1
|
Pyron RA, O'Connell KA, Myers EA, Beamer DA, Baños H. Complex Hybridization in a Clade of Polytypic Salamanders (Plethodontidae: Desmognathus) Uncovered by Estimating Higher-Level Phylogenetic Networks. Syst Biol 2025; 74:124-140. [PMID: 39468736 DOI: 10.1093/sysbio/syae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Reticulation between radiating lineages is a common feature of diversification. We examine these phenomena in the Pisgah clade of Desmognathus salamanders from the southern Appalachian Mountains of the eastern United States. The group contains 4-7 species exhibiting 2 discrete phenotypes, aquatic "shovel-nosed" and semi-aquatic "black-bellied" forms. These ecomorphologies are ancient and have apparently been transmitted repeatedly between lineages through introgression. Geographically proximate populations of both phenotypes exhibit admixture, and at least 2 black-bellied lineages have been produced via reticulations between shovel-nosed parentals, suggesting potential hybrid speciation dynamics. However, computational constraints currently limit our ability to reconstruct network radiations from gene-tree data. Available methods are limited to level-1 networks wherein reticulations do not share edges, and higher-level networks may be non-identifiable in many cases. We present a heuristic approach to recover information from higher-level networks across a range of potentially identifiable empirical scenarios, supported by theory and simulation. When extrinsic information indicates the location and direction of reticulations, our method can successfully estimate a reduced possible set of nonlevel-1 networks. Phylogenomic data support a single backbone topology with up to 5 overlapping hybrid edges in the Pisgah clade. These results suggest an unusual mechanism of ecomorphological hybrid speciation, wherein a binary threshold trait causes some hybrid populations to shift between microhabitat niches, promoting ecological divergence between sympatric hybrids and parentals. This contrasts with other well-known systems in which hybrids exhibit intermediate, novel, or transgressive phenotypes. The genetic basis of these phenotypes is unclear and further data are needed to clarify the evolutionary basis of morphological changes with ecological consequences.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
| | - Kyle A O'Connell
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
- Deloitte Consulting LLP, Health Data and AI, 1919 North Lynn St., Arlington, VA 22209, USA
| | - Edward A Myers
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560-0162, USA
- Department of Herpetology, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, 209 East 5th St., Greenville, NC 27858, USA
| | - Hector Baños
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada
- Department of Mathematics and Statistics, Faculty of Science, Dalhousie University, 6297 Castine Way, Halifax, NS B3H 4R2, Canada
- Department of Mathematics, California State University San Bernardino, 5500 University Pkwy, San Bernardino, CA, USA
| |
Collapse
|
2
|
Allman ES, Baños H, Mitchell JD, Rhodes JA. TINNiK: inference of the tree of blobs of a species network under the coalescent model. Algorithms Mol Biol 2024; 19:23. [PMID: 39501362 PMCID: PMC11539473 DOI: 10.1186/s13015-024-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/22/2024] [Indexed: 11/08/2024] Open
Abstract
The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.
Collapse
Affiliation(s)
- Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA.
| | - Hector Baños
- Department of Mathematics, California State University San Bernadino, San Bernadino, CA, USA
| | - Jonathan D Mitchell
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
3
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. Anomalous networks under the multispecies coalescent: theory and prevalence. J Math Biol 2024; 88:29. [PMID: 38372830 DOI: 10.1007/s00285-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of [Formula: see text]-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
4
|
Wheeler WC, Washburn AJ. Parsimony optimization of phylogenetic networks. Cladistics 2023; 39:456-474. [PMID: 37466283 DOI: 10.1111/cla.12552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
An algorithm is described for the optimization of character data (e.g. qualitative, nucleic acid sequence) on softwired phylogenetic networks. The algorithm presented here is an extension of those developed for trees under the parsimony criterion and can form the basis for phylogenetic network search procedures. Although the problem is (in general) an NP-Hard optimization, the resolution-based algorithm we describe here capitalizes on the significant amount of shared structure in sub-graphs containing network edges, reducing the execution time and allowing for the analysis of empirical datasets.
