1
|
Li H, Fang C, Hu Y, Xu J, Zhao W, Li L. The Comparative Analysis of Peptides in Enteral Nutrition Products and Foods for Special Medical Purposes. Foods 2024; 13:2557. [PMID: 39200483 PMCID: PMC11353486 DOI: 10.3390/foods13162557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Enteral nutrition (EN) and foods for special medical purposes (FSMPs) can be used to meet the specific nutritional needs of patients. There are multiple types of EN products and nutritionally complete FSMPs on the market. The peptides in these products are important nutritional components, while their presence in different products remains unclear. To provide better clinical guidelines, we analyzed and compared the molecular weight (MW) distribution, types, and quantities of peptides and bioactive peptides of two EN products (liquid products) and two FSMPs with nutritionally complete formulas (powder products). Our results showed that each product had a unique peptide profile. The two liquid products and one powder product (Samples 1-3) had a higher content of peptides. Sample 1 contained 75.60% peptides with an MW less than 375 Da and contained 95.21% peptides with an MW less than 1000 Da, being rich in short peptides. Sample 2 and 3 had high levels of peptides with MW values between 180 Da and 2000 Da. Additionally, Sample 4 contained high levels of proteins, containing 69.18% peptides with MW values larger than 10,000 Da. Further, Sample 1 had more bioactive dipeptides and Sample 2 had more long bioactive peptides. Our results suggest that peptides in different EN and FSMP products are very different and should be evaluated in more detail. This will provide valuable information for clinical medical professionals, help them to guide patients with different physiological conditions better, and ultimately benefit patients.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chenlu Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yushan Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Trebes H, Wang Y, Reynolds E, Tiplady K, Harland C, Lopdell T, Johnson T, Davis S, Harris B, Spelman R, Couldrey C. Identification of candidate novel production variants on the Bos taurus chromosome X. J Dairy Sci 2023; 106:7799-7815. [PMID: 37562645 DOI: 10.3168/jds.2022-23095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 08/12/2023]
Abstract
Chromosome X is often excluded from bovine genetic studies due to complications caused by the sex specific nature of the chromosome. As chromosome X is the second largest cattle chromosome and makes up approximately 6% of the female genome, finding ways to include chromosome X in dairy genetic studies is important. Using female animals and treating chromosome X as an autosome, we performed X chromosome inclusive genome-wide association studies in the selective breeding environment of the New Zealand dairy industry, aiming to identify chromosome X variants associated with milk production traits. We report on the findings of these genome-wide association studies and their potential effect within the dairy industry. We identify missense mutations in the MOSPD1 and CCDC160 genes that are associated with decreased milk volume and protein production and increased fat production. Both of these mutations are exonic SNP that are more prevalent in the Jersey breed than in Holstein-Friesians. Of the 2 candidates proposed it is likely that only one is causal, though we have not been able to identify which is more likely.
Collapse
Affiliation(s)
- H Trebes
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand.
| | - Y Wang
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - E Reynolds
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - K Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - C Harland
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - T Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - T Johnson
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - S Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - B Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - R Spelman
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - C Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| |
Collapse
|
3
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
4
|
Tiplady KM, Lopdell TJ, Sherlock RG, Johnson TJ, Spelman RJ, Harris BL, Davis SR, Littlejohn MD, Garrick DJ. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins. J Dairy Sci 2022; 105:9763-9791. [DOI: 10.3168/jds.2022-22089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
|
5
|
Yao S, Liu Y, Liu X, Liu G. Effects of SNPs in AANAT and ASMT Genes on Milk and Peripheral Blood Melatonin Concentrations in Holstein Cows ( Bos taurus). Genes (Basel) 2022; 13:genes13071196. [PMID: 35885979 PMCID: PMC9322776 DOI: 10.3390/genes13071196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aralkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT), the two rate-limiting enzymes for melatonin synthesis, regulate melatonin production in mammals. Through analysis of the milk melatonin level and dairy herd improvement (DHI) index, it was found that the melatonin concentration in milk was significantly negatively correlated with the 305 day milk yield (305M) and peak milk yield (PeakM) (p < 0.05), while it was significantly positively correlated with the serum melatonin concentration (p < 0.05). The full-length of AANAT and ASMT were sequenced and genotyped in 122 cows. Three SNPs in AANAT and four SNPs in ASMT were significantly related to MT levels in the milk and serum (p < 0.05). The SNPs in AANAT were temporarily denoted as N-SNP1 (g.55290169 T>C), N-SNP2 (g.55289357 T>C), and N-SNP3 (g.55289409 C>T). The SNPs in ASMT were temporarily denoted as M-SNP1 (g.158407305 G>A), M-SNP2 (g.158407477 A>G), M-SNP3 (g.158407874 G>A), and M-SNP4 (g.158415342 T>C). The M-SNP1, M-SNP2, and M-SNP3 conformed to the Hardy−Weinberg equilibrium (p > 0.05), while other SNPs deviated from the Hardy−Weinberg equilibrium (p < 0.05). The potential association of MT production and each SNP was statistically analyzed using the method of linkage disequilibrium (LD). The results showed that N-SNP2 and N-SNP3 had some degree of LD (D′ = 0.27), but M-SNP1 and M-SNP2 had a strong LD (D′ = 0.98). Thus, the DHI index could serve as a prediction of the milk MT level. The SNPs in AANAT and ASMT could be used as potential molecular markers for screening cows to produce high melatonin milk.
Collapse
|