0001 2097 9138Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | | | - Laura Manca
- grid.11450.310000 0001 2097 9138Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Salvatore Naitana
- grid.11450.310000 0001 2097 9138Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanni Giuseppe Leoni
- grid.11450.310000 0001 2097 9138Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
44
|
Senczuk G, Mastrangelo S, Ajmone-Marsan P, Becskei Z, Colangelo P, Colli L, Ferretti L, Karsli T, Lancioni H, Lasagna E, Marletta D, Persichilli C, Portolano B, Sarti FM, Ciani E, Pilla F. On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data. Genet Sel Evol 2021; 53:48. [PMID: 34078254 PMCID: PMC8173809 DOI: 10.1186/s12711-021-00639-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. Results Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. Conclusions This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00639-w.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Paolo Ajmone-Marsan
- Department of Animal Science Food and Nutrition, DIANA, Nutrigenomics and Proteomics Research Centre, PRONUTRIGEN, Biodiversity and Ancient DNA Research Centre, BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Zsolt Becskei
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine, Bulevar Oslobodjenja street 18, 11000, Belgrade, Serbia
| | - Paolo Colangelo
- National Council of Research (CNR), Research Institute On Terrestrial Ecosystems (IRET), Via Salaria km 29.300, Montelibretti, 00015, Rome, Italy
| | - Licia Colli
- Department of Animal Science Food and Nutrition, DIANA, Nutrigenomics and Proteomics Research Centre, PRONUTRIGEN, Biodiversity and Ancient DNA Research Centre, BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Italy, Pavia
| | - Taki Karsli
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di sotto, 06123, Perugia, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Donata Marletta
- Department of Agriculture, Food and Environment, University of Catania, 95125, Catania, Italy
| | - Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Baldassare Portolano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Francesca M Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Elena Ciani
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, 70124, Bari, Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
45
|
Nosrati M, Asadollahpour Nanaei H, Javanmard A, Esmailizadeh A. The pattern of runs of homozygosity and genomic inbreeding in world-wide sheep populations. Genomics 2021; 113:1407-1415. [PMID: 33705888 DOI: 10.1016/j.ygeno.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Genome-wide pattern of runs of homozygosity (ROH) across ovine genome can provide a useful resource for studying diversity and demography history in sheep. We analyzed 50 k SNPs chip data of 2536 animals to identify pattern, distribution and level of ROHs in 68 global sheep populations. A total of 60,301 ROHs were detected in all breeds. The majority of the detected ROHs were <16 Mb and the average total number of ROHs per individual was 23.8 ± 13.8. The ROHs greater than 1 Mb covered on average 8.2% of the sheep autosomes, 1% of which was related to the ROHs with 1-4 Mb of length. The mean sum of ROH length in two-thirds of the populations was less than 250 Mb ranging from 21.7 to near 570 Mb. The level of genomic inbreeding was relatively low. The average of the inbreeding coefficients based on ROH (FROH) was 0.09 ± 0.05. It was rising in a stepwise manner with distance from Southwest Asia and maximum values were detected in North European breeds. A total of 465 ROH hotspots were detected in 25 different autosomes which partially surrounding 257 Refseq genes across the genome. Most of the detected genes were related to growth, body weight, meat production and quality, wool production and pigmentation. In conclusion, our analysis showed that the sheep genome, compared with other livestock species such as cattle and pig, displays low levels of homozygosity and appropriate genetic diversity for selection response and genetic merit gain.
Collapse
Affiliation(s)
- Maryam Nosrati
- Department of Agriculture, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Arash Javanmard
- Departement of Animal Sceince, Faculty of Agriculture, University of Tabriz, PB 5166616471,Tabriz, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
46
|
Kominakis A, Tarsani E, Hager-Theodorides AL, Mastranestasis I, Hadjigeorgiou I. Clustering patterns mirror the geographical distribution and genetic history of Lemnos and Lesvos sheep populations. PLoS One 2021; 16:e0247787. [PMID: 33657161 PMCID: PMC7928510 DOI: 10.1371/journal.pone.0247787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genetic variation and structure of Lemnos and Lesvos sheep is critical for maintaining local genetic diversity, ecosystem integrity and resilience of local food production of the two North Aegean islands. In the present study, we explored genetic diversity and differentiation as well as population structure of the Lemnos and Lesvos sheep. Furthermore, we sought to identify a small panel of markers with the highest discriminatory power to assign animals across islands. A total number of n = 424 (n = 307, Lemnos and n = 117, Lesvos) ewes, sampled from n = 24 herds dispersed at different geographic regions on the two islands, were genotyped with the 50K SNP array. Mean observed heterozygosity was higher (but not statistically significantly different) in Lesvos than in Lemnos population (0.384 vs. 0.377) while inbreeding levels were higher in Lemnos than Lesvos herds (0.065 vs. 0.031). Results of principal components along with that of admixture analysis and estimated genetic distances revealed genetic clusters corresponding to Lesvos and Lemnos origin and the existence of infrastructure within islands that were associated with geographical isolation and genetic history of the studied populations. In particular, genetic analyses highlighted three geographically isolated herds in Lemnos that are located at mountainous areas of the island and are characterized as representatives of the local sheep by historic data and reports. Admixture analysis also showed a shared genetic background between Lemnos and Lesvos sheep attributable to past gene flow. Little overall genetic differentiation was detected between the two island sheep populations, while 150 discriminatory SNPs could accurately assign animals to their origin. Present results are comparable with those reported in the worldwide sheep breeds, suggesting geography related genetic patterns across and within islands and the existence of the local Lemnos sheep.