Collapse
Affiliation(s)
- Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, 10024, NY, USA
| | - Alexander J Washburn
- Department of Computer Science, City University of New York, 365 5th Avenue, New York, 10016, NY, USA
| |
Collapse
|
5
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. ANOMALOUS NETWORKS UNDER THE MULTISPECIES COALESCENT: THEORY AND PREVALENCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553582. [PMID: 37662314 PMCID: PMC10473666 DOI: 10.1101/2023.08.18.553582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of 32-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
- Department of Botany, University of Wisconsin - Madison, WI, 53706, USA
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
6
|
Wawerka M, Dąbkowski D, Rutecka N, Mykowiecka A, Górecki P. Embedding gene trees into phylogenetic networks by conflict resolution algorithms. Algorithms Mol Biol 2022; 17:11. [PMID: 35590416 PMCID: PMC9119282 DOI: 10.1186/s13015-022-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic networks are mathematical models of evolutionary processes involving reticulate events such as hybridization, recombination, or horizontal gene transfer. One of the crucial notions in phylogenetic network modelling is displayed tree, which is obtained from a network by removing a set of reticulation edges. Displayed trees may represent an evolutionary history of a gene family if the evolution is shaped by reticulation events. RESULTS We address the problem of inferring an optimal tree displayed by a network, given a gene tree G and a tree-child network N, under the deep coalescence and duplication costs. We propose an O(mn)-time dynamic programming algorithm (DP) to compute a lower bound of the optimal displayed tree cost, where m and n are the sizes of G and N, respectively. In addition, our algorithm can verify whether the solution is exact. Moreover, it provides a set of reticulation edges corresponding to the obtained cost. If the cost is exact, the set induces an optimal displayed tree. Otherwise, the set contains pairs of conflicting edges, i.e., edges sharing a reticulation node. Next, we show a conflict resolution algorithm that requires [Formula: see text] invocations of DP in the worst case, where r is the number of reticulations. We propose a similar [Formula: see text]-time algorithm for level-k tree-child networks and a branch and bound solution to compute lower and upper bounds of optimal costs. We also extend the algorithms to a broader class of phylogenetic networks. Based on simulated data, the average runtime is [Formula: see text] under the deep-coalescence cost and [Formula: see text] under the duplication cost. CONCLUSIONS Despite exponential complexity in the worst case, our algorithms perform significantly well on empirical and simulated datasets, due to the strategy of resolving internal dissimilarities between gene trees and networks. Therefore, the algorithms are efficient alternatives to enumeration strategies commonly proposed in the literature and enable analyses of complex networks with dozens of reticulations.
Collapse
|
7
|
Yan Z, Smith ML, Du P, Hahn MW, Nakhleh L. Species Tree Inference Methods Intended to Deal with Incomplete Lineage Sorting Are Robust to the Presence of Paralogs. Syst Biol 2022; 71:367-381. [PMID: 34245291 PMCID: PMC8978208 DOI: 10.1093/sysbio/syab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.].
Collapse
Affiliation(s)
- Zhi Yan
- Department of Computer Science, Rice University,
6100 Main Street, Houston, TX 77005, USA
| | - Megan L Smith
- Department of Biology and Department of Computer Science,
Indiana University, 1001 East Third Street, Bloomington,
IN 47405, USA
| | - Peng Du
- Department of Computer Science, Rice University,
6100 Main Street, Houston, TX 77005, USA
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science,
Indiana University, 1001 East Third Street, Bloomington,
IN 47405, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University,
6100 Main Street, Houston, TX 77005, USA
- Department of BioSciences, Rice University, 6100
Main Street, Houston, TX 77005, USA
| |
Collapse
|
8
|
Jiao X, Flouri T, Yang Z. Multispecies coalescent and its applications to infer species phylogenies and cross-species gene flow. Natl Sci Rev 2022; 8:nwab127. [PMID: 34987842 PMCID: PMC8692950 DOI: 10.1093/nsr/nwab127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023] Open
Abstract
Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and provides a powerful framework for a number of inference problems using genomic sequence data from multiple species, including estimation of species divergence times and population sizes, estimation of species trees accommodating discordant gene trees, inference of cross-species gene flow and species delimitation. In this review, we introduce the major features of the MSC model, discuss full-likelihood and heuristic methods of species tree estimation and summarize recent methodological advances in inference of cross-species gene flow. We discuss the statistical and computational challenges in the field and research directions where breakthroughs may be likely in the next few years.
