1
|
Kislichkina AA, Sizova AA, Skryabin YP, Solomentsev VI, Platonov ME, Dentovskaya SV, Anisimov AP. Complete genome assembly of Yersinia alsatica SCPM-O-B-7604. Microbiol Resour Announc 2025; 14:e0110224. [PMID: 40231664 PMCID: PMC12060659 DOI: 10.1128/mra.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
We report the first published complete genome assembly of Yersinia alsatica SCPM-O-B-7604, the strain belonging to the new species of genus Yersinia described by Le Guern et al. in 2020.
Collapse
Affiliation(s)
| | - Angelika A. Sizova
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Yury P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Viktor I. Solomentsev
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Mikhail E. Platonov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Svetlana V. Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
- Pushchino State Institute of Natural Science, Pushchino, Russia
| | - Andrey P. Anisimov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| |
Collapse
|
2
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
3
|
Li X, Han Y, Zhao W, Xiao Y, Huang S, Li Z, Fan F, Liang W, Kan B. Diversity and Complexity of CTXΦ and Pre-CTXΦ Families in Vibrio cholerae from Seventh Pandemic. Microorganisms 2024; 12:1935. [PMID: 39458246 PMCID: PMC11509585 DOI: 10.3390/microorganisms12101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
CTXΦ is a lysogenic filamentous phage that carries the genes encoding cholera toxin (ctxAB), the main virulence factor of Vibrio cholerae. The toxigenic conversion of environmental V. cholerae strains through CTXΦ lysogenic infection is crucial for the emergence of new pathogenic clones. A special allelic form of CTXΦ, called pre-CTXΦ, is a precursor of CTXΦ and without ctxAB. Different members of the pre-CTXΦ and CTXΦ families are distinguished by the sequence of the transcriptional repressor-coding gene rstR. Multiple rstR alleles can coexist within a single strain, demonstrating the diverse structure and complex genomic integration patterns of CTXΦ/pre-CTXΦ prophage on the chromosome. Exploration of the diversity and co-integration patterns of CTXΦ/pre-CTXΦ prophages in V. cholerae can help to understand the evolution of this phage family. In this study, 21 V. cholerae strains, which were shown to carry the CTXΦ/pre-CTXΦ prophages as opposed to typical CTXETΦ-RS1 structure, were selected from approximately 1000 strains with diverse genomes. We identified two CTXΦ members and six pre-CTXΦ members with distinct rstR alleles, revealing complex chromosomal DNA integration patterns and arrangements of different prophages in these strains. Promoter activity assays showed that the transcriptional repressor RstR protected against CTXΦ superinfection by preventing the replication and integration of CTXΦ/pre-CTXΦ phages containing the same rstR allele, supporting the co-integration of the diverse CTXΦ/pre-CTXΦ members observed. The numbers and types of prophages and their co-integration arrangements in serogroup O139 strains were more complex than those in serogroup O1 strains. Also, these CTXΦ/pre-CTXΦ members were shown to present the bloom period of the CTXΦ/pre-CTXΦ family during wave 2 of the seventh cholera pandemic. Together, these analyses deepen our comprehension of the genetic variation of CTXΦ and pre-CTXΦ and provide insights into the evolution of the CTXΦ/pre-CTXΦ family in the seventh cholera pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206, China; (X.L.); (Y.H.); (W.Z.); (Y.X.); (S.H.); (Z.L.); (F.F.)
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206, China; (X.L.); (Y.H.); (W.Z.); (Y.X.); (S.H.); (Z.L.); (F.F.)
