1
|
Hao S, Li CY, Hu X, Feng Z, Zhang G, Yang C, Hu H. S-DCNN: prediction of ATP binding residues by deep convolutional neural network based on SMOTE. Front Genet 2025; 15:1513201. [PMID: 39834546 PMCID: PMC11744016 DOI: 10.3389/fgene.2024.1513201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background The realization of many protein functions requires binding with ligands. As a significant protein-binding ligand, ATP plays a crucial role in various biological processes. Currently, the precise prediction of ATP binding residues remains challenging. Methods Based on the sequence information, this paper introduces a method called S-DCNN for predicting ATP binding residues, utilizing a deep convolutional neural network (DCNN) enhanced with the synthetic minority over-sampling technique (SMOTE). Results The incorporation of additional feature parameters such as dihedral angles, energy, and propensity factors into the standard parameter set resulted in a significant enhancement in prediction accuracy on the ATP-289 dataset. The S-DCNN achieved the highest Matthews correlation coefficient value of 0.5031 and an accuracy rate of 97.06% on an independent test set. Furthermore, when applied to the ATP-221 and ATP-388 datasets for validation, the S-DCNN outperformed existing methods on ATP-221 and performed comparably to other methods on ATP-388 during independent testing. Conclusion Our experimental results underscore the efficacy of the S-DCNN in accurately predicting ATP binding residues, establishing it as a potent tool in the prediction of ATP binding residues.
Collapse
Affiliation(s)
- Sixi Hao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- School of Mathematics and Statistics, Xinyang College, Xinyang, China
| | - Cai-Yan Li
- School of Computer Science and Technology/Baotou Medical College, Baotou, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Gaimei Zhang
- Department of Obstetrics and Gynecology, Hohhot First Hospital, Hohhot, China
| | - Caiyun Yang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Huimin Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
2
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
3
|
Zhang Y, Li S, Meng K, Sun S. Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction. J Chem Inf Model 2024; 64:1456-1472. [PMID: 38385768 DOI: 10.1021/acs.jcim.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Developing new drugs is too expensive and time -consuming. Accurately predicting the interaction between drugs and targets will likely change how the drug is discovered. Machine learning-based protein-ligand interaction prediction has demonstrated significant potential. In this paper, computational methods, focusing on sequence and structure to study protein-ligand interactions, are examined. Therefore, this paper starts by presenting an overview of the data sets applied in this area, as well as the various approaches applied for representing proteins and ligands. Then, sequence-based and structure-based classification criteria are subsequently utilized to categorize and summarize both the classical machine learning models and deep learning models employed in protein-ligand interaction studies. Moreover, the evaluation methods and interpretability of these models are proposed. Furthermore, delving into the diverse applications of protein-ligand interaction models in drug research is presented. Lastly, the current challenges and future directions in this field are addressed.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shuyuan Li
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kong Meng
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shaorui Sun
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
4
|
Essien C, Jiang L, Wang D, Xu D. Prediction of Protein Ion-Ligand Binding Sites with ELECTRA. Molecules 2023; 28:6793. [PMID: 37836636 PMCID: PMC10574437 DOI: 10.3390/molecules28196793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Interactions between proteins and ions are essential for various biological functions like structural stability, metabolism, and signal transport. Given that more than half of all proteins bind to ions, it is becoming crucial to identify ion-binding sites. The accurate identification of protein-ion binding sites helps us to understand proteins' biological functions and plays a significant role in drug discovery. While several computational approaches have been proposed, this remains a challenging problem due to the small size and high versatility of metals and acid radicals. In this study, we propose IonPred, a sequence-based approach that employs ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to predict ion-binding sites using only raw protein sequences. We successfully fine-tuned our pretrained model to predict the binding sites for nine metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, and K+) and four acid radical ion ligands (CO32-, SO42-, PO43-, NO2-). IonPred surpassed six current state-of-the-art tools by over 44.65% and 28.46%, respectively, in the F1 score and MCC when compared on an independent test dataset. Our method is more computationally efficient than existing tools, producing prediction results for a hundred sequences for a specific ion in under ten minutes.