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Mirarab S, Nakhleh L, Warnow T. Multispecies Coalescent: Theory and Applications in Phylogenetics. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-095340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Species tree estimation is a basic part of many biological research projects, ranging from answering basic evolutionary questions (e.g., how did a group of species adapt to their environments?) to addressing questions in functional biology. Yet, species tree estimation is very challenging, due to processes such as incomplete lineage sorting, gene duplication and loss, horizontal gene transfer, and hybridization, which can make gene trees differ from each other and from the overall evolutionary history of the species. Over the last 10–20 years, there has been tremendous growth in methods and mathematical theory for estimating species trees and phylogenetic networks, and some of these methods are now in wide use. In this survey, we provide an overview of the current state of the art, identify the limitations of existing methods and theory, and propose additional research problems and directions.
Collapse
Affiliation(s)
- Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Yan Z, Cao Z, Liu Y, Ogilvie HA, Nakhleh L. Maximum Parsimony Inference of Phylogenetic Networks in the Presence of Polyploid Complexes. Syst Biol 2021; 71:706-720. [PMID: 34605924 PMCID: PMC9017653 DOI: 10.1093/sysbio/syab081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate
evolutionary histories. While polyploidy has been shown to be prevalent not only in plants
but also in other groups of eukaryotic species, most work done thus far on phylogenetic
network inference assumes diploid hybridization. These inference methods have been
applied, with varying degrees of success, to data sets with polyploid species, even though
polyploidy violates the mathematical assumptions underlying these methods. Statistical
methods were developed recently for handling specific types of polyploids and so were
parsimony methods that could handle polyploidy more generally yet while excluding
processes such as incomplete lineage sorting. In this article, we introduce a new method
for inferring most parsimonious phylogenetic networks on data that include polyploid
species. Taking gene tree topologies as input, the method seeks a phylogenetic network
that minimizes deep coalescences while accounting for polyploidy. We demonstrate the
performance of the method on both simulated and biological data. The inference method as
well as a method for evaluating evolutionary hypotheses in the form of phylogenetic
networks are implemented and publicly available in the PhyloNet software package.
[Incomplete lineage sorting; minimizing deep coalescences; multilabeled trees;
multispecies network coalescent; phylogenetic networks; polyploidy.]
Collapse
Affiliation(s)
- Zhi Yan
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Yushu Liu
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
11
|
Wang Y, Cao Z, Ogilvie HA, Nakhleh L. Phylogenomic assessment of the role of hybridization and introgression in trait evolution. PLoS Genet 2021; 17:e1009701. [PMID: 34407067 PMCID: PMC8405015 DOI: 10.1371/journal.pgen.1009701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/30/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Trait evolution among a set of species-a central theme in evolutionary biology-has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait's evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Huw A. Ogilvie
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, United States of America
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
12
|
Huber KT, Linz S, Moulton V. The rigid hybrid number for two phylogenetic trees. J Math Biol 2021; 82:40. [PMID: 33770290 PMCID: PMC7997861 DOI: 10.1007/s00285-021-01594-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/25/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
Recently there has been considerable interest in the problem of finding a phylogenetic network with a minimum number of reticulation vertices which displays a given set of phylogenetic trees, that is, a network with minimum hybrid number. Such networks are useful for representing the evolution of species whose genomes have undergone processes such as lateral gene transfer and recombination that cannot be represented appropriately by a phylogenetic tree. Even so, as was recently pointed out in the literature, insisting that a network displays the set of trees can be an overly restrictive assumption when modeling certain evolutionary phenomena such as incomplete lineage sorting. In this paper, we thus consider the less restrictive notion of rigidly displaying which we introduce and study here. More specifically, we characterize when two trees can be rigidly displayed by a certain type of phylogenetic network called a temporal tree-child network in terms of fork-picking sequences. These are sequences of special subconfigurations of the two trees related to the well-studied cherry-picking sequences. We also show that, in case it exists, the rigid hybrid number for two phylogenetic trees is given by a minimum weight fork-picking sequence for the trees. Finally, we consider the relationship between the rigid hybrid number and three closely related numbers; the weak, beaded, and temporal hybrid numbers. In particular, we show that these numbers can all be different even for a fixed pair of trees, and also present an infinite family of pairs of trees which demonstrates that the difference between the rigid hybrid number and the temporal-hybrid number for two phylogenetic trees on the same set of n leaves can grow at least linearly with n.