| |
Collapse
|
4
|
Horizontal Transfer of Virulence Factors by Pathogenic Enterobacteria to Marine Saprotrophic Bacteria during Co-Cultivation in Biofilm. BIOTECH 2022; 11:biotech11020017. [PMID: 35822790 PMCID: PMC9264390 DOI: 10.3390/biotech11020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Environmental problems associated with marine pollution and climate warming create favorable conditions for the penetration and survival of pathogenic bacteria in marine ecosystems. These microorganisms have interspecific competitive interactions with marine bacteria. Co-culture, as an important research strategy that mimics the natural environment of bacteria, can activate silent genes or clusters through interspecies interactions. The authors used modern biotechnology of co-cultivation to dynamically study intercellular interactions between different taxa of bacteria—pathogenic enterobacteria Yersinia pseudotuberculosis and Listeria monocytogenes and saprotrophic marine bacteria Bacillus sp. and Pseudomonas japonica isolated in summer from the coastal waters of the recreational areas of the Sea of Japan. The results of the experiments showed that during the formation of polycultural biofilms, horizontal transfer of genes encoding some pathogenicity factors from Y. pseudotuberculosis and L. monocytogenes to marine saprotrophic bacteria with different secretion systems is possible. It was previously thought that this was largely prevented by the type VI secretion system (T6SS) found in marine saprotrophic bacteria. The authors showed for the first time the ability of marine bacteria Bacillus sp. and P. japonica to biofilm formation with pathogenic enterobacteria Y. pseudotuberculosis and L. monocytogenes, saprophytic bacteria with type III secretion system (T3SS). For the first time, a marine saprotrophic strain of Bacillus sp. Revealed manifestations of hyaluronidase, proteolytic and hemolytic activity after cultivation in a polycultural biofilm with listeria. Saprotrophic marine bacteria that have acquired virulence factors from pathogenic enterobacteria, including antibiotic resistance genes, could potentially play a role in altering the biological properties of other members of the marine microbial community. In addition, given the possible interdomain nature of intercellular gene translocation, acquired virulence factors can be transferred to marine unicellular and multicellular eukaryotes. The results obtained contribute to the paradigm of the epidemiological significance and potential danger of anthropogenic pollution of marine ecosystems, which creates serious problems for public health and the development of marine culture as an important area of economic activity in coastal regions.
Collapse
|
5
|
Draft Genome Sequences of Six Yersinia kristensenii Strains. Microbiol Resour Announc 2022; 11:e0106321. [PMID: 34989614 PMCID: PMC8759387 DOI: 10.1128/mra.01063-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia kristensenii is one of the Yersinia enterocolitica-like bacterial species, which are considered nonpathogenic to humans. In this work, we reported the draft genome sequences of six Yersinia kristensenii strains. These draft genomes will help to better characterize Yersinia kristensenii at the genomic level.
Collapse
|
6
|
Platt-Samoraj A, Kończyk-Kmiecik K, Bakuła T. Occurrence and Genetic Correlations of Yersinia spp. Isolated from Commensal Rodents in Northeastern Poland. Pathogens 2021; 10:pathogens10101247. [PMID: 34684196 PMCID: PMC8537150 DOI: 10.3390/pathogens10101247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Rodents can be a potential Yersinia spp. vector responsible for farm facilities contamination. The aim of the study was to determine the prevalence of Yersinia spp. in commensal rodents found in the farms and fodder factory areas to characterize the obtained isolates and epidemiological risk. Intestinal samples were subjected to bacteriological, bioserotype, and PCR examination for virulence markers ail, ystA, ystB, and inv presence. Yersinia spp. was isolated from 43 out of 244 (17.6%) rodents (Apodemus agrarius n = 132, Mus musculus n = 102, Apodemus sylvaticus n = 8, Rattus norvegicus n = 2). Y. enterocolitica was isolated from 41 rodents (16.8%), and from one Y. pseudotuberculosis and one Y. kristensenii. In three cases, two Y. enterocolitica isolates were obtained from one rodent. All Y. enetrocolitica contained ystB and belonged to biotype 1A, considered as potentially pathogenic. One isolate additionally had the ail gene typical for pathogenic strains. The sequence analysis of the ystB, ail, and inv fragments showed a high similarity to those from clinical cases. The current study revealed a high prevalence of Y. enetrocolitica among commensal rodents, but the classification of all of Y. enterocolitica isolates into biotype 1A and the sporadic isolation of Y. pseudotuberculosis do not indicate a high epidemiological risk.