Collapse
Affiliation(s)
| | | | | | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (C.E.); (L.J.); (D.W.)
| |
Collapse
|
5
|
Zhang J, Zhou F, Liang X, Yang G. SCAMPER: Accurate Type-Specific Prediction of Calcium-Binding Residues Using Sequence-Derived Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1406-1416. [PMID: 35536812 DOI: 10.1109/tcbb.2022.3173437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding molecular mechanisms involved in calcium-protein interactions and modeling corresponding docking rely on the accurate identification of calcium-binding residues (CaBRs). The defects of experimentally annotating protein functions enhances the development of computational approaches that correctly identify calcium-binding interactions. Studies have reported that current methods severely cross-predict residues that interact with other types of molecules (e.g., nucleic acids, proteins, and small ligands) as CaBRs. In this study, a novel predictor named SCAMPER (Selective CAlciuM-binding PrEdictoR) is proposed for the accurate and specific prediction of CaBRs. SCAMPER is designed using newly compiled dataset with complete UniProt sequences and annotations, which include calcium-binding, nucleic acid-binding, protein-binding, and small ligand-binding residues. We use a novel designed two-layer scheme to perform predictions as well as penalize cross-predictions. Empirical tests on an independent test dataset reveals that the proposed method significantly outperforms state-of-the-art predictors. SCAMPER is proved to be capable of distinguishing CaBRs from different types of metal-ion binding residues. We further perform CaBRs predictions on the whole human proteome, and use the results to hypothesize calcium-binding proteins (CaBPs). The latest experimental verified CaBPs and GO analysis prove the accuracy of our predictions. We implement the proposed method and share the data at http://www.inforstation.com/webservers/SCAMPER/.
Collapse
|
6
|
Hao S, Hu X, Feng Z, Sun K, You X, Wang Z, Yang C. Prediction of metal ion ligand binding residues by adding disorder value and propensity factors based on deep learning algorithm. Front Genet 2022; 13:969412. [PMID: 36035120 PMCID: PMC9402973 DOI: 10.3389/fgene.2022.969412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins need to interact with different ligands to perform their functions. Among the ligands, the metal ion is a major ligand. At present, the prediction of protein metal ion ligand binding residues is a challenge. In this study, we selected Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+ and Mg2+ metal ion ligands from the BioLip database as the research objects. Based on the amino acids, the physicochemical properties and predicted structural information, we introduced the disorder value as the feature parameter. In addition, based on the component information, position weight matrix and information entropy, we introduced the propensity factor as prediction parameters. Then, we used the deep neural network algorithm for the prediction. Furtherly, we made an optimization for the hyper-parameters of the deep learning algorithm and obtained improved results than the previous IonSeq method.
Collapse
Affiliation(s)
- Sixi Hao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
- *Correspondence: Xiuzhen Hu, ; Zhenxing Feng,
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
- *Correspondence: Xiuzhen Hu, ; Zhenxing Feng,
| | - Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Xiaoxiao You
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Ziyang Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Caiyun Yang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| |
Collapse
|
7
|
A Comprehensive Review of Computation-Based Metal-Binding Prediction Approaches at the Residue Level. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8965712. [PMID: 35402609 PMCID: PMC8989566 DOI: 10.1155/2022/8965712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details 18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and underlying limitations of the current studies and propose several prospective directions concerning the future development of the related databases and methods.
Collapse
|
8
|
Xu S, Hu X, Feng Z, Pang J, Sun K, You X, Wang Z. Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors. Front Genet 2022; 12:793800. [PMID: 35058970 PMCID: PMC8764267 DOI: 10.3389/fgene.2021.793800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The realization of many protein functions is inseparable from the interaction with ligands; in particular, the combination of protein and metal ion ligands performs an important biological function. Currently, it is a challenging work to identify the metal ion ligand-binding residues accurately by computational approaches. In this study, we proposed an improved method to predict the binding residues of 10 metal ion ligands (Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+). Based on the basic feature parameters of amino acids, and physicochemical and predicted structural information, we added another two features of amino acid correlation information and binding residue propensity factors. With the optimized parameters, we used the GBM algorithm to predict metal ion ligand-binding residues. In the obtained results, the Sn and MCC values were over 10.17% and 0.297, respectively. Besides, the Sn and MCC values of transition metals were higher than 34.46% and 0.564, respectively. In order to test the validity of our model, another method (Random Forest) was also used in comparison. The better results of this work indicated that the proposed method would be a valuable tool to predict metal ion ligand-binding residues.
Collapse
Affiliation(s)
- Shuang Xu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Jing Pang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Xiaoxiao You
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| | - Ziyang Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China
| |
Collapse
|
9
|
Dhakal A, McKay C, Tanner JJ, Cheng J. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions. Brief Bioinform 2022; 23:bbab476. [PMID: 34849575 PMCID: PMC8690157 DOI: 10.1093/bib/bbab476] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery. Here, we review the computational approaches to predicting protein-ligand interactions in the context of drug discovery, focusing on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein-ligand interactions. Finally, we survey and analyze the machine learning (ML) approaches implemented to predict protein-ligand binding sites, ligand-binding affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring the correlation between these three aspects of protein-ligand interaction, it has been proposed that they should be studied in unison. We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying protein-ligand interactions.