Collapse
Affiliation(s)
| | - Simone Linz
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Kim A, Rosenberg NA, Degnan JH. Probabilities of Unranked and Ranked Anomaly Zones under Birth-Death Models. Mol Biol Evol 2021; 37:1480-1494. [PMID: 31860090 DOI: 10.1093/molbev/msz305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called "anomalous." Species trees that can generate such anomalous gene trees are said to be in the "anomaly zone." Here, probabilities of "unranked" and "ranked" gene tree topologies under the multispecies coalescent are considered. A ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a constant-rate birth-death process can affect the probability that the species tree lies in the anomaly zone. We find that with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.
Collapse
Affiliation(s)
- Anastasiia Kim
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | | | - James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| |
Collapse
|
14
|
Jiao X, Yang Z. Defining Species When There is Gene Flow. Syst Biol 2020; 70:108-119. [PMID: 32617579 DOI: 10.1093/sysbio/syaa052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Whatever one's definition of species, it is generally expected that individuals of the same species should be genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration rates cause a genetic sequence to be on average more closely related to a sequence from another species than to a sequence from the same species. Our results highlight the extraordinary impact that even a small amount of gene flow may have on the genetic history of the species. We suggest that contrasting long-term migration rate and short-term hybridization rate, both of which can be estimated using genetic data, may be a powerful approach to detecting the presence of reproductive barriers and to define species boundaries.[Gene flow; introgression; migration; multispecies coalescent; species concept; species delimitation.].
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
15
|
Zhu J, Liu X, Ogilvie HA, Nakhleh LK. A divide-and-conquer method for scalable phylogenetic network inference from multilocus data. Bioinformatics 2020; 35:i370-i378. [PMID: 31510688 PMCID: PMC6612858 DOI: 10.1093/bioinformatics/btz359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motivation Reticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic networks while also accounting for other processes, such as incomplete lineage sorting. However, these methods can only handle a small number of loci from a handful of genomes. Results In this article, we introduce a novel two-step method for scalable inference of phylogenetic networks from the sequence alignments of multiple, unlinked loci. The method infers networks on subproblems and then merges them into a network on the full set of taxa. To reduce the number of trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of subsets, and implement a simple heuristic to solve it. We studied their performance, in terms of both running time and accuracy, on simulated as well as on biological datasets. The two-step method accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The results are a significant and promising step towards accurate, large-scale phylogenetic network inference. Availability and implementation We implemented the algorithms in the publicly available software package PhyloNet (https://bioinfocs.rice.edu/PhyloNet). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiafan Zhu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Xinhao Liu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Luay K Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA.,Department of BioSciences, Rice University, Houston, TX, USA
| |
Collapse
|
16
|
Tidwell H, Nakhleh L. Integrated likelihood for phylogenomics under a no-common-mechanism model. BMC Genomics 2020; 21:219. [PMID: 32299348 PMCID: PMC7161099 DOI: 10.1186/s12864-020-6608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Multi-locus species phylogeny inference is based on models of sequence evolution on gene trees as well as models of gene tree evolution within the branches of species phylogenies. Almost all statistical methods for this inference task assume a common mechanism across all loci as captured by a single value of each branch length of the species phylogeny. Results In this paper, we pursue a “no common mechanism" (NCM) model, where every gene tree evolves according to its own parameters of the species phylogeny. Based on this model, we derive an analytically integrated likelihood of both species trees and networks given the gene trees of multiple loci under an NCM model. We demonstrate the performance of inference under this integrated likelihood on both simulated and biological data. Conclusions The model presented here will afford opportunities for exploring connections among various criteria for estimating species phylogenies from multiple, independent loci. Furthermore, further development of this model could potentially result in more efficient methods for searching the space of species phylogenies by focusing solely on the topology of the phylogeny.
Collapse
|
17
|
Jiao X, Flouri T, Rannala B, Yang Z. The Impact of Cross-Species Gene Flow on Species Tree Estimation. Syst Biol 2020; 69:830-847. [DOI: 10.1093/sysbio/syaa001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Abstract
Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree estimation. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and one ingroup species. Several species tree estimation methods are examined, including the majority-vote method based on the most common gene tree topology (with either the true or reconstructed gene trees used), the UPGMA method based on the average sequence distances (or average coalescent times) between species, and the full-likelihood method based on multilocus sequence data. Our results suggest that the majority-vote method based on gene tree topologies is more robust to gene flow than the UPGMA method based on coalescent times and both are more robust than likelihood assuming a multispecies coalescent (MSC) model with no cross-species gene flow. Comparison of the continuous migration model with the episodic introgression model suggests that a small amount of gene flow per generation can cause drastic changes to the genetic history of the species and mislead species tree methods, especially if the species diverged through radiative speciation events. Estimates of parameters under the MSC with gene flow suggest that African mosquito species in the Anopheles gambiae species complex constitute such an example of extreme impact of gene flow on species phylogeny. [IM; introgression; migration; MSci; multispecies coalescent; species tree.]