Collapse
Affiliation(s)
- Antonios Kominakis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Eirini Tarsani
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
- * E-mail:
| | | | | | | |
Collapse
|
47
|
Zsolnai A, Egerszegi I, Rózsa L, Anton I. Genetic status of lowland-type Racka sheep colour variants. Animal 2020; 15:100080. [PMID: 33573966 DOI: 10.1016/j.animal.2020.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Lowland-type Racka is an indigenous sheep breed that beside Hungarian Grey cattle and Mangalitza pig is one of the national symbols of Hungary. However, the genetic description of Racka sheep has not yet been conducted based on whole-genome screening. By using the Geneseek Ovine SNP50 BeadChip, we have sampled the genome of 126 Black and 128 White Racka sheep. For comparative purposes, we used 134 Hungarian Merinos and further 3345 animals from 81 different breeds have been included from an available database. Performance of a multidimensional scaling plot showed that White and Black Rackas represent well-separated groups among other sheep breeds and clustered separately from each other. However, the number and total length of Runs of Homozygosity was similar to other sheep breeds, except Soay. The inbreeding coefficients (method-of-moments relatedness F coefficient) of Black and White Racka were 0.147 and 0.133, respectively. Based on multidimensional scaling and admixture analyses and on comparisons of genetic distances of the investigated 84 populations, we suggest considering the colour variants of Racka as genetically differentiated breeds. The most differentiated markers between Black and White Racka highlight several candidate genes including 5-Hydroxytryptamine Receptor 5A, Insulin Induced Gene 1, Cyclin Dependent Kinase 5 and Melanocortin 1 Receptor. The results of this study help the recognition of Racka as a unique genetic resource among sheep and pave the way of application of genome screens to guide the resolution of questions arising among breeders.
Collapse
Affiliation(s)
- A Zsolnai
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary; National Centre for Biodivertsity and Gene Conservation, Gödöllő, Hungary.
| | | | - L Rózsa
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary
| | - I Anton
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary
| |
Collapse
|
48
|
Deng J, Xie XL, Wang DF, Zhao C, Lv FH, Li X, Yang J, Yu JL, Shen M, Gao L, Yang JQ, Liu MJ, Li WR, Wang YT, Wang F, Li JQ, Hehua EE, Liu YG, Shen ZQ, Ren YL, Liu GJ, Chen ZH, Gorkhali NA, Rushdi HE, Salehian-Dehkordi H, Esmailizadeh A, Nosrati M, Paiva SR, Caetano AR, Štěpánek O, Olsaker I, Weimann C, Erhardt G, Curik I, Kantanen J, Mwacharo JM, Hanotte O, Bruford MW, Ciani E, Periasamy K, Amills M, Lenstra JA, Han JL, Zhang HP, Li L, Li MH. Paternal Origins and Migratory Episodes of Domestic Sheep. Curr Biol 2020; 30:4085-4095.e6. [PMID: 32822607 DOI: 10.1016/j.cub.2020.07.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/14/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
The domestication and subsequent global dispersal of livestock are crucial events in human history, but the migratory episodes during the history of livestock remain poorly documented [1-3]. Here, we first developed a set of 493 novel ovine SNPs of the male-specific region of Y chromosome (MSY) by genome mapping. We then conducted a comprehensive genomic analysis of Y chromosome, mitochondrial DNA, and whole-genome sequence variations in a large number of 595 rams representing 118 domestic populations across the world. We detected four different paternal lineages of domestic sheep and resolved, at the global level, their paternal origins and differentiation. In Northern European breeds, several of which have retained primitive traits (e.g., a small body size and short or thin tails), and fat-tailed sheep, we found an overrepresentation of MSY lineages y-HC and y-HB, respectively. Using an approximate Bayesian computation approach, we reconstruct the demographic expansions associated with the segregation of primitive and fat-tailed phenotypes. These results together with archaeological evidence and historical data suggested the first expansion of early domestic hair sheep and the later expansion of fat-tailed sheep occurred ∼11,800-9,000 years BP and ∼5,300-1,700 years BP, respectively. These findings provide important insights into the history of migration and pastoralism of sheep across the Old World, which was associated with different breeding goals during the Neolithic agricultural revolution.
Collapse
Affiliation(s)
- Juan Deng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Life Science, Hebei University, Baoding 071002, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jia-Lin Yu
- Station for Breeding and Improvement of Animal and Poultry of Changshou District, Chongqing 401220, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi 830001, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi 830001, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - EEr Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou 256600, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou 256600, China
| | - Guang-Jian Liu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ze-Hui Chen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Neena A Gorkhali
- Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council (NARC), Kathmandu, Nepal
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Samuel R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Avenida W5 Norte (Final), Caixa Postal 02372, CEP 70770-917 Brasília, DF, Brazil
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Avenida W5 Norte (Final), Caixa Postal 02372, CEP 70770-917 Brasília, DF, Brazil
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Rantirovska 93, 58601, Jihlava, Czech Republic
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Joram M Mwacharo
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia; CTLGH and SRUC, the Roslin Institute Building, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia; School of Life Sciences, University of Nottingham, University Park, Nottingham, NG72RD, UK
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3AX, Wales, United Kingdom; Sustainable Places Research Institute, Cardiff University CF10 3BA, Wales, United Kingdom
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24 Moro, Bari, Italy
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Hong-Ping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|