Collapse
Affiliation(s)
- Ashwin Dhakal
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Cole McKay
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
10
|
Liu L, Hu X, Feng Z, Wang S, Sun K, Xu S. Recognizing Ion Ligand-Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle. Front Bioeng Biotechnol 2020; 8:493. [PMID: 32596216 PMCID: PMC7303464 DOI: 10.3389/fbioe.2020.00493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/28/2020] [Indexed: 11/26/2022] Open
Abstract
The prediction of ion ligand–binding residues in protein sequences is a challenging work that contributes to understand the specific functions of proteins in life processes. In this article, we selected binding residues of 14 ion ligands as research objects, including four acid radical ion ligands and 10 metal ion ligands. Based on the amino acid sequence information, we selected the composition and position conservation information of amino acids, the predicted structural information, and physicochemical properties of amino acids as basic feature parameters. We then performed a statistical analysis and reclassification for dihedral angle and proposed new methods on the extraction of feature parameters. The methods mainly included applying information entropy on the extraction of polarization charge and hydrophilic–hydrophobic information of amino acids and using position weight matrices on the extraction of position conservation information. In the prediction model, we used the random forest algorithm and obtained better prediction results than previous works. With the independent test, the Matthew's correlation coefficient and accuracy of 10 metal ion ligand–binding residues were larger than 0.07 and 52%, respectively; the corresponding evaluation values of four acid radical ion ligand–binding residues were larger than 0.15 and 86%, respectively. Further, we classified and combined the phi and psi angles and optimized prediction model for each ion ligand–binding residue.
Collapse
Affiliation(s)
- Liu Liu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Shan Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Shuang Xu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
11
|
Hu X, Feng Z, Zhang X, Liu L, Wang S. The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility. Front Genet 2020; 11:214. [PMID: 32265982 PMCID: PMC7096583 DOI: 10.3389/fgene.2020.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Many proteins realize their special functions by binding with specific metal ion ligands during a cell's life cycle. The ability to correctly identify metal ion ligand-binding residues is valuable for the human health and the design of molecular drug. Precisely identifying these residues, however, remains challenging work. We have presented an improved computational approach for predicting the binding residues of 10 metal ion ligands (Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Ca2+, Mg2+, Mn2+, Na+, and K+) by adding reclassified relative solvent accessibility (RSA). The best accuracy of fivefold cross-validation was higher than 77.9%, which was about 16% higher than the previous result on the same dataset. It was found that different reclassification of the RSA information can make different contributions to the identification of specific ligand binding residues. Our study has provided an additional understanding of the effect of the RSA on the identification of metal ion ligand binding residues.
Collapse
Affiliation(s)
| | - Zhenxing Feng
- College of Sciences, Inner Mongolla University of Technology, Hohhot, China
| | - Xiaojin Zhang
- College of Sciences, Inner Mongolla University of Technology, Hohhot, China
| | | | | |
Collapse
|
12
|
Wang S, Hu X, Feng Z, Zhang X, Liu L, Sun K, Xu S. Recognizing ion ligand binding sites by SMO algorithm. BMC Mol Cell Biol 2019; 20:53. [PMID: 31823742 PMCID: PMC6905020 DOI: 10.1186/s12860-019-0237-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background In many important life activities, the execution of protein function depends on the interaction between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the ion ligands plays an important role in the study of the protein function. Results In this study, four acid radical ion ligands (NO2−,CO32−,SO42−,PO43−) and ten metal ion ligands (Zn2+,Cu2+,Fe2+,Fe3+,Ca2+,Mg2+,Mn2+,Na+,K+,Co2+) are selected as the research object, and the Sequential minimal optimization (SMO) algorithm based on sequence information was proposed, better prediction results were obtained by 5-fold cross validation. Conclusions An efficient method for predicting ion ligand binding sites was presented.
Collapse
Affiliation(s)
- Shan Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China.
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiaojin Zhang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Liu Liu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Shuang Xu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
13
|
Liu L, Hu X, Feng Z, Zhang X, Wang S, Xu S, Sun K. Prediction of acid radical ion binding residues by K-nearest neighbors classifier. BMC Mol Cell Biol 2019; 20:52. [PMID: 31823720 PMCID: PMC6904995 DOI: 10.1186/s12860-019-0238-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Proteins perform their functions by interacting with acid radical ions. Recently, it was a challenging work to precisely predict the binding residues of acid radical ion ligands in the research field of molecular drug design. Results In this study, we proposed an improved method to predict the acid radical ion binding residues by using K-nearest Neighbors classifier. Meanwhile, we constructed datasets of four acid radical ion ligand (NO2−, CO32−, SO42−, PO43−) binding residues from BioLip database. Then, based on the optimal window length for each acid radical ion ligand, we refined composition information and position conservative information and extracted them as feature parameters for K-nearest Neighbors classifier. In the results of 5-fold cross-validation, the Matthew’s correlation coefficient was higher than 0.45, the values of accuracy, sensitivity and specificity were all higher than 69.2%, and the false positive rate was lower than 30.8%. Further, we also performed an independent test to test the practicability of the proposed method. In the obtained results, the sensitivity was higher than 40.9%, the values of accuracy and specificity were higher than 84.2%, the Matthew’s correlation coefficient was higher than 0.116, and the false positive rate was lower than 15.4%. Finally, we identified binding residues of the six metal ion ligands. In the predicted results, the values of accuracy, sensitivity and specificity were all higher than 77.6%, the Matthew’s correlation coefficient was higher than 0.6, and the false positive rate was lower than 19.6%. Conclusions Taken together, the good results of our prediction method added new insights in the prediction of the binding residues of acid radical ion ligands.