Collapse
Affiliation(s)
- Aleksandra Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
- Correspondence:
| | - Klaudia Kończyk-Kmiecik
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
| |
Collapse
|
7
|
Chen CX, Sun LN, Hou XX, Du PC, Wang XL, Du XC, Yu YF, Cai RK, Yu L, Li TJ, Luo MN, Shen Y, Lu C, Li Q, Zhang C, Gao HF, Ma X, Lin H, Cao ZF. Prevention and Control of Pathogens Based on Big-Data Mining and Visualization Analysis. Front Mol Biosci 2021; 7:626595. [PMID: 33718431 PMCID: PMC7947816 DOI: 10.3389/fmolb.2020.626595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Morbidity and mortality caused by infectious diseases rank first among all human illnesses. Many pathogenic mechanisms remain unclear, while misuse of antibiotics has led to the emergence of drug-resistant strains. Infectious diseases spread rapidly and pathogens mutate quickly, posing new threats to human health. However, with the increasing use of high-throughput screening of pathogen genomes, research based on big data mining and visualization analysis has gradually become a hot topic for studies of infectious disease prevention and control. In this paper, the framework was performed on four infectious pathogens (Fusobacterium, Streptococcus, Neisseria, and Streptococcus salivarius) through five functions: 1) genome annotation, 2) phylogeny analysis based on core genome, 3) analysis of structure differences between genomes, 4) prediction of virulence genes/factors with their pathogenic mechanisms, and 5) prediction of resistance genes/factors with their signaling pathways. The experiments were carried out from three angles: phylogeny (macro perspective), structure differences of genomes (micro perspective), and virulence and drug-resistance characteristics (prediction perspective). Therefore, the framework can not only provide evidence to support the rapid identification of new or unknown pathogens and thus plays a role in the prevention and control of infectious diseases, but also help to recommend the most appropriate strains for clinical and scientific research. This paper presented a new genome information visualization analysis process framework based on big data mining technology with the accommodation of the depth and breadth of pathogens in molecular level research.
Collapse
Affiliation(s)
- Cui-Xia Chen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Li-Na Sun
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xue-Xin Hou
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | - Xiao-Long Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Chen Du
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Fei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Rui-Kun Cai
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Lei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Tian-Jun Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Min-Na Luo
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chuan Zhang
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hua-Fang Gao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zong-Fu Cao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| |
Collapse
|
8
|
Han Y, Yang T, Xu G, Li L, Liu J. Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122256. [PMID: 32062341 DOI: 10.1016/j.jhazmat.2020.122256] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 05/13/2023]
Abstract
Bacteria and fungi are abundant and ubiquitous in bioaerosols from wastewater treatment plants (WWTPs). However, the specificity and interactions of bioaerosol microorganism, particularly of potential pathogens, from WWTPs are still poorly understood. In this study, we investigated 9 full-scale WWTPs in different areas of China for 3 years, and found microbial variations in bioaerosols to be associated with regions, seasons, and processes. Relative humidity, total suspended particulates, wind speed, temperature, total organic carbon, NH4+, Cl- and Ca2+ were the major factors influencing this variation, and meteorological factors were more strongly associated with the variation than chemical composition. In total, 95 and 22 potential bacterial and fungal pathogens were detected in bioaerosols, respectively. The linear discriminant analysis effect size method suggested that Serratia, Yersinia, Klebsiella, and Bacillus were discriminative genera in bioaerosols on the whole, and were also hub niches in the interactions within potential bacterial pathogens, based on network analysis. Strong co-occurrences such as Serratia-Bacillus and Staphylococcus-Candida, and co-exclusions such as Rhodotorula-Cladosporium and Pseudomonas-Candida, were found within and between potential bacterial and fungal pathogens in bioaerosols from WWTPs. This study furthers understanding of the biology and ecology of bioaerosols from WWTPs, and offers a theoretical basis for determining bioaerosol control.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Tang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Guangsu Xu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| |
Collapse
|
9
|
Draft Genome Sequences of Yersinia frederiksenii, Yersinia intermedia, and Yersinia kristensenii Strains from Brazil. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00780-17. [PMID: 28798182 PMCID: PMC5552991 DOI: 10.1128/genomea.00780-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yersinia enterocolitica-like strains are usually understudied. In this work, we reported the draft genome sequences of two Yersinia frederiksenii, two Yersinia intermedia, and two Yersinia kristensenii strains isolated from humans, animals, food, and the environment in Brazil. These draft genomes will provide better molecular characterizations of these species.
Collapse
|