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Ziheng Yang
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
18
|
Allman ES, Baños H, Rhodes JA. NANUQ: a method for inferring species networks from gene trees under the coalescent model. Algorithms Mol Biol 2019; 14:24. [PMID: 31827592 PMCID: PMC6896299 DOI: 10.1186/s13015-019-0159-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
Species networks generalize the notion of species trees to allow for hybridization or other lateral gene transfer. Under the network multispecies coalescent model, individual gene trees arising from a network can have any topology, but arise with frequencies dependent on the network structure and numerical parameters. We propose a new algorithm for statistical inference of a level-1 species network under this model, from data consisting of gene tree topologies, and provide the theoretical justification for it. The algorithm is based on an analysis of quartets displayed on gene trees, combining several statistical hypothesis tests with combinatorial ideas such as a quartet-based intertaxon distance appropriate to networks, the NeighborNet algorithm for circular split systems, and the Circular Network algorithm for constructing a splits graph.
Collapse
|
19
|
Van Iersel L, Janssen R, Jones M, Murakami Y, Zeh N. Polynomial-Time Algorithms for Phylogenetic Inference Problems involving duplication and reticulation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 17:14-26. [PMID: 31425045 DOI: 10.1109/tcbb.2019.2934957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A common problem in phylogenetics is to try to infer a species phylogeny from gene trees. We consider different variants of this problem. The first variant, called Unrestricted Minimal Episodes Inference, aims at inferring a species tree based on a model with speciation and duplication where duplications are clustered in duplication episodes. The goal is to minimize the number of such episodes. The second variant, Parental Hybridization, aims at inferring a species network based on a model with speciation and reticulation. The goal is to minimize the number of reticulation events. It is a variant of the well-studied Hybridization Number problem with a more generous view on which gene trees are consistent with a given species network. We show that these seemingly different problems are in fact closely related and can, surprisingly, both be solved in polynomial time, using a structure we call "beaded trees". However, we also show that methods based on these problems have to be used with care because the optimal species phylogenies always have a restricted form. To mitigate this problem, we introduce a new variant of Unrestricted Minimal Episodes Inference that minimizes the duplication episode depth. We prove that this new variant of the problem can also be solved in polynomial time.
Collapse
|
20
|
Baños H. Identifying Species Network Features from Gene Tree Quartets Under the Coalescent Model. Bull Math Biol 2019; 81:494-534. [PMID: 30094772 PMCID: PMC6344282 DOI: 10.1007/s11538-018-0485-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
We show that many topological features of level-1 species networks are identifiable from the distribution of the gene tree quartets under the network multi-species coalescent model. In particular, every cycle of size at least 4 and every hybrid node in a cycle of size at least 5 are identifiable. This is a step toward justifying the inference of such networks which was recently implemented by Solís-Lemus and Ané. We show additionally how to compute quartet concordance factors for a network in terms of simpler networks, and explore some circumstances in which cycles of size 3 and hybrid nodes in 4-cycles can be detected.
Collapse
Affiliation(s)
- Hector Baños
- University of Alaska Fairbanks, P.O. Box 756660, Fairbanks, AK, 99775-6660, USA.
| |
Collapse
|
21
|
Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. BIOINFORMATICS AND PHYLOGENETICS 2019. [DOI: 10.1007/978-3-030-10837-3_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Abstract
PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.
Collapse
Affiliation(s)
| | | | | | - Luay Nakhleh
- Computer Science.,BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
23
|
Degnan JH. Modeling Hybridization Under the Network Multispecies Coalescent. Syst Biol 2018; 67:786-799. [PMID: 29846734 PMCID: PMC6101600 DOI: 10.1093/sysbio/syy040] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Simultaneously modeling hybridization and the multispecies coalescent is becoming increasingly common, and inference of species networks in this context is now implemented in several software packages. This article addresses some of the conceptual issues and decisions to be made in this modeling, including whether or not to use branch lengths and issues with model identifiability. This article is based on a talk given at a Spotlight Session at Evolution 2017 meeting in Portland, Oregon. This session included several talks about modeling hybridization and gene flow in the presence of incomplete lineage sorting. Other talks given at this meeting are also included in this special issue of Systematic Biology.