Collapse
Affiliation(s)
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China.
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiaojin Zhang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Shan Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Shuang Xu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
14
|
Hu X, Ge R, Feng Z. Recognizing five molecular ligand-binding sites with similar chemical structure. J Comput Chem 2019; 41:110-118. [PMID: 31642535 DOI: 10.1002/jcc.26077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 02/03/2023]
Abstract
Accurate identification of ligand-binding sites and discovering the protein-ligand interaction mechanism are important for understanding proteins' functions and designing new drugs. Meanwhile, accurate computational prediction and mechanism research are two grand challenges in proteomics. In this article, ligand-binding residues of five ligands (ATP, ADP, GTP, GDP, and NAD) are predicted as a group, due to their similar chemical structures and close biological function relations. The data set of binding sites by five ligands (ATP, ADP, GTP, GDP, and NAD) are collated from Biolip database. Then, five features, containing increment of diversity value, matrix scoring value, auto-covariance, secondary structure information, and surface accessibility information are used in binding site predictions. The support vector machine (SVM) model is used with the five features to predict ligand-binding sites. Finally, prediction results are tested by fivefold cross validation. Accuracy (Acc) of five ligands (ATP, ADP, GTP, GDP, and NAD) achieves 77.4%, 71.2%, 82.1%, 82.9%, and 85.3%, respectively; and Matthew correlation coefficient (MCC) of the above five ligands achieves 0.549, 0.424, 0.643, 0.659, and 0.702, respectively. The research result shows that for ligands with similar chemical structures, microenvironment of their binding sites and their sensitivities to features are similar, while, differences of their ligand-binding properties exist at the same time. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiuzhen Hu
- Departments of Physics, College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Riletu Ge
- Departments of Physics, College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhenxing Feng
- Departments of Mathematics, College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
15
|
Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC STRUCTURAL BIOLOGY 2018; 18:15. [PMID: 30522477 PMCID: PMC6282305 DOI: 10.1186/s12900-018-0095-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) ligands may act as potential carcinogens or anti-tumor agents. Understanding how some of the residues in AhR ligand binding domain (AhRLBD) modulate their interactions with ligands would be useful in assessing their divergent roles including toxic and beneficial effects. To this end, we have analysed the nature of AhRLBD interactions with 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), 6-formylindolo[3,2-b]carbazole (FICZ), indole-3-carbinol (I3C) and its degradation product, 3,3'-diindolylmethane (DIM), Resveratrol (RES) and its analogue, Piceatannol (PTL) using molecular modeling approach followed by molecular dynamic simulations. RESULTS Results showed that each of the AhR ligands, TCDD, FICZ, I3C, DIM, RES and PTL affect the local and global conformations of AhRLBD. CONCLUSION The data presented in this study provide a structural understanding of AhR with its ligands and set the basis for its functions in several pathways and their related diseases.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| |
Collapse
|
16
|
Pai PP, Dattatreya RK, Mondal S. Ensemble Architecture for Prediction of Enzyme‐ligand Binding Residues Using Evolutionary Information. Mol Inform 2017. [DOI: 10.1002/minf.201700021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priyadarshini P. Pai
- Department of Biological SciencesBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India
| | - Rohit Kadam Dattatreya
- Department of EconomicsBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India, PIN: 403726
| | - Sukanta Mondal
- Department of Biological SciencesBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India
| |
Collapse
|
17
|
ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:24-32. [PMID: 28212856 DOI: 10.1016/j.pbiomolbio.2017.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 01/30/2023]
Abstract
ProBiS (Protein Binding Sites) Tools consist of algorithm, database, and web servers for prediction of binding sites and protein ligands based on the detection of structurally similar binding sites in the Protein Data Bank. In this article, we review the operations that ProBiS Tools perform, provide comments on the evolution of the tools, and give some implementation details. We review some of its applications to biologically interesting proteins. ProBiS Tools are freely available at http://probis.cmm.ki.si and http://probis.nih.gov.
Collapse
|