Collapse
Affiliation(s)
- James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Morales-Briones DF, Liston A, Tank DC. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). THE NEW PHYTOLOGIST 2018; 218:1668-1684. [PMID: 29604235 DOI: 10.1111/nph.15099] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 05/10/2023]
Abstract
Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongruence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use sequence capture data and multiple species tree and species network approaches to resolve the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among sources of incongruence. We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clarify the relationships among the major groups of Lachemilla, and explored multiple sources of conflict between gene trees and species trees inferred with a plurality of approaches. All phylogenetic methods recovered the four major groups previously proposed for Lachemilla, but species tree methods recovered different topologies for relationships between these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely of ancient hybrid origin, representing one of the main sources of incongruence among the species trees. Additionally, we found evidence for a potential whole genome duplication event shared by Lachemilla and allied genera. Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolutionary history of the group. Also, we show the necessity to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups that show patterns of reticulation.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
25
|
Van Iersel L, Jones M, Scornavacca C. Improved Maximum Parsimony Models for Phylogenetic Networks. Syst Biol 2018; 67:518-542. [PMID: 29272537 DOI: 10.1093/sysbio/syx094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.
Collapse
Affiliation(s)
- Leo Van Iersel
- Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
| | - Mark Jones
- Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
| | - Celine Scornavacca
- Institut des Sciences de l'Évolution Université de Montpellier, CNRS, IRD, EPHE CC 064, Place Eugène Bataillon 34095 Montpellier Cedex 05, France.,Institut de Biologie Computationnelle (IBC), Montpellier, France
| |
Collapse
|
26
|
Long C, Kubatko L. The Effect of Gene Flow on Coalescent-based Species-Tree Inference. Syst Biol 2018; 67:770-785. [DOI: 10.1093/sysbio/syy020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Colby Long
- Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Ave., Columbus, OH, USA
| | - Laura Kubatko
- Department of Statistics, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1958 Neil Ave., Columbus, OH, USA
| |
Collapse
|
27
|
Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L. Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLoS Comput Biol 2018; 14:e1005932. [PMID: 29320496 PMCID: PMC5779709 DOI: 10.1371/journal.pcbi.1005932] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/23/2018] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful source of genome-wide data. In a recent paper, a method called SNAPP was introduced for statistical inference of species trees from unlinked bi-allelic markers. The generative process assumed by the method combined both a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A novel component of the method was a polynomial-time algorithm for exact computation of the likelihood of a fixed species tree via integration over all possible gene trees for a given marker. Here we report on a method for Bayesian inference of phylogenetic networks from bi-allelic markers. Our method significantly extends the algorithm for exact computation of phylogenetic network likelihood via integration over all possible gene trees. Unlike the case of species trees, the algorithm is no longer polynomial-time on all instances of phylogenetic networks. Furthermore, the method utilizes a reversible-jump MCMC technique to sample the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very good performance in terms of accuracy and robustness as we demonstrate on simulated data, as well as a data set of multiple New Zealand species of the plant genus Ourisia (Plantaginaceae). We implemented the method in the publicly available, open-source PhyloNet software package. The availability of genomic data has revolutionized the study of evolutionary histories and phylogeny inference. Inferring evolutionary histories from genomic data requires, in most cases, accounting for the fact that different genomic regions could have evolutionary histories that differ from each other as well as from that of the species from which the genomes were sampled. In this paper, we introduce a method for inferring evolutionary histories while accounting for two processes that could give rise to such differences across the genomes, namely incomplete lineage sorting and hybridization. We introduce a novel algorithm for computing the likelihood of phylogenetic networks from bi-allelic genetic markers and use it in a Bayesian inference method. Analyses of synthetic and empirical data sets show a very good performance of the method in terms of the estimates it obtains.
Collapse
Affiliation(s)
- Jiafan Zhu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Dingqiao Wen
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Yun Yu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Luay Nakhleh
- Computer Science, Rice University, Houston, Texas, United States of America
- BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Wen D, Nakhleh L. Coestimating Reticulate Phylogenies and Gene Trees from Multilocus Sequence Data. Syst Biol 2017; 67:439-457. [DOI: 10.1093/sysbio/syx085] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Luay Nakhleh
- Department of Computer Science
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|